Homework 2 solutions

- 1. (10 + 5 = 15 points)
- (i) Define $\text{Rev}(L) = \{x^R \mid x \in L \}$. Note x^R is the reversal of the string x. Thus, e.g., if $L = \{ab, aba, babb\}$ then $\text{Rev}(L) = \{ba, aba, bbab\}$.

Let L_1 be a regular language that is recognized by a DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$. Provide a construction (be precise) to create a DFA or an NFA to accept $Rev(L_1)$.

Intuitively, the idea is to 'reverse' the starting and final states as well as all the transitions in M_1 to generate an NFA N_2 which accepts $\mathrm{Rev}(L_1)$.

The reversal of the transitions causes $\Delta_2(p, a) = \{ q \mid \delta_1(q, a) = p \}$ for each state $p \in Q_1$ (note that $\Delta_2(p, a)$ can be a set of states).

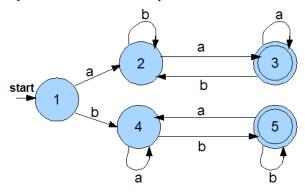
In order to have a single 'Start State' in N_2 , a 'Start State' is added with ϵ -transitions to each state in F_1 such that Δ_2 ('Start State', ϵ) = F_1 .

Ultimately, the construction of the NFA N_2 that will accept $Rev(L_1)$ is as follows: $N_2 = (Q_2, \Sigma, \Delta_2, s_2, F_2)$ where:

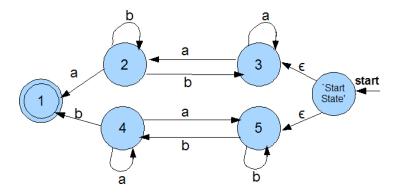
$$Q_2=Q_1$$
 U 'Start State'
$$\Sigma=\Sigma$$
 $\Delta_2;$ as described above
$$s_2=\text{'Start State' (which has ϵ transitions to each state in F_1)} \\ F_2=\{s_1\}$$

(ii) Apply your construction to the DFA given below.

Input DFA M₁ which accepts L:



NFA N₂ that accepts Rev(L) where L is accepted by the input DFA M₁:



2. (10 X 3 = 30 points)

Give regular expressions that denote the following sets:

a. The set of strings where the third last symbol is an 'a'. Here, $\Sigma = \{a, b\}$.

Strings in this set start with any number ≥ 0 of a's or b's in any order; this is represented by $(a \mid b)^*$. Then, the third to last symbol in the string must be an 'a', represented by 'a'. Finally, the last two symbols can be either a or b, represented by $(a \mid b)(a \mid b)$.

Resulting regular expression: $(a \mid b)*a(a \mid b)(a \mid b)$

b. The set of strings of the form w_1cw_2 where w_1 and w_2 belong to $\{a, b\}^*$ and w_2 contains a 'b' if and only if w_1 has at least 2 occurrences of 'a'.

First, look at the case where w₁ has at least 2 occurrences of 'a', so w₂ contains a 'b':

 w_1 with at least 2 occurrences of 'a' begins with any number ≥ 0 of a's or b's in any order; this is represented in a regular expression by $(a \mid b)^*$. Then 'must' contain an 'a', which is represented as an 'a' in a regular expression.

Then there is another set of any number ≥ 0 of a's or b's in any order, another 'a', and finally a third set of any number ≥ 0 of a's or b's in any order.

The regular expression for w_1 here is $(a \mid b)*a(a \mid b)*a(a \mid b)*$.

Next, w_2 with a 'b' begins with any number ≥ 0 of a's or b's in any order, then it 'must' contain an 'b', then concludes another set of any number ≥ 0 of a's or b's.

The regular expression for w_2 here is $(a \mid b)*b(a \mid b)*$.

The regular expression for the 'c' between w_1 and w_2 is simply 'c'.

Therefore, the complete regular expression for this 'first' case is $(a \mid b)*a(a \mid b)*a(a \mid b)*c(a \mid b)*b(a \mid b)*$).

Next, look at the case where w_1 has ≤ 2 occurrences of 'a', so w_2 does not contain any b's:

 w_1 with ≤ 2 occurrences of 'a' begins with any number ≥ 0 of b's; this is represented in a regular expression by b*. Next, it can contain an 'a' but doesn't have to; this is represented by $(a \mid \epsilon)$ in a regular expression, with ϵ corresponding to an empty string. w_1 in this case concludes with ≥ 0 b's, represented by b*.

The regular expression for w_1 here is $b^*(a \mid \epsilon)b^*$.

 w_2 without 'b' simply contains any number ≥ 0 of a's, represented by a* in a regular expression.

The regular expression for the 'c' between w₁ and w₂ is simply 'c'.

Therefore, the complete regular expression for this 'second' case is $b^*(a \mid \epsilon)b^*ca^*$.

The final regular expression is simply a disjunction of the two cases, resulting in: $((a \mid b)*a(a \mid b)*a(a \mid b)*c(a \mid b)*b(a \mid b)*) \mid (b*(a \mid \epsilon)b*ca*)$

c. The set of strings that do not contain the substring 'ab'. Here, $\Sigma = \{a, b\}$.

A string without the substring 'ab' cannot contain any 'b' once there has been an 'a', resulting in the regular expression 'b*a*' where the string can contain any number of b's followed by any number of a's.

Resulting regular expression: b*a*

- 3. (10 X 3 = 30 points) Use the pumping lemma to show that the following sets are not regular.
- a. Set $A = \{a^l b^m c^n \mid l=100, m > l, n > m \}$

Given the 'demon's' k value...(see p. 71 of book) Let $xyz = a^{100}b^{k+100}c^{k+100+1} \in set A$

Let $x = a^{100}$, $y = b^{k+100}$, $z = c^{k+100+1}$

Now v in y = uvw must contain at least 1 'b' since y only contains b's and v cannot be empty Note that m = k + 100 and n = k + 100 + 1, so n = m + 1 when i=1.

Now let i = 2.

The presence of i=2 forces the addition if at least 1 'b' to y,

so now $m \ge (k + 100 + 1) \rightarrow m \ge n$.

Therefore, it is no longer the case that n > m.

And therefore, $xuv^iwz \notin set A$ when i = 2

Therefore, the set is not regular.

b. The set A of strings of the form ww where $w \in \{a, b\}^*$.

Thus abbaabba is included in this set but abba is not.

Given the 'demon's' k value...(see p. 71 of book)

Let $xyz = a^k b^k a^k b^k \in set A$

Let $x = a^k b^k a^k$, $y = b^k$, $z = \epsilon$

Now v in y = uvw must contain at least 1 'b' since y only contains b's and v cannot be empty.

Now when i = 2, $uv^2w = b^j$ where j > k

Since $a^k b^k a^k b^j \notin \text{language when } i > k$, $xuv^i wz \notin \text{set } A \text{ when } i = 2$.

Therefore the set is not regular.

c. The set A of strings of the form $a^{n1}b^{n2}c^{n3}d^{n4}$, where n1 = n3 or n2 = n4. $(n1, n2, n3, n4 \ge 1)$

Given the 'demon's' k value...(see p. 71 of book)

Let $xyz = a^k b^{k+1} c^k d^{k+2} \in set A$

Let $x = \epsilon$, $y = a^k$, $z = b^{k+1}c^kd^{k+2}$

Now v in y = uvw must contain at least 1 'a' since y only contains a's and v cannot be empty...

Now when i = 2, $y = uv^2w = a^j$ where j > k

Since $a^{j}b^{k+1}c^{k}d^{k+2} \notin \text{set A when } j > k$, $xuv^{i}wz \notin \text{set A when } i = 2$.

Therefore, the set A is not regular.

4. (15 points) Exercise 47 (Parts a and b only) on Page 326 of the textbook.

Minimize the following DFAs. Indicate clearly which equivslence class corresponds to each state of the new automaton.

Part a:

	a	b
1	6	3
2	5	6
3F	4	5
4F	3	2
5	2	1
6	1	4

Using algorithm in book (see p. 84) for computing the collapsing relation \approx

for a given DFA M with no inaccessible states. The algorithms marks (unordered) pairs of states $\{p, q\}$, where a pair $\{p, q\}$ is marked as a reason is discovered as to why p and q are NOT equivalent.

```
1 - 2 - 3 - - 4 - - 5 - - 6
```

Pass 1: mark all pairs consisting of once accept state and one nonaccept state.

Repeat until no changes: if there is an unmarked pair $\{p, q\}$ such that $\{\delta(p, a), \delta(q, a)\}$ is marked for some $a \in \Sigma$, then mark $\{p, q\}$.

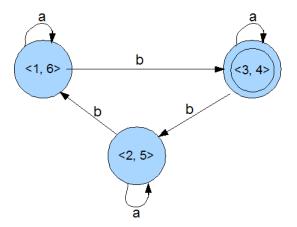
```
Mark \{1, 2\} since it goes to marked pair \{3, 6\} on input 'b' Mark \{5, 1\} since it goes to marked pair \{1, 3\} on input 'b' Mark \{6, 2\} since it goes to marked pair \{5, 1\} on input 'a' Mark \{6, 5\} since it goes to marked pair \{1, 2\} on input 'a'
```

Table now looks as follows; no more values can be marked...

```
1
Χ
   2
Χ
   X
       3
Χ
   Χ
           4
X
       {\bf X}
           Χ
              5
           Χ
       Χ
              X 6
```

Therefore, it is the case that state $1 \approx \text{state } 6$, state $2 \approx \text{state } 5$, and state $3 \approx \text{state } 4$.

Here is the resulting minimized DFA:



Part b:

	a	b
1	2	3
2	5	6
3F	1	4
4F	6	3
5	2	1
6	5	4

Again using algorithm in book (see p. 84) for computing the collapsing relation \approx for a given DFA M with no inaccessible states. The algorithms marks (unordered) pairs of states $\{p,\,q\},$ where a pair $\{p,\,q\}$ is marked as a reason is discovered as to why p and q are NOT equivalent.

Pass 1: mark all pairs consisting of once accept state and one nonaccept state.

```
1 - 2 

X X 3 

X X - 4 

- - X X 5 

- - X X - 6
```

Repeat until no changes: if there is an unmarked pair $\{p, q\}$ such that $\{\delta(p, a), \delta(q, a)\}$ is marked for some $a \in \Sigma$, then mark $\{p, q\}$.

```
Mark {1, 2} since it goes to marked pair {3, 6} on input 'b' Mark {5, 1} since it goes to marked pair {1, 3} on input 'b' Mark {6, 2} since it goes to marked pair {5, 1} on input 'a' Mark {6, 5} since it goes to marked pair {1, 4} on input 'a'
```

Table now looks as follows; no more values can be marked...

Therefore, it is the case that state $1 \approx \text{state } 6$, state $2 \approx \text{state } 5$, and state $3 \approx \text{state } 4$.

Here is the resulting minimized DFA:

