Homework 5 solution

3. Show $L_5 = \{ M_x \# M_y \mid L(M_x) \subseteq L(M_y) \}$ is co-re but not re. (actually, it turns out that it’s not co-re...)

To show that L_5 is not recursive:

Assume that L_5 is recursive, we can generate a machine K that takes $M_x \# M_y$ as input and returns ‘Y’ if $L(M_x) \subseteq L(M_y)$ and ‘N’ otherwise.

Define a machine M_0 be such that $L(M_0) = \phi$

Now use K to generate machine M_1 that appears below:

![Diagram](image)

The M' component simply appends M_0 to input M for input to K.

We know that $L(M) \subseteq L(M_0) = \phi$ iff $L(M) = \phi$

So M_1 accepts $\{ M \mid L(M) \neq \phi \}$

(note that the final ‘Y’ and ‘N’ are reversed from the output from K)

However, we know that the language $L = \{ M \mid L(M) \neq \phi \}$ is not recursive, so this is a contradiction.

Therefore, L_5 is not recursive.

It turns out that L_5 is NOT co-re either because that would require showing that M_x accepts a string that M_y does not, and M_y could 'loop forever' on a particular string accepted by M_x, and it is not possible to determine this in finite time.