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Abstract 

Deep learning has emerged as a new area 

of machine learning research. It tries to 

mimic the human brain, which is capable 

of processing and learning from the 

complex input data and solving different 

kinds of complicated tasks well. It has been 

successfully applied to several fields such 

as images, sounds, text and motion. The 

techniques developed from deep learning 

research have already been impacting the 

research of natural language process. This 

paper reviews the recent research on deep 

learning, its applications and recent 

development in natural language 

processing. 

1 Introduction 

Deep learning has emerged as a new area of 

machine learning research since 2006 (Hinton and 

Salakhutdinov 2006; Bengio 2009; Arel, Rose et 

al. 2010; Yoshua 2013). Deep learning (or 

sometimes called feature learning or representation 

learning) is a set of machine learning algorithms 

which attempt to learn multiple-layered models of 

inputs, commonly neural networks. The deep 

neural networks are composed of multiple levels of 

non-linear operations. Before 2006, searching the 

parameter space of deep architectures is a 

nontrivial task, but recently deep learning 

algorithms have been proposed to resolve this 

problem with notable success, beating the state-of-

the-art in certain areas (Bengio 2009). 

2 Deep learning 

A central idea (Bengio, Courville et al. 2013) of 

deep learning is referred to as greedy layerwise 

unsupervised pre-training, which is to learn a 

hierarchy of features one level at a time. The 

features learning process can be purely 

unsupervised, which can take advantage of 

massive unlabeled data. The feature learning is 

trying to learn a new transformation of the 

previously learned features at each level, which is 

able to reconstruct the original data. The greedy 

layerwise unsupervised pre-training (Hinton, 

Osindero et al. 2006; Bengio, Lamblin et al. 2007; 

Bengio 2009) is based on training each layer with 

an unsupervised learning algorithm, taking the 

features produced at the previous level as input for 

the next level. It is then straightforward to 

extracted features either as input to a standard 

supervised machine learning predictor (such as an 

Support Vector Machines or Conditional Random 

Field) or as initialization for a deep supervised 

neural network. For example, each iteration of 

unsupervised feature learning adds one layer of 

weights to a deep neural network. Finally, the set 

of layers with learned weights could be stacked to 

initialize a deep supervised predictor, such as a 

neural network classifier, or a deep generative 

model, such as a Deep Boltzmann Machine 

(Salakhutdinov and Hinton 2009).   

 

2.1 Stacked auto-encoder 

One good illustration of the idea of greedy 

layerwise unsupervised pre-training is the stacked 

auto-encoder. An auto-encoder is an artificial 



neural network used for learning efficient coding 

(Liou, Huang et al. 2008). The aim of an auto-

encoder is to learn a compressed representation 

(encoding) for a set of data, which means that it 

was being used for dimensionality reduction or 

data compression. As shown in Figure 1, the auto-

encoder is consisted of an input layer, a number of 

considerably smaller hidden layers, which will 

form the encoding, and an output layer, which will 

try to reconstruct the input layer. It was shown that 

if linear neurons are used, or only a single sigmoid 

hidden layer, then the optimal solution to an auto-

encoder is strongly related to PCA (Bourlard and 

Kamp 1988). Then use the learned feature to train 

another layer of auto-encoder. Finally, use the 

learned weights to initialize a deep neural network 

as shown in Figure 2. 

 
Figure 1. Structure of Auto-encoder. Set the output 

layer same as the input layer to train the network. The 
hidden layer is the learned feature of the input. 

 
Figure 2. Stacked auto-encoder. Use the weights of 

auto-encoders to initialize the deep neural network. Then 
fine-tune the whole network by back propagation. 

2.2 Deep Boltzmann Machines 

Another way to implement the pre-training is 

through restricted Boltzmann machines (RBMs) as 

explained in Hinton’s science paper (Hinton and 

Salakhutdinov 2006). It uses the learned restricted 

Boltzmann machines (RBMs) to try to regenerate 

the original input data. The learned feature 

activations of one RBM are used as the input data 

for training the next layer RBM in the stack. After 

the pre-training, the RBMs are “unrolled” to create 

a deep network, which is then fine-tuned using 

back-propagation of error derivatives as shown in 

Figure 3. The stacks of RBMs will create Deep 

Boltzmann Machines (Salakhutdinov and Hinton 

2009). Then use the pre-trained DBM to initialize a 

deep neural network and train with back 

propagation as the stacked auto-encoder explained 

in the previous section. 



 
Figure 3. Restricted Boltzmann Machines to 

compress images. 

2.3 Why deep? 

One of the main reasons to go deep is that a non-

linear function can be more efficiently represented 

by deep architecture with fewer parameters. The 

most formal arguments about the power of deep 

architectures come from investigations into 

computational complexity of circuits. The  

investigations suggests that when a function can be 

compactly represented by a deep architecture, it 

might need a very large architecture to be 

represented by an insufficiently deep one (Bengio 

2009).  

In another word, a number of computational 

complexity results strongly suggest that functions 

that can be compactly represented with a deeper 

architecture could require a very large number of 

elements in order to be represented by a shallower 

architecture. Because each parameter of the 

architecture might have to be selected or learned, 

using examples, these results suggest that depth of 

architecture can be very important from the point 

of view of statistical efficiency. Another reason is 

that deep representations might allow for a 

hierarchical representation. And multiple levels of 

latent variables allow combinatorial sharing of 

statistical strength (Bengio 2009). 

Inspired by the architectural depth of the brain, 

neural network researchers had wanted for decades 

to train deep multi-layer neural networks (Utgoff 

and Stracuzzi 2002; Bengio and Lecun 2007), but 

it was not successful before 2006: researchers 

reported positive experimental results with 

typically two or three levels (i.e. one or two hidden 

layers), but training deeper networks consistently 

yielded poorer results. It was sometimes 

considered a breakthrough happened in 2006: 

Hinton and collaborators at University of Toronto 

introduced Deep Belief Networks or DBNs for 

short (Hinton, Osindero et al. 2006), with a 

learning algorithm that greedily trains one layer at 

a time, exploiting an unsupervised learning 

algorithm for each layer, a Restricted Boltzmann 

Machine (RBM)(Freund and Haussler 1994). 

Shortly after, related algorithms based on auto-

encoders were proposed (Poultney, Chopra et al. 

2006; Bengio, Lamblin et al. 2007), which 

apparently follows the same principle: guiding the 

training of intermediate levels of representation 

using unsupervised learning, which can be 

performed locally at each level. More other 

algorithms for deep architectures were proposed 

that exploit neither RBMs nor auto-encoders, but 

they followed the same principle (Mobahi, 

Collobert et al. 2009; Weston, Ratle et al. 2012). 

2.4 Multi-Task and Transfer Learning, 

Domain Adaptation 

Another advantage of deep learning is transfer 

learning. Transfer learning is the ability of a 

learning algorithm to exploit commonalities 

between different learning tasks in order to share 

statistical strength, and transfer knowledge across 

different tasks. As discussed below, it is 

hypothesized that feature learning algorithms have 

an advantage for such tasks because they learn 

features that capture underlying factors, a subset of 

features which may be relevant for a particular 

task, as illustrated in Figure 4. This hypothesis 

seems confirmed by a number of empirical results 

showing the advantages of feature learning or deep 

learning algorithms in domain adaptation and mult-

task (Bengio, Courville et al. 2013). 



 
Fig. 4. Illustration of a feature learning model which 

discovers explanatory factors (the middle hidden layer in 
red). The shared features are learned unsupervised or 
supervised. Because these subsets overlap, sharing of 
statistical strength allows gains in generalization. 

 

The illustrative empirical examples are the two 

transfer learning challenges held in 2011 and won 

by feature leaning or deep learning algorithms. The 

first one was the Transfer Learning Challenge, 

which held at an ICML 2011 workshop. It was 

won using unsupervised layer-wise pre-training 

(Bengio ; Mesnil, Dauphin et al. 2012). A second 

Transfer Learning Challenge was held at NIPS 

2011’s Challenges in Learning Hierarchical 

Models Workshop and also won by deep learning 

(Goodfellow, Courville et al. 2012). There more  

examples of the successful application of feature 

learning in fields related to transfer learning 

include domain adaptation (Glorot, Bordes et al. 

2011; Chen, Xu et al. 2012).  

3 The Applications of Deep Learning  

During the past several years, the deep learning 

techniques have already been impacting a wide 

range of machine learning and artificial 

intelligence. It is thought that moving machine 

learning closer to one of its original goals: 

Artificial Intelligence. It has been successfully 

applied to several fields such as images, sounds, 

text and motion. The rapid increase in scientific 

activity on deep learning has been motivated by the 

empirical successes both in academia and in 

industry. 

 

3.1 Object Recognition 

Object recognition is thought to be a nontrivial task 

for computer. MNIST digit image classification 

problem has been used as benchmark for many 

machine learning algorithms, deep learning was 

focused on the problem since 2006 (Hinton, 

Osindero et al. 2006; Bengio, Lamblin et al. 2007), 

outperforming the supremacy of SVMs (1.4% 

error) on this dataset. The latest records are still 

held by deep networks: Ciresan et al. (Ciresan, 

Meier et al. 2012) currently claims the title of 

state-of-the-art for the unconstrained version of the 

task (e.g., using a convolutional architecture), with 

0.27% error, and Rifai et al. (Rifai, Dauphin et al. 

2011) is state-of-the-art for the knowledge free 

version of MNIST, with 0.81% error. 

In the last few years, deep learning has extended 

from digits to object recognition in natural images. 

The latest breakthrough has been achieved on the 

ImageNet dataset, which improve the state-of-the-

art error rate from 26.1% to 15.3% (Krizhevsky, 

Sutskever et al. 2012). 

3.2 Speech Recognition and Signal Processing  

Speech recognition was one of the early 

applications of neural networks, in particular 

convolutional (or time-delay) neural networks.  

The recent revival of interest in neural networks, 

deep learning, and representation learning has had 

a strong impact in the area of speech recognition. 

Deep learning was thought to yield breakthrough 

results (Dahl, Mohamed et al. 2010; Seide, Li et al. 

2011; Dahl, Yu et al. 2012; Mohamed, Dahl et al. 

2012), obtained by several academics as well as 

researchers at industrial labs, even bringing these 

algorithms to a larger scale and into products. For 

example, Microsoft has released a new version of 

their MAVIS (Microsoft Audio Video Indexing 

Service) speech system based on deep learning in 

2012 (Seide, Li et al. 2011). In this paper, the 

author reduce the word error rate on four major 

benchmarks by about 30% (from 27.4% to 18.5% 

on RT03S) compared to state-of-the-art models 

based on Gaussian mixtures for the acoustic 

modeling and trained on the same amount of data 

(309 hours of speech). Similarly Dahl (Dahl, Yu et 

al. 2012)  managed to decrease the  relative error 

rate by between 16% and 23% on a smaller large-

vocabulary speech recognition benchmark (Bing 



mobile business search dataset, with 40 hours of 

speech. 

The standard deep neural network is a static 

classifier with input vectors having a fixed 

dimensionality. However, many practical pattern 

recognition and information processing problems, 

including speech recognition, machine translation, 

natural language understanding, video processing 

and bio-information processing, require sequence 

recognition. In sequence recognition, sometimes 

called classification with structured input/output, 

the dimensionality of both inputs and outputs are 

variable. One way to solve this problem is through 

the HMM.  

 
Figure 5: Interface between DBN/DNN and HMM to 

form a DBN-HMM or DNN-HMM. This architecture 
has been successfully used in speech recognition 
experiments reported in (Dahl et al., 2012). 

 

The HMM is a convenient tool to model the 

sequence data with variable length, which based on 

dynamic programing operations. By integrating 

static classifiers and HMM, it is able to handle 

dynamic or sequential patterns. Thus, it is natural 

to combine deep neural network and HMM to 

bridge the gap between the static and sequence 

pattern recognition. A popular architecture to 

fulfill this is shown in Figure 5. This architecture 

has been successfully used in speech recognition 

experiments as reported in (Dahl et al., 2012). 

Other approaches to tackle the problem that the 

dimensionality of both inputs and outputs are 

variable are based on recurrent neural networks or 

convolutional network (Collobert and Weston 

2008; Socher, Huang et al. 2011; Socher, 

Pennington et al. 2011). They have also been 

applied to music, substantially beating the state-of-

the-art in polyphonic transcription (Boulanger-

Lewandowski, Bengio et al. 2012), with a relative 

error improvement of between 5% and 30% on a 

standard benchmark of four different datasets. 

3.3 Natural Language Processing  

Besides speech recognition, deep learning has been 

applied to many other Natural Language 

Processing applications. One important application 

is word embedding. The idea that symbolic data 

can be represented via distributed representation 

for was introduced by Hinton (Hinton 1986). It 

was first developed in the context of statistical 

language modeling by Bengio et al. (Bengio, 

Ducharme et al. 2003). The learning of a 

distributed representation for each word, also 

called a word embedding.  

Collobert et al. (Collobert and Weston 2008; 

Collobert, Weston et al. 2011) applied deep 

convolutional network to implement the word 

embedding. He further developed the SENNA 

system that shares representations across different 

NLP tasks. This is also strong evidence that deep 

learning has the transfer learning potential. The 

result in this paper illustrated that the deep learning 

approaches surpasses the state-of-the-art on most 

of the tasks but is much faster than traditional 

predictors.  

One major contribution of Collobert’s work is to 

avoid task-specific, “man-made” feature 

engineering, and to learn versatility and unified 

features automatically from deep learning. Those 

learned features can be shared by all natural 

language processing tasks. The system described in 

(Collobert and Weston 2008; Collobert, Weston et 

al. 2011) automatically learns internal 

representation from vast amounts of mostly 

unlabeled training data (Deng and Yu ; Bengio, 

Courville et al. 2013). It defines a unified 

architecture for Natural Language Processing that 

learns features that are relevant to the many well-

known NLP tasks including part-of-speech 



tagging, chunking, named-entity recognition, 

learning a language model and the task of semantic 

role-labeling given very limited prior knowledge. 

All of these tasks are integrated into a single 

system which is trained jointly. All the tasks 

except the language model are supervised tasks 

with labeled training data. The language model is 

trained in an unsupervised fashion on the entire 

Wikipedia website.  

The theme behind the deep learning approach is 

different from the traditional NLP approach, which 

is: extract from the sentence a rich set of hand-

designed features which are then fed to a classical 

shallow classification algorithm, e.g. a Support 

Vector Machine (SVM), often with a linear kernel. 

In this way, the choice of features is a completely 

empirical process, mainly based on trial and error, 

and the feature selection is task dependent, 

implying additional research for each new NLP 

task. It has some success for simple NLP tasks 

such as POS. But complex tasks like SRL then 

require a large number of possibly complex 

features (e.g., extracted from a parse tree) which 

makes such systems slow and intractable for large-

scale applications. Instead in this paper, the author 

proposed a deep neural network (NN) architecture, 

trained in an end-to-end fashion. The input 

sentence is processed by several layers of feature 

extraction. The features in deep layers of the 

network are automatically trained by 

backpropagation to be relevant to the task. The 

structure is summarized in Figure 6. In this 

structure, the first layer extracts features for each 

word. The second layer extracts features from the 

sentence treating it as a sequence with local and 

global structure. The following layers are classical 

NN layers. The semi-supervised training of SRL 

using the language model performs better than 

other combinations. The result reported in this 

paper was as low as 14.30% in per-word error rate, 

which beats the state-of-the-art, 16.54%, based on 

parse trees (Pradhan et al., 2004). Besides, this 

system is the only one not to use POS tags or parse 

tree features. With the multiple task learning, the 

author managed to obtain 2.91% for POS and 3.8% 

for chunking. POS error rates in the 3% range are 

state-of-the-art. 

 
Figure 6. A general deep NN architecture for NLP 

reported in Collobert’s work (Collobert and Weston 
2008). Given an input sentence, the NN outputs class 
probabilities for one chosen word. 

 

Beside the standard deep neural networks, 

Recurrence Neutral Network (RNN) is 

successfully applied to many aspects of natural 

language processing. Stanford NLP group recently 

applied RNN to sentiment analysis for semantic 

compositionality (Socher, Perelygin et al.). It 

improves the state of the art in single sentence 

positive/negative classification from 80% up to 

85.4%. RNN was also applied to parsing, which 

improves the PCFG of the Stanford Parser by 3.8% 

to obtain an F1 score of 90.4% (Socher, Bauer et 

al. 2013). The neural network language model was 

also improved by adding recurrence to the hidden 

layers (Mikolov, Deoras et al. 2011), allowing it to 

surpass the state-of-the-art (smoothed n-gram 

models) not only in terms of perplexity 

(exponential of the average negative log-likelihood 

of predicting the right next word, going down from 

140 to 102) but also in terms of word error rate in 

speech recognition, decreasing it from 17.2% 

(KN5 baseline) or 16.9% (discriminative language 



model) to 14.4% on the Wall Street Journal 

benchmark task. It have also been applied to 

statistical machine translation (Schwenk, Rousseau 

et al. 2012), which improves the BLEU score by 

almost 2 points. Similar structure, recursive auto-

encoders (which generalize recurrent networks) 

have also been used to beat the state-of-the-art in 

full sentence paraphrase detection (Socher, Huang 

et al. 2011) almost doubling the F1 score for 

paraphrase detection. Deep learning can also be 

used to perform word sense disambiguation 

(Bordes, Glorot et al. 2012), improving the 

accuracy from 67.8% to 70.2%.  

4 Conclusions 

In sum, deep learning has becoming a new field of 

machine learning, and has gained extensive 

interests in different research area. It has shown 

some advantages over the traditional machine 

learning methods in some fields. Although deep 

learning works well in many machine learning 

tasks, it works equally poorly in some areas as the 

other learning methods. Besides most of the deep 

learning investigations are empirical, solid 

theoretical foundations of deep learning need to be 

established. Deep learning has been applied to 

natural language processing with some success. 

The result from deep learning looks promising, but 

the results are preliminary from some subfields of 

NLP, and from a few research groups. Besides, the 

result for NLP is still far from satisfying, letting 

the computers understand human languages. 

Further investigations are needed for both deep 

learning and NLP. 
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