
Literature survey for Learning to rank 

Ruoyao Ding 

Computer and Information Science Department 

University of Delaware 

Newark Delaware 19716 

ryding@udel.edu 
 

 

Abstract 

This is a survey on the topic of Learning to 

rank (LTR). In this survey, three categories 

of LTR approaches: Pointwise approaches, 

Pairwise approaches, and Listwise 

approaches will be introduced. Two classic 

algorithms in each of these categories will 

be discussed in detail.  

1 Introduction 

Ranking is the central problem in the field of 

information retrieval, the task is to rank all the 

documents from the available sets for a given 

query, in accordance with their relevance. It 

has widespread applications including 

commercial search engines and recommend 

system.  
 

Learning to rank is to use Machine Learning 

methods to train a machine learning model, 

which can find out relevance between the 

relevant documents in context of given user 

query, and place them in order of their 

relevance. In training, both the queries and 

documents are provided, each query is 

associated with a perfect ranking list of 

documents, a ranking model is then created 

using the training data, as shown in Figure 1. 
 

Learning to rank has three main categories: 

Pointwise approaches, Pairwise approaches, 

and Listwise approaches. 
 

The Pointwise approaches are the earliest 

approaches that researchers considered. The 

basic idea of these approaches is to map the 

documents' ordinal scales into numeric values, 

and then solve the problem as a standard 

regression problem. Each document will be 

given a ranking score, and documents will be 

ranked based on these scores. In Pointwise 

approaches, a document-query pair is 

considered as one training instance.  
 

 

Figure 1: Structure of LTR system 
 

The Pairwise approaches try to compare the 

relevance of every two documents, then rank 

all the documents based on all these 

comparison results. In this way, the ranking 

problem can be solved as a binary 

classification problem, by assigning a label to 

each document in the document-pair, 

representing their relative relevance. In 

Pairwise approaches, two ranked documents 

and one query is considered as one training 

instance. 
 

The idea of Listwise approaches is similar 

with the idea of pairwise approaches. It tries to 

directly compare the relevance of list of 

documents, instead of trying to get one ranking 

mailto:ryding@udel.edu


score for each document as Pointwise methods 

do. In Listwise approaches, one query and a 

list of ranked documents is considered as one 

training instance. 
 

In section 2, two Pointwise based algorithms, 

McRank and PRank will be introduced. In 

section 3, we will discuss two Pairewise based 

algorithms, RankNet and LamdaRank. Section 

4 will focus on two Lisiwise based algorithms, 

ListNet and BoltzRank. Section 5 will be the 

conclusion. 

2 Pointwise Approaches 

In this section, we will introduce two classic 

pointwise methods, McRank and Pranking.  

2.1   McRank 

In McRank (P. Li et al., 2007), they cast the 

ranking problem as a multiple classification 

problem, by assigning the ranking score of 

each documents based on the classification 

result. 
 

This approach is motivated by the fact that 

perfect classification result in perfect DCG 

score, and the DCG errors are bounded by 

classification errors.  

 

DCG (Discounted Cumulative Gain) score is a 

criterion used in evaluating ranking result, it’s 

computed as follow: 
 

    ∑     
       ∑    

       

 

   

 

   

 

 

Where    is the rank order, the smaller    is, 

the higher it will be ranked;    is the relevance 

level, the larger    is, the higher relevance the 

document has.    is a non-increasing function of i, 

it’s typically set as: 
 

   
 

         
 

 

As we can see, perfect classifications will lead 

to perfect DCG scores (view    as class, if use 

K-classes classification, let    € (0, 1, 2,…, K-1)), 

so the ranking problem can be casted as 

multiple classification problem. 
 

Then they proposed a function to convert 

classification results into ranking scores: 
 

   ∑         

   

   

 

 

     is the probabilities that document, which is 

ranked i, has the relevance level k.      is an 

increasing function of the relevance level k, 

usually       , or        .  
 

A surrogate loss function for multiple 

classifications is used: 
 

∑ ∑       
   
      

   

   

 

   

 

 

With this loss function, a boosting tree 

algorithm is used to learn the class probability: 

    , and finally all the documents are ranked 

based on the value of   . 

2.2   PRank 

PRank (Koby et al., 2002) regards a query and 

document pair as one instance, each instance is 

corresponding to a rank level r = {1, 2, …, k-

1}. It first projects each instance into the real, 

and each ranking level has a sub-interval in the 

real, so the instances and ratings are combined 

together.  

 

PRank tries to find a rank-prediction rule 

which can assign each document a ranking 

score which is as close as possible to the 

document’s true rank, the basic idea is: giving 

an document j, the algorithm output a ranking 

score F(j), and F(j) will keep updating its value 

until the loss between the predicted rank score 



and true rank score is lower than some 

thresholds. The algorithm detail is shown in 

Figure 2:   
 

 
 

Figure 2: The PRank algorithm 
 

Where    is document,    is the true ranking 

score of that document.   ,              is a 

set of thresholds. w is a vector     . H(x) is 

the ranking score of document x, documents 

are ranked based on this score. 
 

4 Pairwise Approaches 

In this section, we will introduce two famous 

pairwise methods, RankNet and LamdaRank. 

3.1  RankNet 

In RankNet (Chris et al., 2005), it first tries to 

compare the relevance of every two documents, 

then ranks all the documents based on the 

document-pair comparison result.  

 

They defined    ̅  to be the given probability 

that document i is to be ranked higher than 

document j, and     to be the predicated 

probability that i should be ranked higher than 

j. They also defined          , and      

        (  ), where       is the ranking score 

of document i. Then they used the cross 

entropy cost function: 

 

        ̅              ̅            

 

They modeled the map from outputs to 

probabilities using a logistic function: 

 

    
    

      
 

 

    then becomes: 

 

        ̅                

 

In this case,     is plot as a function of    , the 

ranking problem is casted to a optimization 

problem, the goal is to minimize    . Neural 

nets is used to obtain    , and two documents 

can be ranked based on    . 

3.2   LambdaRank 

The quality measures (cost functions) used in 

LTR are particularly difficult to optimize 

directly, since they depend on the model 

scores only through the sorted order of the 

documents returned for a given query, and the 

cost functions are always either flat, or 

discontinue. 

 

LambdaRank (Christopher et al., 2006) is a 

ranking algorithm based on RankNet, it tries to 

solve the cost function problem by working 

with implicit cost functions.  

 

The main idea of LambdaRank is that, it’s 

usually much easier to specify rules 

determining how we would like the rank order 

of documents to change, after sorting them by 

scores for a given query, than to construct a 

general, smooth optimization cost function 

which has the desired properties for all 

orderings. By only having to specify rules for 

a given ordering, we can define the gradients 

of an implicit cost function C only at the 

particular points in which we are interested, 

which is easier to find. 
 

Based on this idea, instead of directly finding a 

cost function and optimizing the cost C, 

LambdaRank tries to find an optimization cost 



C, which has the property as follow: 
 

 
  

    
   

  

    
  

 

Where C is the cost function (loss function), 

    is the ranking score of document   , and 

       . 

 

LambdaRank is demonstrated to be able to 

learn non-smooth target costs, because it 

doesn’t need to find a perfect cost function, 

and it can provide a speedup for RankNet 

learning.  

 

4 Listwise Approaches  

In this section, we will introduce two listwise 

methods, ListNet and BoltzRank. 

4.1   ListNet 

Listnet (Zhe Cao et al., 2007) is motivated by 

the fact that the objective of Pairwise learning 

is formalized as minimizing errors in ranking 

document pairs, rather than minimizing errors 

in ranking the document list. 

 

The idea of ListNet is similar with RankNet, 

instead of optimizing the pairwise loss 

function, it tries to optimize the listwise loss 

function. 

 

They first defined a listwise loss function to 

represent the difference between the ranking 

list output by a ranking model and the ranking 

list given as ground truth: 

 

             
 

Where      is a list of documents’ trainging 

ranking scores, and      is list of documents’ 

modeled ranking scores. 

 

Then they introduced a top K documents 

probability: 

 

                  ∏
      

∑       
 
   

 

   

 

 

Where           are documents to be ranked, 

              is a collection of K documents, 

   is the score of object j which is ranked in 

position of t,     is an increasing and strictly 

positive function. 

 

The listwise loss function then becomes: 

 

 (         )   ∑                       

     

 

 

A new learning method for optimizing the 

listwise loss function based on top K priority is 

used, with Neural Network as model and 

Gradient Descent as optimization algorithm. 

The ranked list which has the lowest loss value 

will be used as the final ranked list. 

 

4.2 BoltzRank 
 

BoltzRank (M. N. Volkovs et al., 2009) is a 

new algorithm, motivated by the observation 

that if a probability distribution over document 

ranking permutations for a query can be 

defined, and consider the expectation of the 

target performance measure under this 

distribution, then expectation can be 

maximized by propagating the derivatives and 

update the parameters which govern the 

scoring function. 

 

BoltzRank defined E(R|S): 

 

   |   
 

       
∑                 

     

 

 

Where R = {         } is list of true scores 

for documents, S = {          } is list of 

scores given by the model.    is any sign 

preserving function. When      ,    |   

gets a large negative value if      , and a 



large positive one if      .  

 

Using E(R|S), they defined the conditional 

Boltzmann distribution over document 

permutations by exponentiating and 

normalizing: 

 

   |   
 

    
         |    

 

     ∑         |   

 

 

 

The scoring function f for a document consists 

two potentials: individual potential   and 

pairwise potential  . 

 

 (  |   )   (  )  ∑          

     

 

Where    is the given document, q is the query 

and D is the document set. 

 

Now the work is to minimize the KL 

divergence between the true rank distribution, 

P(R|L), and the model’s predicated distribution 

P(R|S): 

 

     ∑      |            |   

    

 

 

The final ranking result is the ranked list 

which can minimize this divergence. 

 

5 Conclusion  

In this survey, we introduced three main 

categories of Learning to rank approaches: 

Pointwise Approaches, Pairwise Approaches, 

and Listwise Approaches. Six classic 

algorithms, which belong to these three 

categories are discussed: McRank and PRank 

as Pointwise Approaches, RankNet and 

LambdaRank as Pairwise Approaches, ListNet 

and BoltzRank as listwise Approaches. 

 

The probabilistic approaches are reported to be 

more robust, but also more complicated. 

Listwise approaches are reported to have better 

performance, and it’s easy to handle the query-

specific problems. So these directions should 

be followed in the future work. 

 

Other Learning to rank approaches such as 

graphical approaches and kernel tricks are not 

mentioned here, they might work well as 

Learning to rank methods in some specific 

domains.  

 

References  

 

C. He, C. Wang, Y. X. Zhong, and R. F. Li. (2008). A 

survey on Learning to Rank, In Proc. of 7th 

International Conference on Machine Learning and 

Cybernetics, July, 2008. 

O. Chapelle and Y. Chang. (2011). Yahoo! Learning to 

Rank Challenge Overview, Journal of Machine 

Learning Research, vol. 14, pp. 1-24, 2011. 

P. Li, C. Burges and Qiang Wu. (2007). McRank: 

Learning to Rank using multiple classification and 

gradient boosting, In Proc of NIPS 2007. 

Koby Crammer and Yoram Singer. (2002). Pranking 

with ranking. Advances on Neural Information 

Processing System.  

Y. Freund and R. E. Schapire. (1999). A short 

introduction to boosting, Journal of Japanese society 

for Artificial Intelligence, vol. 14, no. 5, pp. 771-780, 

Sept., 1999. 

Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, 

Matt Deeds, Nicole Hamilton, and Greg Hullender. 

(2005). Learning to rank using gradient descent. 

Proceedings of International Conference on Machine 

Learning, 2005.  

T. Qin, X. D. Zhang, M. F. Tsai, D. S. Wang, T. Y. Lin 

and H. Li. (2008). Querylevel loss functions for 

Information Retrieval, Information Processing and 

Management, vol. 44, pp. 838-855, 2008. 

Christopher Burges, Robert Ragno, and Quoc Viet Le. 

(2006). Learning to rank with Nonsmooth cost 

functions. Advances on Neural Information 

Processing System.  

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and 

Hang Li. (2007). Learning to rank: from pairwise 



approach to listwise approach. Proceedings of 

International Conference on Machine Learning, 2007. 

M. N. Volkovs and R. S. Zemel. (2009). BoltzRank: 

Learning to maximize expected ranking gain, In Proc. 

of 26th ICML, 2009. 

O. Chapelle, Y. Chang and T. Y. Liu. (2011). Future 

directions in Learning To Rank, JMLR Workshop 

and Conference Proceedings, vol. 14, pp. 91-100, 

2011. 

 


