
Report on Gene mention extraction

Ruoyao Ding

Computer and Information Science Department

University of Delaware

Newark Delaware 19716

ryding@udel.edu

Abstract

Gene mention (GM) extraction is an

important initial step for many bio-mining

tasks. Due to the problems of name

variation and name ambiguity, the GM

extraction task is particularly challenging.

We developed a pivot based GM tagger to

solve those two problems, we believe our

tagger will have a better performance in

respect of providing gene normalization

input, comparing with the current existing

GM taggers.

1. Introduction

In recent years, as the amount of biological

literature increased rapidly, how to extract the

desired information form the literature has

been given more and more effort. Extracting

gene mentions is an important initial step for

many bio-mining tasks.

The fact that authors rarely use standardize

gene names (name variation problem) and

gene short names naturally share the same

morphology with other types of entities (name

ambiguity problem) makes gene mention

extraction task particularly difficult.

A large body of work has been done for GM

extraction, and many GM taggers are already

available to use (Settles,B, 2005), (Heinz JF et al.,

2007), (Hsu CN et al., 2008). Most of them fail

to extract gene names with complex

morphology, and some only perform well in

some specific domains.

We developed a pivot based GM tagger, which

uses a pivot based dictionary matching method

as an initial tagging step, and a pivot based

disambiguation method to get the final gene

mention output.

In section 2, we will introduce the methods

used in our GM tagger. The pros and cons of

our methods will be discussed in section 3,

some initial test result will also be shown in

this section. Section 4 will be the conclusion.

2. Methods

One gene name can be divided into three parts:

prefix, pivot, and suffix. The prefix is usually

some description of the actual gene name, e.g.,

the species information which the gene name

belongs to. The suffix is usually number and

Greek number, which can be used to identify

one specific gene name in one gene family.

The rest part of the gene name is the pivot,

which stores the gene name sense. One

example of dividing one gene name into prefix,

pivot, and suffix is shown in Figure 1, and the

pivot stemming algorithm to get pivot and

suffix from one name is shown in Figure 2.

Figure 1: Example of pivot dividing

mailto:ryding@udel.edu

Figure 2: pivot stemming algorithm

The workflow of our tagger is shown in Figure

3. We first generate simply name candidates

from the input text, then tag the gene candidate

in those name candidates using a pivot based

dictionary matching method, two disambiguate

models are used to get the gene pivot, and

finally get the gene names based on the gene

pivots.

2.1 Dictionary

Our initial dictionary is built from UniProt

database reviewed part. We extract all names

(recommend full names & short names,

alternate full names & short names, synonyms)

in species: human, mouse, rat, and Arabidopsis

thalina. We believe the entries in these four

species could cover most of the gene names,

the dictionary will be enhanced to include

more species in the future if needed.

We build a gene pivot dictionary based on the

initial dictionary: for each original name in the

initial dictionary, use pivot stemming

algorithm to get the pivot and suffix, the new

entry in the pivot dictionary uses pivot as key,

suffix, original name, and full name as value.

Figure 3: Workflow of our GM extraction system

2.2 Name candidates generating

Some of the names shown in the text have

complex morphologies, e.g., interleukin (IL)-4,

we cannot match this name with any

dictionary entry directly.

A set of rules are applied to address this

problem: from one name with complex

morphology, get proper name candidates

which can be used to match with the gene

dictionary (Table 1).

Parentheses rule

interleukin (IL)-4 → interleukin-4 & IL-4

Suffix in conjunction rule

Protein kinase C alpha, beta, and gamma → Protein

kinase C alpha & Protein kinase C beta & Protein kinase

C gamma

Suffix in set rule

ERK 1-8 → ERK 1 & ERK 2 & …& ERK 8

Table 1: Name candidates generating rules

2.3 Pivot matching

In this step, we match the name candidates

with dictionary entries to get gene candidates.

Here we propose a pivot based dictionary

matching algorithm (Figure 4), to solve the

name variation problem.

Figure 4: Pivot matching algorithm

2.4 Pivot disambiguation

Due to the fact that gene short names naturally

share the same morphology with other types of

entities, when one name in the text matched

with one short name entry in the gene

dictionary, we cannot say that name is a gene,

future name sense disambiguation is needed.

One type of name, called functional term (F-

terms), is quite helpful for identifying the gene

name (.M. Narayanaswamy et al., 2003).

Names ending with F-term are believed to

have gene sense.

Context information is also quite helpful for

disambiguating names. As some of the names

may not have context information which can

be used for disambiguation, instead of directly

disambiguating the names, here we try to

disambiguate the name pivot, and all the

names that share the same pivot in the same

article will get the same name sense.

Two pivot disambiguation modules are used to

get the gene pivot.

2.4.1 ML based disambiguation

As the current existing GM corpuses are

usually either domain specific, or not large

enough to be used to train one disambiguation

model which can be used in general. Here we

proposed a semi-auto training set build method,

trying to get one training corpus which is large

enough to be able to produce a general gene

disambiguation model.

We first get all gene short names from Entrez

Gene dictionary, and get all the PMIDs which

contain those short name, as well as their full

names, then based on the full names we get

positive instances and negative instances: if

the full name is ending with an F-term or fully

matched with our gene dictionary, the name is

viewed as a positive instance; if the full name

doesn’t get a uni-gram bag of word match with

any entry in our gene dictionary, the name is

viewed as a negative instance. Last, all the

positive full names and short names are

replaced with a word “NAMEP”, all the

negative full names and short names are

replaced with a word “NAMEN”, so

beforehand information is removed. In this

way, we get 30,000 positive instances and

30,000 negative instances in 60,000 PMIDs for

training, 20,000 negative instances and 20,000

negative instances in 40,000 PMIDs for model

testing.

A SVM model is trained using the context

word feature, we set a margin of two words,

choose uni-gram and bio-gram context words

of each instance as features.

2.4.2 Rule based disambiguation

Some context information is quite helpful for

name disambiguation, but usually difficult to

be annotated, thus difficult to capture by a ML

model. Three rules are added to capture those

kinds of context information.

If one gene candidate has a full name in the

same article, this would be a perfect clue

which can be used in disambiguation. If the

full name is matched with the dictionary, or

has an F-term ending, both the full name pivot

and short name pivot are assigned with gene

sense.

Appositive is another good clue which can be

used in disambiguation. If one gene candidate

has an appositive and that appositive is ending

with an F-term, then the gene candidate pivot

is assigned with gene sense.

Gene names shown in the same text should not

be isolated with each other, we assume that

those names should have some kind of relation.

Based on this assumption, we make the gene

candidates in relation rule: if some gene

candidates are shown in conjunction, all their

pivots are assigned with gene sense; if two

gene candidates are connected with word “or”

or slash, both of their pivots are assigned with

gene sense; if one gene candidate and its

synonyms appear in the same article, all their

pivots are assigned with gene sense.

2.5 Pivot based name disambiguation

Based on the pivot sense information, we

assign all the names that share the same pivot

in the same text the same name sense (whether

gene or not) with the pivot, and output all the

names with gene sense.

3. Discussion

We use a dictionary matching method as an

initial step to get gene candidates, this should

produce a higher precision, as we can get a

clear cut name boundary and filter out some

general names which share the same context

with gene.

However, there are also two problems: first,

authors rarely use the standardize names, too

many name variations makes it’s particularly

difficult to match the name in the text with the

name in the dictionary. Second, there is no

dictionary which can cover all the gene names,

as there are always new genes come out, and

some existing genes may change their names.

Our pivot matching algorithm is trying to

solve the problem of name variations, as well

as the problem of dictionary incomplete.

If the final goal is gene normalization, the

dictionary matching part is essential, that’s

probably the reason why some pure ML-based

GM tagger can have a good performance in the

GM evaluation, but when they are used as

gene normalization input, the performance is

not well.

In the disambiguation part, we just use context

feature within distances of two words, the

reason we didn’t use a larger distance is that

we noticed usually the left two words and right

two words would be enough for disambiguate

one name. If we enlarge the margin, the recall

will be improved, well precision will drop.

Instead, we used a pivot based disambiguation

method to improve the recall, this would get

even more benefit when the input text is full

length, as more names share the same pivot

will be there.

We also use three rules to help future improve

the disambiguation performance: the acronym,

the relative clause, and gene candidates in

relation, these features are not difficult to

capture, but it’s difficult to get a training

corpus which have those information

annotated, so ML model can hardly capture

these features.

We performed an initial test on 100 PMIDs

from BioCreative 2 GN corpus, those PMIDs

are safe to use because we didn’t train on this

corpus. 300 gold standards are given in these

100 PMIDs, the result of our tagger is:

precision = 216/293 = 0.74, recall = 216/300 =

0.72, final F-score is 0.73. After analyzing the

result we found that some FPs are actually

gene names, they just weren’t tagged by

BioCreative annotators, and some of gold

standards are just the descriptions of the actual

gene names, this result in many FNs. So the

result shown here is not precise, future

evaluation is needed to show the performance

of our system.

4. Conclusion

We propose a pivot based GM tagger. Instead

of processing the names, our tagger is focus on

the pivots. Names with complex morphology

are changed into simply names. The pivots

matching algorithm is proposed to solve the

problem of name variation and dictionary

incomplete. Pivot based disambiguation

method is used to cover the names which do

not have enough context information for

disambiguation.

References

Kim JD, Ohta T, Tateisi Y, Tsujii J. 2003. GENIA

corpus-a semantically annotated corpus for bio-

textmining. Bioinformatics.

Morgan AA, Lu Z, Wang X, Cohen AM, Fluck J, Ruch

P, Divoli A, Fundel K, Leaman R, Hakenberg J, et al.

2008. Overview of BioCreative II gene normalization.

Genome Biology.

Wilbur,J. et al. 2007. Biocreative 2. gene mention task.

In Proceedings of the Second BioCreative Challenge

Evaluation Workshop, Centro Nacional de

Investigaciones Oncologicas (CNIO), Madrid, Spain.

pp. 7–16.

Settles,B. 2005. ABNER: an open source tool for

automatically tagging genes, proteins, and other

entity names in text. Bioinformatics, 21, 3191–3192.

Hsu CN, Chang YM, Kuo CJ, Lin YS, Huang HS,

Chung IF. 2008. Integrating High Dimensional Bi-

directional Parsing Models for Gene Mention

Tagging. Bioinformatics.

Heinz JF, Mevissen T, Dach H, Oster M, Hofmann-

Apitius M. 2007. ProMiner: Recognition of Human

Gene and Protein Names using regularly updated

Dictionaries. The Second BioCreative Challenge

Evaluation Workshop.

.M. Narayanaswamy, K. E. Ravikumar, K. Vijay-

Shanker. 2003. A Biological Named Entity

Recognizer, Pacific Symposium on Biocomputing 8:

427-438.

Peng Y, Tudor C, Torii M , Wu CH, Vijay-Shanker K.

2012. iSimp: A Sentence Simplification System for

Biomedical Text. IEEE International Conference on

Bioinformatics and Biomedicine (BIBM2012). pp.

211-216.

