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Abstract 

Gene mention (GM) extraction is an 

important initial step for many bio-mining 

tasks. Due to the problems of name 

variation and name ambiguity, the GM 

extraction task is particularly challenging. 

We developed a pivot based GM tagger to 

solve those two problems, we believe our 

tagger will have a better performance in 

respect of providing gene normalization 

input, comparing with the current existing 

GM taggers. 

1. Introduction 

In recent years, as the amount of biological 

literature increased rapidly, how to extract the 

desired information form the literature has 

been given more and more effort. Extracting 

gene mentions is an important initial step for 

many bio-mining tasks.   
 

The fact that authors rarely use standardize 

gene names (name variation problem) and 

gene short names naturally share the same 

morphology with other types of entities (name 

ambiguity problem) makes gene mention 

extraction task particularly difficult.  
 

A large body of work has been done for GM 

extraction, and many GM taggers are already 

available to use (Settles,B, 2005), (Heinz JF et al., 

2007), (Hsu CN et al., 2008). Most of them fail 

to extract gene names with complex 

morphology, and some only perform well in 

some specific domains.  

 

We developed a pivot based GM tagger, which 

uses a pivot based dictionary matching method 

as an initial tagging step, and a pivot based 

disambiguation method to get the final gene 

mention output.  
 

In section 2, we will introduce the methods 

used in our GM tagger. The pros and cons of 

our methods will be discussed in section 3, 

some initial test result will also be shown in 

this section. Section 4 will be the conclusion. 
 

2. Methods 

One gene name can be divided into three parts: 

prefix, pivot, and suffix. The prefix is usually 

some description of the actual gene name, e.g., 

the species information which the gene name 

belongs to. The suffix is usually number and 

Greek number, which can be used to identify 

one specific gene name in one gene family. 

The rest part of the gene name is the pivot, 

which stores the gene name sense. One 

example of dividing one gene name into prefix, 

pivot, and suffix is shown in Figure 1, and the 

pivot stemming algorithm to get pivot and 

suffix from one name is shown in Figure 2. 

 
 

Figure 1: Example of pivot dividing 

mailto:ryding@udel.edu


 

 
 

Figure 2: pivot stemming algorithm 

 

The workflow of our tagger is shown in Figure 

3. We first generate simply name candidates 

from the input text, then tag the gene candidate 

in those name candidates using a pivot based 

dictionary matching method, two disambiguate 

models are used to get the gene pivot, and 

finally get the gene names based on the gene 

pivots. 

 

2.1 Dictionary 

Our initial dictionary is built from UniProt 

database reviewed part. We extract all names 

(recommend full names & short names, 

alternate full names & short names, synonyms) 

in species: human, mouse, rat, and Arabidopsis 

thalina. We believe the entries in these four 

species could cover most of the gene names, 

the dictionary will be enhanced to include 

more species in the future if needed.   
 

We build a gene pivot dictionary based on the 

initial dictionary: for each original name in the 

initial dictionary, use pivot stemming 

algorithm to get the pivot and suffix, the new 

entry in the pivot dictionary uses pivot as key, 

suffix, original name, and full name as value.  
 

 

 
 

Figure 3: Workflow of our GM extraction system 

 
 

2.2 Name candidates generating 

Some of the names shown in the text have 

complex morphologies, e.g., interleukin (IL)-4, 

we cannot match this name with any 

dictionary entry directly.  

 

A set of rules are applied to address this 

problem: from one name with complex 

morphology, get proper name candidates 

which can be used to match with the gene 

dictionary (Table 1). 
 

 

 



Parentheses rule 

interleukin (IL)-4 → interleukin-4 & IL-4 

Suffix in conjunction rule 

Protein kinase C alpha, beta, and gamma → Protein 

kinase C alpha & Protein kinase C beta & Protein kinase 

C gamma 

Suffix in set rule 

ERK 1-8 → ERK 1 & ERK 2 & …& ERK 8 

 

Table 1: Name candidates generating rules 

 

2.3 Pivot matching 

In this step, we match the name candidates 

with dictionary entries to get gene candidates. 

Here we propose a pivot based dictionary 

matching algorithm (Figure 4), to solve the 

name variation problem.  
 

 
 

Figure 4: Pivot matching algorithm 

 

2.4 Pivot disambiguation 

Due to the fact that gene short names naturally 

share the same morphology with other types of 

entities, when one name in the text matched 

with one short name entry in the gene 

dictionary, we cannot say that name is a gene, 

future name sense disambiguation is needed. 
 

One type of name, called functional term (F-

terms), is quite helpful for identifying the gene 

name (.M. Narayanaswamy et al., 2003). 

Names ending with F-term are believed to 

have gene sense. 

 

Context information is also quite helpful for 

disambiguating names. As some of the names 

may not have context information which can 

be used for disambiguation, instead of directly 

disambiguating the names, here we try to 

disambiguate the name pivot, and all the 

names that share the same pivot in the same 

article will get the same name sense. 
 

Two pivot disambiguation modules are used to 

get the gene pivot.  
 

2.4.1 ML based disambiguation 
 

As the current existing GM corpuses are 

usually either domain specific, or not large 

enough to be used to train one disambiguation 

model which can be used in general. Here we 

proposed a semi-auto training set build method, 

trying to get one training corpus which is large 

enough to be able to produce a general gene 

disambiguation model.   
 

We first get all gene short names from Entrez 

Gene dictionary, and get all the PMIDs which 

contain those short name, as well as their full 

names, then based on the full names we get 

positive instances and negative instances: if 

the full name is ending with an F-term or fully 

matched with our gene dictionary, the name is 

viewed as a positive instance; if the full name 

doesn’t get a uni-gram bag of word match with 

any entry in our gene dictionary, the name is 

viewed as a negative instance. Last, all the 

positive full names and short names are 

replaced with a word “NAMEP”, all the 

negative full names and short names are 

replaced with a word “NAMEN”, so 

beforehand information is removed. In this 

way, we get 30,000 positive instances and 

30,000 negative instances in 60,000 PMIDs for 

training, 20,000 negative instances and 20,000 

negative instances in 40,000 PMIDs for model 



testing. 

 

A SVM model is trained using the context 

word feature, we set a margin of two words, 

choose uni-gram and bio-gram context words 

of each instance as features.  
 

2.4.2 Rule based disambiguation 
 

Some context information is quite helpful for 

name disambiguation, but usually difficult to 

be annotated, thus difficult to capture by a ML 

model. Three rules are added to capture those 

kinds of context information. 

 

If one gene candidate has a full name in the 

same article, this would be a perfect clue 

which can be used in disambiguation. If the 

full name is matched with the dictionary, or 

has an F-term ending, both the full name pivot 

and short name pivot are assigned with gene 

sense. 

 

Appositive is another good clue which can be 

used in disambiguation. If one gene candidate 

has an appositive and that appositive is ending 

with an F-term, then the gene candidate pivot 

is assigned with gene sense. 

 

Gene names shown in the same text should not 

be isolated with each other, we assume that 

those names should have some kind of relation. 

Based on this assumption, we make the gene 

candidates in relation rule: if some gene 

candidates are shown in conjunction, all their 

pivots are assigned with gene sense; if two 

gene candidates are connected with word “or” 

or slash, both of their pivots are assigned with 

gene sense; if one gene candidate and its 

synonyms appear in the same article, all their 

pivots are assigned with gene sense. 
 

2.5 Pivot based name disambiguation 

Based on the pivot sense information, we 

assign all the names that share the same pivot 

in the same text the same name sense (whether 

gene or not) with the pivot, and output all the 

names with gene sense. 
 

3. Discussion 

We use a dictionary matching method as an 

initial step to get gene candidates, this should 

produce a higher precision, as we can get a 

clear cut name boundary and filter out some 

general names which share the same context 

with gene. 

 

However, there are also two problems: first, 

authors rarely use the standardize names, too 

many name variations makes it’s particularly 

difficult to match the name in the text with the 

name in the dictionary. Second, there is no 

dictionary which can cover all the gene names, 

as there are always new genes come out, and 

some existing genes may change their names. 

Our pivot matching algorithm is trying to 

solve the problem of name variations, as well 

as the problem of dictionary incomplete. 
 

If the final goal is gene normalization, the 

dictionary matching part is essential, that’s 

probably the reason why some pure ML-based 

GM tagger can have a good performance in the 

GM evaluation, but when they are used as 

gene normalization input, the performance is 

not well.  

 

In the disambiguation part, we just use context 

feature within distances of two words, the 

reason we didn’t use a larger distance is that 

we noticed usually the left two words and right 

two words would be enough for disambiguate 

one name. If we enlarge the margin, the recall 

will be improved, well precision will drop. 

Instead, we used a pivot based disambiguation 

method to improve the recall, this would get 

even more benefit when the input text is full 

length, as more names share the same pivot 

will be there. 

 

We also use three rules to help future improve 



the disambiguation performance: the acronym, 

the relative clause, and gene candidates in 

relation, these features are not difficult to 

capture, but it’s difficult to get a training 

corpus which have those information 

annotated, so ML model can hardly capture 

these features. 

 

We performed an initial test on 100 PMIDs 

from BioCreative 2 GN corpus, those PMIDs 

are safe to use because we didn’t train on this 

corpus. 300 gold standards are given in these 

100 PMIDs, the result of our tagger is: 

precision = 216/293 = 0.74, recall = 216/300 = 

0.72, final F-score is 0.73. After analyzing the 

result we found that some FPs are actually 

gene names, they just weren’t tagged by 

BioCreative annotators, and some of gold 

standards are just the descriptions of the actual 

gene names, this result in many FNs. So the 

result shown here is not precise, future 

evaluation is needed to show the performance 

of our system.  

4. Conclusion  

We propose a pivot based GM tagger. Instead 

of processing the names, our tagger is focus on 

the pivots. Names with complex morphology 

are changed into simply names. The pivots 

matching algorithm is proposed to solve the 

problem of name variation and dictionary 

incomplete. Pivot based disambiguation 

method is used to cover the names which do 

not have enough context information  for 

disambiguation. 
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