Homework 2 solutions

1. (10 + 5 = 15 points)
(i) Define Rev(L) = {xf* | x € L }. Note x is the reversal of the string x.
Thus, e.g., if L = {ab, aba, babb} then Rev(L) = {ba, aba, bbab}.

Let L; be a regular language that is recognized by a DFA M; = (Qq, X, 01, s1, F1).
Provide a construction (be precise) to create a DFA or an NFA to accept Rev(Ly).

Intuitively, the idea is to ‘reverse’ the starting and final states as
well as all the transitions in M; to generate an NFA Ny which accepts Rev(Ly).

The reversal of the transitions causes As(p, a) = { q| d1(q,a) =p }
for each state p € Q; (note that As(p, a) can be a set of states).

In order to have a single ‘Start State’ in Ny, a ‘Start State’ is added with e-transitions
to each state in Fy such that As(‘Start State’, €) = Fy.

Ultimately, the construction of the NFA Ny that will accept Rev(L;) is as follows:
Ny = (Q2, X, Ag, sz, F3) where:

Q2 = Q1 U ‘Start State’

X=X

As: as described above

8o = ‘Start State’ (which has e transitions to each state in Fy)

F2 = {Sl}

(ii) Apply your construction to the DFA given below.

Input DFA M; which accepts L:
b

a2

3
start b
@ o
b

]

NFA Nj that accepts Rev(L) where L is accepted by the input DFA M;:

b a

a
3 €
a b "(f ,}/ start

a €

4 | 5
b

a

b

2. (10 X 3 = 30 points)
Give regular expressions that denote the following sets:

a. The set of strings where the third last symbol is an ‘a’. Here, ¥ = {a, b}.

Strings in this set start with any number > 0 of a’s or b’s in any order; this is represented by (a | b)*.
Then, the third to last symbol in the string must be an ‘a’, represented by ‘a’.

Finally, the last two symbols can be either a or b, represented by (a | b)(a | b).

Resulting regular expression: (a | b)*a(a | b)(a | b)

b. The set of strings of the form wjcws where wy and wo

belong to {a, b}* and ws contains a ‘b’ if and only if wy

has at least 2 occurrences of ‘a’.

First, look at the case where wy has at least 2 occurrences of ‘a’, so wo contains a ‘b’

wy with at least 2 occurrences of ‘a’ begins with any number > 0 of a’s or b’s in any order;
this is represented in a regular expression by (a | b)*.

Then ‘must’ contain an ‘a’, which is represented as an ‘a’ in a regular expression.

Then there is another set of any number > 0 of a’s or b’s in any order,

another ‘a’; and finally a third set of any number > 0 of a’s or b’s in any order.

The regular expression for wy here is (a | b)*a(a | b)*a(a | b)*.

Next, wo with a ‘b’ begins with any number > 0 of a’s or b’s in any order,
then it ‘must’ contain an ‘b’, then concludes another set of any number > 0 of a’s or b’s.

The regular expression for wo here is (a | b)*b(a | b)*.

The regular expression for the ‘c’ between wy and wy is simply ‘c’.

Therefore, the complete regular expression for this ‘first’ case is
(a|b)*a(a | b)*a(a [b)*c(a | b)*b(a | b)¥).

Next, look at the case where wi has < 2 occurrences of ‘a’, so wo does not contain any b’s:

wy with < 2 occurrences of ‘a’ begins with any number > 0 of b’s;

this is represented in a regular expression by b*. Next, it can contain an ‘a’
but doesn’t have to; this is represented by (a | €) in a regular

expression, with € corresponding to an empty string. w; in this case
concludes with > 0 b’s, represented by b*.

The regular expression for w; here is b*(a | €)b*.
wy without ‘b’ simply contains any number > 0 of a’s, represented by a* in a regular expression.
The regular expression for the ‘c’ between w; and wy is simply ‘c’.

Therefore, the complete regular expression for this ‘second’ case is
b*(a | €)b*ca*.

The final regular expression is simply a disjunction of the two cases, resulting in:

((a | b)*a(a | b)*a(a [b)*c(a [b)*b(a [b)*) | (b*(a | €)b*ca®)
c. The set of strings that do not contain the substring ‘ab’. Here, ¥ = {a, b}.

A string without the substring ’ab’ cannot contain any ‘b’ once there has been an ‘a’, resulting
in the regular expression ‘b*a*’ where the string can contain any number of b’s followed by any
number of a’s.

Resulting regular expression: b*a*

3. (10 X 3 = 30 points) Use the pumping lemma to show that the following sets are not regular.
a. Set A = {a'b™c" | 1=100, m > 1, n > m }

Given the ‘demon’s’ k value...(see p. 71 of book)

Let xyz = al00pk+100ck+100+1 ¢ got A

Let x = al00 y = hF+100 , — k+100+1

Now v in y = uvw must contain at least 1 ‘b’ since y only contains b’s and v cannot be empty
Note that m = k + 100 and n = k + 100 + 1, son = m + 1 when i=1.

Now let i = 2.

The presence of i=2 forces the addition if at least 1 ‘b’ to y,

sonowm > (k + 100 + 1) - m > n.
Therefore, it is no longer the case that n > m.
And therefore, xuviwz ¢ set A when i = 2
Therefore, the set is not regular.

b. The set A of strings of the form ww where w € {a, b}*.
Thus abbaabba is included in this set but abba is not.

Given the ‘demon’s’ k value...(see p. 71 of book)

Let xyz = aFbFaFbF € set A

Let x = afb*aF y = bk, 2 = ¢

Now v in y = uvw must contain at least 1 ’b’ since y only contains b’s and v cannot be empty.
Now when i = 2, uv?w = b’ where j > k

Since a*bFakb/ ¢ language when j > k, xuviwz ¢ set A when i = 2.

Therefore the set is not regular.

c. The set A of strings of the form a"!b"2¢™3d™, where nl = n3 or n2 = n4. (nl, n2, n3, nd > 1)

Given the ‘demon’s’ k value...(see p. 71 of book)

Let xyz = aFbFT1ckd*+2 ¢ set A

Let x = €, y = aF, z = bFtlckdhk+2

Now v in y = uvw must contain at least 1 ’a’ since y only contains a’s and v cannot be empty...
Now when i = 2, y = uv?w = a/ where j > k

Since a’bFt1cFdk*2 ¢ set A when j > k, xuviwz ¢ set A when i = 2.

Therefore, the set A is not regular.

4. (15 points) Exercise 47 (Parts a and b only) on Page 326 of the textbook.

Minimize the following DFAs. Indicate clearly which equivslence class corresponds
to each state of the new automaton.

Part a:
a b
116 3
2 |15 6
3F |4 5
4F | 3 2
5 12 1
6 |1 4

Using algorithm in book (see p. 84) for computing the collapsing relation =

for a given DFA M with no inaccessible states. The algorithms marks (unordered) pairs
of states {p, q}, where a pair {p, q} is marked as a reason is discovered
as to why p and q are NOT equivalent.

Pass 1: mark all pairs consisting of once accept state
and one nonaccept state.

—_

SRl
SRR
w

)
- 6

b
SR

Repeat until no changes: if there is an unmarked pair {p, q} such that
{6(p, a), d(q, a)} is marked for some a € %, then mark {p, q}.

Mark {1, 2} since it goes to marked pair {3, 6} on input b’
Mark {5, 1} since it goes to marked pair {1, 3} on input b’
Mark {6, 2} since it goes to marked pair {5, 1} on input ’a’
Mark {6, 5} since it goes to marked pair {1, 2} on input ’a

)

Table now looks as follows; no more values can be marked...

1

X 2

X X 3

X X - 4

X - X X 5
- X X X X 6

Therefore, it is the case that state 1 = state 6, state 2 = state 5, and state 3 ~ state 4.

Here is the resulting minimized DFA:

Part b:

a b

1 (2 3
2 5 6
3F |1 4
4F | 6 3
5 2 1

6 |5 4

Again using algorithm in book (see p. 84) for computing the collapsing relation ~

for a given DFA M with no inaccessible states. The algorithms marks (unordered) pairs
of states {p, q}, where a pair {p, q} is marked as a reason is discovered

as to why p and q are NOT equivalent.

Pass 1: mark all pairs consisting of once accept state
and one nonaccept state.

o
SRR
w

SRl
Rl
ot

- 6

Repeat until no changes: if there is an unmarked pair {p, q} such that
{é(p, a), d(q, a)} is marked for some a € %, then mark {p, q}.

Mark {1, 2} since it goes to marked pair {3, 6} on input ’b’
Mark {5, 1} since it goes to marked pair {1, 3} on input b’
Mark {6, 2} since it goes to marked pair {5, 1} on input ’a’

57

Mark {6, 5} since it goes to marked pair {1, 4} on input ’a

Table now looks as follows; no more values can be marked...

1

X 2

X X 3

X X - 4

X - X X 5
- X X X X 6

Therefore, it is the case that state 1 = state 6, state 2 ~ state 5, and state 3 ~ state 4.

Here is the resulting minimized DFA:

