
Homework 2 solutions

1. (10 + 5 = 15 points)
(i) Define Rev(L) = {xR | x ∈ L }. Note xR is the reversal of the string x.
Thus, e.g., if L = {ab, aba, babb} then Rev(L) = {ba, aba, bbab}.

Let L1 be a regular language that is recognized by a DFA M1 = (Q1, Σ, δ1, s1, F1).
Provide a construction (be precise) to create a DFA or an NFA to accept Rev(L1).

Intuitively, the idea is to ‘reverse’ the starting and final states as
well as all the transitions in M1 to generate an NFA N2 which accepts Rev(L1).

The reversal of the transitions causes ∆2(p, a) = { q | δ1(q, a) = p }
for each state p ∈ Q1 (note that ∆2(p, a) can be a set of states).

In order to have a single ‘Start State’ in N2, a ‘Start State’ is added with ε-transitions
to each state in F1 such that ∆2(‘Start State’, ε) = F1.

Ultimately, the construction of the NFA N2 that will accept Rev(L1) is as follows:
N2 = (Q2, Σ, ∆2, s2, F2) where:

Q2 = Q1 U ‘Start State’
Σ = Σ
∆2: as described above
s2 = ‘Start State’ (which has ε transitions to each state in F1)
F2 = {s1}

(ii) Apply your construction to the DFA given below.

Input DFA M1 which accepts L:

NFA N2 that accepts Rev(L) where L is accepted by the input DFA M1:

1

2. (10 X 3 = 30 points)
Give regular expressions that denote the following sets:

a. The set of strings where the third last symbol is an ‘a’. Here, Σ = {a, b}.

Strings in this set start with any number ≥ 0 of a’s or b’s in any order; this is represented by (a | b)*.
Then, the third to last symbol in the string must be an ‘a’, represented by ‘a’.
Finally, the last two symbols can be either a or b, represented by (a | b)(a | b).

Resulting regular expression: (a | b)*a(a | b)(a | b)

b. The set of strings of the form w1cw2 where w1 and w2

belong to {a, b}* and w2 contains a ‘b’ if and only if w1

has at least 2 occurrences of ‘a’.

First, look at the case where w1 has at least 2 occurrences of ‘a’, so w2 contains a ‘b’:

w1 with at least 2 occurrences of ‘a’ begins with any number ≥ 0 of a’s or b’s in any order;
this is represented in a regular expression by (a | b)*.
Then ‘must’ contain an ‘a’, which is represented as an ‘a’ in a regular expression.
Then there is another set of any number ≥ 0 of a’s or b’s in any order,
another ‘a’, and finally a third set of any number ≥ 0 of a’s or b’s in any order.

The regular expression for w1 here is (a | b)*a(a | b)*a(a | b)*.

Next, w2 with a ‘b’ begins with any number ≥ 0 of a’s or b’s in any order,
then it ‘must’ contain an ‘b’, then concludes another set of any number ≥ 0 of a’s or b’s.

The regular expression for w2 here is (a | b)*b(a | b)*.

2

The regular expression for the ‘c’ between w1 and w2 is simply ‘c’.

Therefore, the complete regular expression for this ‘first’ case is
(a | b)*a(a | b)*a(a | b)*c(a | b)*b(a | b)*).

Next, look at the case where w1 has ≤ 2 occurrences of ‘a’, so w2 does not contain any b’s:

w1 with ≤ 2 occurrences of ‘a’ begins with any number ≥ 0 of b’s;
this is represented in a regular expression by b*. Next, it can contain an ‘a’
but doesn’t have to; this is represented by (a | ε) in a regular
expression, with ε corresponding to an empty string. w1 in this case
concludes with ≥ 0 b’s, represented by b*.

The regular expression for w1 here is b*(a | ε)b*.

w2 without ‘b’ simply contains any number ≥ 0 of a’s, represented by a* in a regular expression.

The regular expression for the ‘c’ between w1 and w2 is simply ‘c’.

Therefore, the complete regular expression for this ‘second’ case is
b*(a | ε)b*ca*.

The final regular expression is simply a disjunction of the two cases, resulting in:
((a | b)*a(a | b)*a(a | b)*c(a | b)*b(a | b)*) | (b*(a | ε)b*ca*)

c. The set of strings that do not contain the substring ‘ab’. Here, Σ = {a, b}.

A string without the substring ’ab’ cannot contain any ‘b’ once there has been an ‘a’, resulting
in the regular expression ‘b*a*’ where the string can contain any number of b’s followed by any
number of a’s.

Resulting regular expression: b*a*

3. (10 X 3 = 30 points) Use the pumping lemma to show that the following sets are not regular.

a. Set A = {albmcn | l=100, m > l, n > m }

Given the ‘demon’s’ k value...(see p. 71 of book)
Let xyz = a100bk+100ck+100+1 ∈ set A
Let x = a100, y = bk+100, z = ck+100+1

Now v in y = uvw must contain at least 1 ‘b’ since y only contains b’s and v cannot be empty
Note that m = k + 100 and n = k + 100 + 1, so n = m + 1 when i=1.
Now let i = 2.
The presence of i=2 forces the addition if at least 1 ‘b’ to y,

3

so now m ≥ (k + 100 + 1) → m ≥ n.
Therefore, it is no longer the case that n > m.
And therefore, xuviwz /∈ set A when i = 2
Therefore, the set is not regular.

b. The set A of strings of the form ww where w ∈ {a, b}*.
Thus abbaabba is included in this set but abba is not.

Given the ‘demon’s’ k value...(see p. 71 of book)
Let xyz = akbkakbk ∈ set A
Let x = akbkak, y = bk, z = ε
Now v in y = uvw must contain at least 1 ’b’ since y only contains b’s and v cannot be empty.
Now when i = 2, uv2w = bj where j > k
Since akbkakbj /∈ language when j > k, xuviwz /∈ set A when i = 2.
Therefore the set is not regular.

c. The set A of strings of the form an1bn2cn3dn4, where n1 = n3 or n2 = n4. (n1, n2, n3, n4 ≥ 1)

Given the ‘demon’s’ k value...(see p. 71 of book)
Let xyz = akbk+1ckdk+2 ∈ set A
Let x = ε, y = ak, z = bk+1ckdk+2

Now v in y = uvw must contain at least 1 ’a’ since y only contains a’s and v cannot be empty...
Now when i = 2, y = uv2w = aj where j > k
Since ajbk+1ckdk+2 /∈ set A when j > k, xuviwz /∈ set A when i = 2.
Therefore, the set A is not regular.

4. (15 points) Exercise 47 (Parts a and b only) on Page 326 of the textbook.

Minimize the following DFAs. Indicate clearly which equivslence class corresponds
to each state of the new automaton.

Part a:

a b
1 6 3
2 5 6
3F 4 5
4F 3 2
5 2 1
6 1 4

Using algorithm in book (see p. 84) for computing the collapsing relation ≈

4

for a given DFA M with no inaccessible states. The algorithms marks (unordered) pairs
of states {p, q}, where a pair {p, q} is marked as a reason is discovered
as to why p and q are NOT equivalent.

1
- 2
- - 3
- - - 4
- - - - 5
- - - - - 6

Pass 1: mark all pairs consisting of once accept state
and one nonaccept state.

1
- 2
X X 3
X X - 4
- - X X 5
- - X X - 6

Repeat until no changes: if there is an unmarked pair {p, q} such that
{δ(p, a), δ(q, a)} is marked for some a ∈ Σ, then mark {p, q}.

Mark {1, 2} since it goes to marked pair {3, 6} on input ’b’
Mark {5, 1} since it goes to marked pair {1, 3} on input ’b’
Mark {6, 2} since it goes to marked pair {5, 1} on input ’a’
Mark {6, 5} since it goes to marked pair {1, 2} on input ’a’

Table now looks as follows; no more values can be marked...
1
X 2
X X 3
X X - 4
X - X X 5
- X X X X 6

Therefore, it is the case that state 1 ≈ state 6, state 2 ≈ state 5, and state 3 ≈ state 4.

Here is the resulting minimized DFA:

5

Part b:

a b
1 2 3
2 5 6
3F 1 4
4F 6 3
5 2 1
6 5 4

Again using algorithm in book (see p. 84) for computing the collapsing relation ≈
for a given DFA M with no inaccessible states. The algorithms marks (unordered) pairs
of states {p, q}, where a pair {p, q} is marked as a reason is discovered
as to why p and q are NOT equivalent.

1
- 2
- - 3
- - - 4
- - - - 5
- - - - - 6

Pass 1: mark all pairs consisting of once accept state
and one nonaccept state.

6

1
- 2
X X 3
X X - 4
- - X X 5
- - X X - 6

Repeat until no changes: if there is an unmarked pair {p, q} such that
{δ(p, a), δ(q, a)} is marked for some a ∈ Σ, then mark {p, q}.

Mark {1, 2} since it goes to marked pair {3, 6} on input ’b’
Mark {5, 1} since it goes to marked pair {1, 3} on input ’b’
Mark {6, 2} since it goes to marked pair {5, 1} on input ’a’
Mark {6, 5} since it goes to marked pair {1, 4} on input ’a’

Table now looks as follows; no more values can be marked...
1
X 2
X X 3
X X - 4
X - X X 5
- X X X X 6

Therefore, it is the case that state 1 ≈ state 6, state 2 ≈ state 5, and state 3 ≈ state 4.

Here is the resulting minimized DFA:

7

