
A Survey of Bootstrapping Techniques in Natural Language Processing

Daniel Waegel
Department of Computer Science

University of Delaware
Newark, DE 19711

danielw@udel.edu

Abstract
This paper surveys a selection of semi-
nal bootstrapping articles and present an
in-depth discussion of the algorithms and
the relative strengths and weaknesses of
the techniques used. We also examine the
problems these authors attempt to solve
and analyze when it is appropriate to uti-
lize a bootstrapping algorithm. Finally, we
discuss some of the limitations inherent in
any bootstrapping approach.

1 Introduction

Statistical approaches to information extraction
and natural language processing tasks require vast
amounts of information in order to perform ac-
ceptably and produce reliable results. Training
empirical algorithms requires huge corpora. A
corpus of unannotated, unmarked natural language
text is not often suitable for training purposes on
most tasks; algorithms typically need their train-
ing data to be annotated in some fashion in order
to be able to extract and learn the salient textual
features.

Unfortunately, annotated corpora are in short
supply. Manually annotating even a small corpus
is incredibly time-consuming and is infeasible for
larger ones. Automatically tagging a corpus with
the necessary information is usually not possible,
since the annotations needed for training are typ-
ically the information we are trying to find in the
first place (Agichtein and Gravano, 2000).

For example, an empirical algorithm that at-
tempts to identify whether a given article is writ-
ten in a subjective or objective fashion would typ-
ically train on a corpus that is marked up with
annotations indicating subjectivity and objectiv-
ity in some fashion. The algorithm would then
learn from this annotated training corpus and then
(hopefully!) be able to effectively perform this
task on unannotated natural language text.

Bootstrapping provides an alternative to
painstaking manual annotation. The techniques
reviewed herein are all trained on unannotated
corpora. The implementers provide their algo-
rithm with a small number of carefully chosen
seeds. These seeds are then used as a starting
point to gather other, similar terms from an
unannotated training corpus, which are in turn
then used to gather even more terms, and so on.
In essence, the algorithm “pulls itself up from its
bootstraps”, hence the name.

In the following section, we discuss in detail
a selection of widely cited bootstrapping meth-
ods and the problems they are attempting to solve.
First, we discuss the Snowball algorithm used by
Agichtein and Gravano (2000) to extract relations
from unannotated text. Next, we investigate the
Basilisk algorithm (Thelen and Riloff, 2002) used
for the task of semantic categorization. We also
examine the NOMEN bootstrapping system and its
application to two tasks: Semantic categorization
(Lin et al., 2003) and learning generalized names
(Yangarber et al., 2002). Finally, we cover how
the bootstrapping of extraction patterns can iden-
tify elusive subjective language using two differ-
ent methodologies (Riloff et al., 2003; Riloff and
Wiebe, 2003).

We then examine the corpora used in these pa-
pers and evaluate the results reported by the au-
thors. We strive to identify the strengths and weak-
nesses of the various bootstrapping approaches
and their suitability for the different applications.

In the last sections we discuss and draw conclu-
sions about the merits of bootstrapping more gen-
erally. We demonstrate that it is a powerful and
flexible technique that can extract many different
types of information with minimal human interac-
tion. We also muse upon the limitations and draw-
backs of bootstrapping techniques and what can be
done to mitigate such concerns.

2 Bootstrapping Algorithms

While there is great variation between implemen-
tations, bootstrapping approaches in natural lan-
guage processing all follow the same general for-
mat:

1. Start with an empty list of things.1

2. Initialize this list with carefully chosen seeds.

3. Leverage the things in the list to find more
things from a training corpus.

4. Score those newly found things; add the best
ones to the list.

5. Repeat from step 3. Stop after a set num-
ber of iterations or some other stop condi-
tion. The intuition for bootstrapping stems
from the observation that words from the se-
mantic category tend to appear in similar pat-
terns and similar contexts. For example, the
words “water” and “soda” are both in the se-
mantic BEVERAGE category, and in a large
text they will likely both be found in phrases
containing drank or imbibed. The core intu-
ition is that by searching for patterns like that
we can find other BEVERAGEs, and then by
finding patterns that contain those, we can
find even more.

The core feature of a bootstrapping algorithm is
that each iteration is fed the same type of data as
its input that it produces as its output. The output
of the first iteration is used as the input of the sec-
ond iteration, and so on. It should not be surpris-
ing that choosing the initial set of data (the seeds)
from which all other data is “grown” is a critical
factor (arguably the most critical factor) in the per-
formance of the algorithm.

2.1 Snowball
This paper by Agichtein and Gravano (2000) out-
lines an attempt to identify and extract structured
relations between named entities from unstruc-
tured text. In this context, a relation is defined
as a table or listing that maps one entity onto an-
other (as in a relational database). The example
used throughout the article is mapping an organi-
zation entity (e.g., Microsoft or Boeing) onto their
headquarters (a location entity such as Redmond

1Usually words or phrases, but it can be any representa-
tion of language (such as regular expressions, tuples, etc.)

for Microsoft). These are represented as a tuple in
the form of ¡O, L¿. The goal of this research is to
allow much more nuanced responses to questions
such as “Where is Microsoft headquartered?”.

Snowball is built on top of the DIPRE (Dual
Iterative Pattern Relation Expansion) method by
Brin (1999). The central idea behind both of these
exploits the idea, termed pattern relation duality,
that a “good” extraction pattern will produce good
tuples given a large enough body of text and a
“good” set of tuples can have good extraction pat-
terns deduced from it. The only user-provided in-
put to the Snowball system is the training corpus
and a small handful of manually compiled rela-
tions (the seeds). The initial seeds provided by
Agichtein and Gravano (2000) were:

ORGANIZATION HEADQUARTERS
MICROSOFT REDMOND
EXXON IRVING
IBM ARMONK
BOEING SEATTLE
INTEL SANTA CLARA

Table 1: Seed tuples provided to Snowball.

The system then searches the training corpus
looking for documents where both terms in a seed
tuple occur in close proximity to one another.
It analyzes the connecting text and surrounding
context and generates an extraction pattern repre-
sented by a Snowball pattern, a 5-tuple of the form
<left, tag1, middle, tag2, right>. The left, middle,
and right terms are weighted vectors of words that
represent the respective left, middle, and right con-
texts. The other two terms in the 5-tuple, tag1 and
tag2, are named-entity tags such as ORGANIZA-
TION or LOCATION. Since the patterns can only
possibly match named entities of the proper type,
a preprocessing step is required to tag the corpus
with a named-entity tagger. An example Snow-
ball pattern generated by the system is the 5-tuple
<{<the, 0.2>}, LOCATION, {<-, 0.5>, <based,
0.5>}, ORGANIZATION, { }> which match text
in the form “the ¡LOCATION¿-based ¡ORGANI-
ZATION¿”.

In addition to the Snowball pattern 5-tuples,
each document snippet S that contains two
named entities with the correct named-entity tags
(ORANGANIZATION and LOCATION in our
examples) are also assigned a corresponding 5-
tuple. Three weighted vectors lS , rS , and mS are

created from the text surrounding the two named
entities. The size of the lS and rS vectors is limited
by a window of size w. The vector weights indi-
cate the relative importance, measured as a func-
tion of the frequency, of each term in the context.
The vectors are scaled so their norm is 1, and then
the vectors are multiplied by a scaling factor to in-
dicate each vector’s relative importance. 2

Snowball generates a 5-tuple for each string
that contains a co-occurring pair of named enti-
ties found in one of the seed tuple. Once all of
these are gathered, they are clustered using a sim-
ple single-pass clustering algorithm. Their prox-
imity is measured by a similarity threshold τsim
for the following similarity metric, given two 5-
tuples t1 and t2:

Match(t1, t2) ={
l1 · l2 +m1 ·m2 + r1 · r2 if the tags match
0 Otherwise

(1)

After clustering, Snowball patterns are formed
by collapsing the left, middle, and right vec-
tors of 5-tuples in the clusters via their centroid:
The left vectors are represented by their centroid
l̄s, the middle vectors by centroid m̄s, and the
right vectors by r̄s. Since the similarity metric
Match(t1, t2) guarantees that only 5-tuples with
the same tags will be similar, the Snowball pattern
for the cluster is built as < l̄s, t1, m̄s, t2, r̄s >.

After the Snowball patterns are generated, the
corpus can now be scanned to find to locate addi-
tional relations (tuples of the form <O, L> in our
examples). The algorithm for doing so is outlined
in Algorithm 1.

For every sentence S containing an organization
and location tagged by the named-entity tagger, a
5-tuple tS =< ls, t1,ms, t2, rs > is generated.
If there exists a pattern P represented by 5-tuple
tP such that Match(tS , tP) ≥ τsim, the snowball
system generates a candidate tuple < O,L >.

Thus, after the algorithm is done, each candi-
date tuple will have one or more patterns associ-
ated with it. Each candidate-pattern association
has a similarity score associated with it.

The final step is to measure the system’s con-
fidence that the patterns and tuples produced are

2In the implementation, Agichtein and Gravano (2000) as-
signs the middle vector higher weights than the left or right
vectors with the intuition that the middle vector is the most
important.

foreach snippet ∈ corpus do
{< O,L >,< ls, t1,ms, t2, rs > }
← CreateOccurrence(snippet);
TC = < O,L >;
SimBest = 0;
foreach p ∈ Patterns do

sim←Match(< ls, t1,ms, t2, rs >
, p) ;
if sim ≥ τsim then

UpdatePatternSelectivity(p, TC);
if sim ≥ SimBest then

SimBest ← sim;
PBest ← p;

end
end

end
if SimBest ≥ τsim then

CandidateTuples[TC].Patterns[PBest]←
SimBest;

end
end
return CandidateTuples;

Algorithm 1: Extracting new tuples from Snow-
ball patterns

likely to be “good”. The confidence in a pattern p
is simply the ratio of its positive matches (those
matched tuples that agree with known data) to pos-
itive and negative matches (those matched tuples
that disagree with known data). The confidence in
a candidate tuple Conf(T) is defined as

Conf(T) = 1−
|P |∏
i=0

1−Conf(Pi) ·Match(Ci, Pi),

(2)
where Pi ∈ P is each pattern that generated T and
Match(Ci, Pi) is the similarity score between the
candidate T and the pattern Pi.

Any candidates with a low confidence score are
discarded, and the rest are added to the pool of ac-
cepted relations. This newly enlarged pool, which
originally starts with the manually chosen seeds,
forms the basis for the next cycle of bootstrapping.

2.2 Basilisk
The Basilisk algorithm (Bootstrapping Approach
to SemantIc Lexicon Induction using Semantic
Knowledge), developed by Thelen and Riloff
(2002), utilizes a bootstrapping approach to de-
veloping a semantic lexicon of nouns. This is a
categorization task: Search for nouns in an unan-

notated corpus and assign them to one of six se-
mantic categories.3 These ad hoc categories were
manually selected by the authors because the cor-
pus is comprised of articles written about terror-
ism.4

Knowledge of semantic class information is in-
tegral to the success of a huge assortment of nat-
ural language processing tasks, such as question
answering, information extraction, (Thelen and
Riloff, 2002) and summarization (Lin et al., 2003).
Large semantic dictionaries such as WordNet pro-
vide a robust and readily accessible semantic lexi-
con, but Thelen and Riloff (2002) argue that these
are insufficient for a number of reasons: They can
never be fully comprehensive (due to neologisms,
idioms, esoteric verbiage, etc), and also that a
general-purpose lexicon will not usually contain
domain-specific jargon and vocabulary.

Basilisk, like all bootstrapping algorithms, must
be seeded with carefully selected terms in order to
be effective. Thelen and Riloff (2002) seeded their
algorithm by sorting the words in the corpus by
frequency and manually identifying the 10 most
frequent words for each of the six semantic cate-
gories.

Prior to the actual bootstrapping process, the al-
gorithm runs an extraction pattern learner5 on the
corpus to extract every noun phrase in one of three
forms: subject (“<subject>was arrested”), direct
object (“murdered <direct object>”), or preposi-
tional phrase (“collaborated with <pp object>”).

The bootstrapping algorithm then proceeds as
per Algorithm 2.

In step 1, the extraction patterns must be eval-
uated and scored. Basilisk uses the RlogF metric
for this task. This is defined as:

RlogF (patterni) =
Fi

Ni
· log2(Fi) (3)

where Fi is the number of nouns extracted by
patterni known to belong to a semantic category
and Ni is the total number of nouns extracted by
patterni. This essentially scores those patterns
which are highly selective (have a high precision)
or which are moderately selective but are very pro-
lific (have moderate precision but a high recall).

3The semantic categories are: BUILDING, EVENT, HU-
MAN, LOCATION, TIME, and WEAPON.

4See section 3 for more details regarding the corpus.
5The learner, the Autoslog system by Riloff, is briefly

mentioned for completeness. A full description is outside the
scope of this survey.

Generate all extraction patterns in the corpus
and record their extractions.
lexicon← {seed words}
i← 0
BOOTSTRAPPING
1. Score all extraction patterns
2. patternpool← top 20 + i patterns
3. candidate word pool← extractions from
pattern pool

4. Score candidate ∈ candidate word pool
5. Add top 5 candidates to lexicon
6. i← i+ 1
7. Go to Step 1

Algorithm 2: Pseudo-code for Basilisk algo-
rithm

In step 2, the best-scoring patterns are placed in
the pattern pool. In the first cycle, Thelen and
Riloff (2002) set this parameter to the top 20 pat-
terns. During each subsequent cycle, the pool size
is expanded by one. This prevents the pool from
becoming “stale”; witha constant pool size, even-
tually all valid candidates would be extracted by
the same top-scoring 20 patterns and only invalid
candidates would remain.

In step 3, every extraction produced by the
patterns in the pattern pool is added to the
candidate word pool, unless it is already present
in the lexicon. Next, these candidates need to be
scored, which is done using the scoring metric:

score(wordi) =

Pi∑
j=1

log2(Fj + 1)

Pi
(4)

where Pi is the number of patterns that extract
wordi, and Fj is the number of unique, known,
category members extracted by patternj . After
scoring, the best candidates are added to the lex-
icon, the pools are flushed, and the bootstrapping
cycle starts over with the enlarged lexicon.

2.3 NOMEN

Two of the articles we survey use the NOMEN al-
gorithm, although the goals of each paper were
very different. In much the same vein of re-
search as the previous section, Lin et al. (2003)
investigates the suitability of bootstrapping for un-
supervised learning of semantic classification of
terms. We survey this research along with the pre-
viously discussed (Thelen and Riloff, 2002) exam-
ine whether dissimilar bootstrapping approaches

to the same problem will have similar results. This
gives us some insight into the robustness of the
bootstrapping paradigm.6

The NOMAN algorithm was first formally de-
scribed in the literature by Yangarber et al. (2002),
where it is used to address the problem of learning
generalized names in a biomedical context. Gen-
eralized names, such as mad cow disease or Ebola
hemorrhagic fever, often lack the (full) capitaliza-
tion cues afforded to proper names and detection
methods must rely on other metrics to attain rea-
sonable performance. The authors particularly fo-
cus on the confounding factor of semantic ambigu-
ity on the bootstrapping process. It is common for
names in the biomedical context to refer to both
a disease and a symptom, resulting in ambiguity
and greatly increasing the difficulty of distinguish-
ing between the two semantic classes. E. coli and
encephalitis are two examples of this provided by
Yangarber et al. (2002).

Pseudo-code for NOMAN can be found in Al-
gorithm 3. The following details are taken from
Lin et al. (2003) as we feel that description was
more readable. There are only two small dif-
ferences between the implementations, which we
note below.

The NOMEN algorithm requires its training set
to undergo significant pre-processing: The train-
ing corpus is run through a zoner, a sentence split-
ter, a tokenizer/lemmatizer, and a part-of-speech
tagger. The zoner is necessary to extract the actual
content because the training corpus is a collection
of mailing list correspondence with mailing head-
ers and footers. The splitter and tokenizer break
the corpus into word tokens, the lemmatizer con-
verts words to their base form, which are finally
tagged by the part-of-speech tagger.

After pre-processing, the first step is choos-
ing the seeds. Yangarber et al. (2002) chose the
10 most common names for each semantic cate-
gory from an “IE database of more than 10,000
records”. This source is different from the corpora
used in training and testing. Lin et al. (2003) runs
multiple experiments using different seeds and of-

6We use the term “robust” here not in the software sense
of handling abnormal situations gracefully, but rather to in-
dicate a broad capacity to solve problems despite varying
approaches and implementations. This is contrasted with a
weak or fragile paradigm, which can only adequately solve
problems under a specific set of artificially chosen parame-
ters and/or conditions. Assessing the strengths of classes of
algorithms is a major issue in Computer Science, as failed
approaches go unpublished in the literature.

NOMAN BOOTSTRAPPING
1. Tag accepted names in corpus
2. For each tag, generate a pattern
p = [l−3l−2l−1 < t > l+1l+2l+3]
3. For every learner, generate pos(p), neg(p),
and unk(p)
4. For every pattern, compute acc(p) and
conf(p){

Discard(p) if acc(p) < θprec

Score(p) Otherwise

Accept the n top scoring patterns 5. For each
accepted pattern p, add unk(p) to candidates
6. For every learner, score candidate name t
Mt ← set of accepted patterns matching any
instance of t{
Discard(t) If Mt lacks Mass or Balance

Rank(t) Otherwise

Learner accepts top-scoring k percent of
names (maximum of m)
7. Repeat until no more names can be learned

Algorithm 3: Pseudo-code for NOMEN algo-
rithm

ten lists them without explaining their origin. We
presume they are manually selected. The seeds are
then placed in the pool of accepted names.

The next step is to tag each instance of every
accepted name occurring in the corpus, e.g., <dis-
ease>mad cow disease</disease>. Then for both
the opening and closing tags, an extraction pattern
is generated around the tag using a context win-
dow. This window size was set to 3 in this work.
The pattern is then generalized in some way by
replacing some elements in the context window
with wildcards. It is completely unclear from ei-
ther paper what the generalized pattern would
look like or what kinds of text it would match.

There is one learner per semantic category.
For each learner, the generalized patterns are
then matched against the training corpus. Since
each pattern was created from either the open-
ing or closing tag, the pattern will only match
either the left or the right boundary of a name.
NOMEN uses a regular expression of the form
[Adj ∗ Noun+] to determine where the other
boundary of the word ends. Each learner then
checks whether the matched name is a positive
(already in this learner’s pool of accepted names),

negative (already in another learner’s pool), or
unknown (in no pool) name.

Each pattern, for each learner, is then scored us-
ing the number of unique matches of each type:
pos(p), neg(p), and unk(p). The pattern is then
scored using accuracy and confidence metrics:

acc(p) =
|pos(p)|

|pos(p)|+ |neg(p)|
(5)

conf(p) =
|pos(p)| − |neg(p)|

|pos(p|) + |neg(p)|+ |unk(p)|
(6)

where patterns with an accuracy of less than Θprec

are removed from consideration. The rest are
given a final score of Score(p) = conf(p) ·
log|pos(p)|. The top n patterns for each learner
are then accepted.

Candidate names are then drawn from the
union of the unknown names of accepted patterns
(unk(p)). Each candidate t must have an accept-
able mass Mt (defined as the # of accepted pat-
terns that generated t } of 2 or greater and be
balanced (at least one accepted pattern matched
both left and right name boundaries). Names that
meet this criteria are scored:

rank(t) = 1−
∏
p∈Mt

(1− conf(p)) (7)

and each learner then finally accepts up to top-
scoring k percent, but no more thanm in any given
cycle.7 The cycle is then repeated until no more
acceptable names exist.

2.4 AutoSlog-TS

Riloff and Wiebe (2003) uses bootstrapping to
identify subjective expressions. Empirical meth-
ods have previously been leveraged to create lists
of words and n-grams statistically associated with
subjective language. Previous work has also re-
sulted in lists of manually compiled subjective
words.8

However, subjective ideas are expressed in myr-
iad forms, many of which are very hard to de-
tect using conventional natural language process-
ing approaches. Sarcastic, metaphorical, and id-
iomatic phrases are cases where the expression
of subjectivity is easily overlooked by empirical

7Both implementations used a k of 5% and an m of 5.
8A well-known example is the ”Verbs of Desire” class

composed by Beth Levin.

methods; both utilize words which may be objec-
tive when isolated but may become strongly sub-
jective when placed in context.9 While some id-
ioms, such as kicked the bucket may be easily cap-
tured by an n-gram of sufficient length, many oth-
ers contain pronouns or proper nouns (as in dealt
John a mortal blow).

Riloff and Wiebe (2003) use an unnamed vari-
ant of their previously defined AutoSlog-TS al-
gorithm to address some of these issues. The
work is notable in that it bootstraps extraction pat-
terns instead of words. An extraction pattern is
essentially a regular expression to capture some
lexico-syntactic pattern in text, such as ¡x¿ drives
¡y¿ up the wall , where x and y can match any
arbitrary part-of-speech (a noun or noun phrase
would make sense in this case). Riloff and Wiebe
(2003) hypothesize that extraction patterns are bet-
ter suited for capturing non-compositional mean-
ing than other representations like words or n-
grams.

Particularly worth noting is that this process
is the only one that does not use manually se-
lected seeds. The original set of extraction pat-
terns are instead created by what is termed a High-
precision subjective classifier (HP-Subj). This
classifier flags sentences as subjective or objective
using a large list of lexical items. These items are
words, N-grams, and other subjective clues com-
piled from a wide variety of prior works which
showed them to be good indicators of subjectivity.
There is also a corresponding High-precision ob-
jectivity classifier (HP-Obj) that labels sentences it
believes are objective. It functions somewhat dif-
ferently: It labels sentences that have a dearth of
subjective clues within them and in the surround-
ing textual context.

The Autoslog-TS algorithm takes as input the
set of relevant (subjective) and irrelevant (objec-
tive) sentences flagged by the HP-Subj and HP-
Obj classifiers. First, syntactic templates gener-
ated from prior work are exhaustively applied to
the training corpus, so that extraction patterns are
generated for every possible instantiation of the
templates that appears in the training corpus. The
list of templates and examples of learned extrac-
tion patterns are shown below.

Then, these extraction patterns are matched
against every sentence in the training corpus. The

9This is called non-compositional meaning as it defies the
linguistic Principle of Compositionality.

SYNTACTIC FORM EXAMPLE PATTERN
<subj> passive-verb <subj> was satisfied
<subj> act-verb <subj> complained
<subj> act-verb dobj <subj> dealt blow
<subj> verb infinitive <subj> appear to be
<subj> aux noun <subj> has position
active-verb <dobj> endorsed <dobj>
infinitive <dobj> to condemn <dobj>
verb infinitive <dobj> get to know <dobj>
noun aux <dobj> fact is <dobj>
noun prep <np> opinion on <np>
active-verb prep <np> agrees with <np>
pass-verb prep <np> was mad about < np>
infinitive prep <np> to resort to <np>

Table 2: Syntactic templates and example patterns
instantiated from them (Riloff and Wiebe, 2003)

frequency with which each extracted pattern oc-
curs in known subjective and objective sentences
(labeled earlier by the HP-Subj and HP-Obj clas-
sifiers) is calculated and this information is used
to rank each pattern using the scoring function:

Pr(subj|patterni) =
subjfreq(patterni)

freq(patterni)
(8)

Where subjfreq(patterni) is the number of
times the pattern matched part of a known sub-
jective sentence and freq(patterni) is the total
number of times it matched any sentence. This
is essentially the “precision” of the pattern.

After all patterns are scored, two threshold
measures are used to select the patterns deemed
most subjective. Patterns are selected for which
freq(patterni) ≥ Θ1 and Pr(subj|patterni) ≤
Θ2. The new sentences are then mixed in with
the original sentences and the extraction pattern
learner is re-run to complete the bootstrapping cy-
cle.

2.5 MetaBoot + Basilisk
Previously mentioned approaches have used a sin-
gle algorithm to perform bootstrapping. Another
approach employed by Riloff et al. (2003) is to
use multiple algorithms simultaneously to achieve
a synergistic effect. This can perform well if the
combined algorithms each find a different set of
terms. The goal is again to identify subjective lan-
guage. Specifically, it is framed as a classification
problem: Classify sentences in the corpus as ei-
ther subjective or objective. The bootstrapping is

performed on subjective nouns rather than on ex-
traction patterns as is the case in Riloff and Wiebe
(2003).

As the Basilisk algorithm was already discussed
in Section 2.2 and MetaBoot is not the core fo-
cus of this approach, we will only provide a brief
description of how the MetaBoot algorithm func-
tions.10 Like Basilisk, it was originally designed
for semantic categorization tasks. It is re-purposed
in this paper for learning subjective nouns. It is
seeded with words belonging to the desired class
(subjective in this case), and then creates extrac-
tion patterns by instantiating templates that extract
every noun phrase in the corpus. The patterns are
scored based upon the number of seeds extracted.
The best pattern is saved and then the head noun
from every extracted noun phrase is accepted into
the category. The patterns are then re-scored and
the cycle repeats.

What differentiates MetaBoot from previously
discussed algorithms is that it has a second level
of bootstrapping. After each cycle completes, all
nouns put into the dictionary during the cycle are
scored based on the number of patterns that ex-
tracted it. Only the five best are allowed to remain.

Both algorithms were used in tandem and run
for 400 iterations. Two were used because they
captured different sets of subjective nouns while
being provided with the same seeds. Since the
objective is to produce a lexicon of subjective
nouns, this was a desirable feature. The authors
would have had to come up with different seed
words in order to produce more results from a sin-
gle system. The final lexicon was a union of the
output of the two algorithms.

3 Bootstrapping Corpora

All the corpora used in these experiments were
unannotated. This is because bootstrapping is a
process that needs no additional markup and is
therefore ideal for tasks on unannotated natural
language text. Furthermore, many of the tasks
are such that annotations would be unhelpful, e.g.,
building lexicons. Agichtein and Gravano (2000),
for the Snowball algorithm, used the North Ameri-
can News Text Corpus spanning from 1995 to mid-
1997. They split this corpus up into a training
and a testing set: The training set was the 178,000
documents from 1996, and the testing set was the
142,000 documents from 1995 and 1997.

10For a full description, see (Riloff and Jones, 1999).

Thelen and Riloff (2002), with the Basilisk al-
gorithm, utilized the MUC-4 Proceedings corpus
from 1992. This contained 1,700 documents fo-
cusing on terrorism.

Yangarber et al. (2002) and Lin et al. (2003)
both used the ProMED corpus for their experi-
ments with the NOMEN algorithm. This corpus
contained articles written in the biomedical field.
Yangarber et al. (2002) used 5,100 ProMED arti-
cles spanning the years from 1999 to 2001, while
Lin et al. (2003) used a smaller subset containing
only 1,400 articles. They also performed some ex-
periments on learning proper names in Chinese.
Since there are no case distinctions in Chinese, this
bears some similarity to the task of learning gen-
eralized names by Yangarber et al. (2002). They
used a training corpus consisting of approximately
700,000 words from the Beijing University Insti-
tute of Computational Linguistics corpus.

Riloff and Wiebe (2003) and Riloff et al. (2003),
using AutoSlog-TS and MetaBoot + Basilisk re-
spectively, both utilized the U.S. Foreign Broad-
cast Information Service (FBIS) corpus. This cor-
pus contains news stories in multiple languages,
paired with their translations in English (e.g., pairs
of English-Chinese stories). From this corpus,
302,163 sentences were used.

4 Experimental Results

As discussed earlier, Agichtein and Gravano
(2000) performed the task of attempting to extract
¡ORGANIZATION, LOCATION¿ relations, specif-
ically a company and its headquarters. The pre-
cision and recall of their algorithm, as compared
to a baseline, the DIPRE system that Snowball is
based on, and an alternate version of Snowball that
discards punctuation (Snowball-plain) is detailed
in Figure 1. The baseline is computed by tabu-
lating each co-occurrence of an organization and
a location and assuming the most frequently co-
occurring location is the headquarters of the or-
ganization. The x-axis in these charts represents
successive runs, where the number of times a tu-
ple needs to be found before it is accepted is in-
creased. As we can see, the baseline does quite
well, but Snowball still comes out on top in both
precision and recall. The results are reported after
3 iterations because Snowball’s results quickly sta-
bilize (see Figure 4). Thelen and Riloff (2002) uti-
lized their Basilisk algorithm to build a semantic
lexicon for six categories. The authors manually

Figure 1: Precision and recall of the Snowball sys-
tem Agichtein and Gravano (2000)

scored each word in the resulting lexicon for cor-
rectness and did the same thing for an implementa-
tion of MetaBoot that they used as a baseline. Re-
sults were compared at various points between 100
and 1000 bootstrapping iterations. Basilisk sub-
stantially outperformed MetaBoot at every itera-
tion, especially when it learned its semantic cate-
gories in tandem instead of sequentially.

Yangarber et al. (2002) compared their imple-
mentation of the NOMEN algorithm to several
manually constructed reference lists for precision
and recall that they used as their gold standard.
Figure 2 shows the results of their best score (Dis
+ Loc + Sym + Other) for the semantic category
of disease names.

Riloff and Wiebe (2003) and Riloff et al. (2003)
This score was obtained by simultaneously boot-

Figure 2: NOMAN precision/recall
Yangarber et al. (2002)

strapping multiple semantic categories at the same
time. Without a baseline to compare to, it is dif-

ficult to evaluate success (see Section 5.1 for a
discussion of this problem). However, Lin et al.
(2003) performed some similar experiments but
greatly increased the number of semantic cate-
gories being simultaneously learned. We can see
the resulting heightened precision in Figure 3 con-
firms the trend.

Figure 3: NOMAN precision/recall
Lin et al. (2003)

The AutoSlog-TS system detailed in Riloff et al.
(2003) performed quite well according to the met-
rics reported. Their system learned 17,073 pat-
terns that tended to extract subjective expressions.
To evaluate these, they ran different subsets of
the patterns on a manually annotated test set that
contained 54% subjective sentences. The result-
ing precision when extracting subjective sentences
ranged between 71% and 85%.

The MetaBoot + Basilisk goal pursued by Riloff
et al. (2003) was also building a semantic lexicon.
In Table 3 we see that the resulting lexicon was
manually reviewed and tagged by the authors as
either strongly or weakly subjective words. Here
we see how the merging of lexicons produced by
each algorithm produces a final lexicon that is sig-
nificantly larger. To give some insight about the
accuracy of the system, after 1000 generations
Basilisk had a lexicon containing approximately
55% subjective words. MetaBoot contained ap-
proximately 29%. After 2000 generations, this
had fallen to roughly 44% and 25%, respectively.

B M B ∩M B ∪M
StrongSubj 372 192 110 454
WeakSubj 453 330 185 598
Total 825 522 295 1052

Table 3: Subjective words in lexicon
Riloff et al. (2003)

5 Discussion

The previous discussions have discussed the phi-
losophy behind bootstrapping and provided a
high-level overview of how several seminal boot-
strapping algorithms are implemented. We then
evaluated what kind of data they were trained on
and how they performed. In the following sec-
tions, we discuss the strengths, weaknesses, and
idiosyncrasies of the bootstrapping model.

5.1 Evaluation Methodologies

The bootstrapping tasks surveyed here were
trained and tested on unannotated corpora. This
posed difficulties when attempting to evaluate the
performance of the bootstrapper, as there was of-
ten no gold standard against which to compare the
bootstrapping results.

Agichtein and Gravano (2000) used their
Snowball system to extract Organization →
Headquarters relations from an unannotated
corpus, but then they had no gold standard against
which to check. They ultimately solved their
lack of an ideal set for their extracted relations
by downloading a publicly available directory of
company information and parsing out the requisite
values. Lin et al. (2003) manually compiled two
lists of gold standards themselves in order to have
something to compare their results against. Riloff
et al. (2003) and Riloff and Wiebe (2003) both had
to manually annotate their resulting lexicons in or-
der to ascertain whether they even contained any
results. Even after manually finding the subjective
words in their results, they still did not have any
kind of baseline to compare it to. These difficul-
ties in evaluating the performance are a hindrance
to the development and adoption of bootstrapping
algorithms.

Evaluation is further confused by the fact that
some bootstrapping algorithms are evaluated us-
ing different standards than others. Yangarber
et al. (2002) note when presenting their results
that algorithms can have their recall and preci-
sion scored for each instance of a word cor-
rectly tagged in the corpus (termed instance-based
or token-based evaluation), or they can be scored
only once per word correctly found (type-based).
He noted that which method was used often de-
pends on the end goal: If the goal is to tag each in-
stance in the corpus with a semantic category, then
token-based makes sense. If the goal is to build a
lexicon, then type-based makes sense. However,

since both objectives can be achieved by the same
algorithm just keeping track of different things,
this can making comparison efforts difficult.

5.2 Role of Bootstrapping

As broad, all-encompassing hierarchical seman-
tic databases like WordNet continue to mature, it
is reasonable to wonder if techniques for identi-
fying semantic categories will become obsolete.
However, there are many reasons why this is un-
likely, although it may be relegated to niche po-
sitions. General semantic databases like WordNet
are not designed for domain-specific lingo/jargon
and techniques like bootstrapping may be the only
solution to such tasks (Thelen and Riloff, 2002).

Additionally, specific tasks may always need
bootstrapping. Snowball bootstraps specific rela-
tions; it maps a semantic class onto a related se-
mantic class. Basilisk bootstraps nouns into ar-
bitrary semantic classes. We saw it used for both
identification of subjective words and the semantic
categorization of other words. There are a (prac-
tically unlimited) number of potential ad hoc se-
mantic classes and relations between the two. At
their core, bootstrapping algorithms are not lim-
ited to learning general semantic categories. They
are useful for learning any category or relation-
ship for which words appear in similar linguistic
phrases or contexts.

5.3 Weaknesses of Bootstrapping

5.3.1 Semantic Drift
A very well known flaw in bootstrapping is a phe-
nomenon known as semantic drift or creep. This
occurs when, after multiple iterations, the boot-
strapper wanders away from the original semantic
meaning of the seeds and begins to accept incor-
rect or undesirable entities.

This can occur if entities have more than one
semantic word sense; Yangarber et al. (2002) note
that bootstrapping disease names may also begin
to pick up symptoms because some symptoms and
diseases share names (i.e., encephalitis). It can
also occur if words similar meaning and usage but
have different undertones.

Consider a hypothetical bootstrapper that was
seeded with discussion. On further iterations,
it might pick up debate → disagreement →
argument → altercation → brawl, if they all
appeared in similar contexts in the training corpus
(for example, “I had a(n) <x> with him during

dinner”). While each iteration may be semanti-
cally similar to the last word added (discussion
and debate, argument and altercation, etc.),
they share less and less semantic meaning with the
original seed word. By the end, brawl is hardly
related at all to discussion.

There are several ways to ward against this kind
of semantic creep. The chief line of defense is the
evaluation of candidates before adding them to the
system. All of the bootstrapping systems surveyed
had some kind of candidate evaluation; most used
a confidence measure. The effectiveness of this
confidence measure is clarified by comparing the
performance of the Snowball system to DIPRE
(See Figure 4). The DIPRE system peaks and
then quickly plummets since “it has no way to pre-
vent unreliable tuples from being seed[s] for its
next iteration”. Another technique employed by

Figure 4: Effects of confidence measure, DIPRE
vs Snowball

multiple authors ((Thelen and Riloff, 2002; Yan-
garber et al., 2002; Lin et al., 2003)) is the par-
allel or simultaneous learning of various seman-
tic categories, instead of learning them serially.
This offers an advantage that may not be immedi-
ately obvious: Each category’s seeds will accept
the most closely related terms to it during each
iteration. When terms are forbidden from being
shared between categories, this effectively parti-
tions the search space and limits how far a cat-
egory can grow before being constrained by the
others. Another way simultaneous learning can
help was discussed by Lin et al. (2003). Their sys-
tem not only prohibited semantic categories from

including terms already included in another cat-
egory, but also discouraged each semantic cate-
gory from learning patterns that matched terms in-
cluded in too many other categories. In this way, it
provided a self-stabilizing or auto-correcting fea-
ture to the bootstrapping feature to help keep it “on
track”. These techniques, however, can only be
utilized when the search space is partitionable.

5.3.2 Stop conditions

One major drawback that bootstrapping suffers is
the difficulty in knowing when to stop the iterative
cycles. Some (Riloff et al., 2003) stopped after a
set and seemingly arbitrary number of iterations,
while others (Lin et al., 2003) stopped when their
algorithm had exhaustively added all candidates or
rejected any remaining candidates. The metrics
used to determine whether a bootstrapping algo-
rithm should terminate are often of a dubious na-
ture. For example, the confidence measures used
by the majority of the bootstrapping algorithms we
surveyed cannot make any guarantees about preci-
sion or recall. They can simply tell whether what
they have is arbitrarily similar enough to what they
are now finding.

5.3.3 Seeding Decisions

As we have seen, the choosing of seeds is arguably
the most critical step in bootstrapping. However,
most authors simply chose the most frequently
occurring words in their corpus that they have
quickly identified belong to the category they are
interested in. While this ensures that the greatest
amount of contextual information will be available
to learn from, it does nothing to ensure the quality
of the contexts. It is easy to imagine improperly
chosen seeds that would pick up tons of extraction
patterns that, in turn, extract very poor additional
words, ultimately producing poor results. None of
the surveyed literature addressed how to find seed
choices beyond taking the most frequent words.
It would be interesting to read literature on how
different seeding choices impacted the final per-
formance of the system and provide guidelines or
rules for making seeding decisions.

6 Conclusion

We examined in detail multiple approaches to
bootstrapping for natural language processing
tasks. We explored not only a variety of different
goals but also multiple techniques.

We conclude that bootstrapping is a powerful
method for extracting useful data from enormous
volumes of unstructured text. However, bootstrap-
ping systems must be carefully seeded and con-
strained to avoid growing in unwanted directions
or becoming overly diluted with irrelevant data.
The choice of seeds is pivotal to the success of the
bootstrapping process and it is not at all clear how
to determine what the “best” seed might be.

Bootstrapping is amenable to a wide variety of
natural language processing tasks, such as seman-
tic categorization, relation extraction, and subjec-
tivity analysis. Bootstrapping systems are well
suited to natural language tasks due to their abil-
ity to learn and navigate the syntactically rich,
unstructured, and extremely complex nature of
loosely structured natural languages.

References
Agichtein, Eugene and Gravano, Luis. 2000. Snow-

ball: Extracting relations from large plain-text col-
lections. In Proceedings of the fifth ACM conference
on Digital libraries, pages 85–94. ACM.

Brin, Sergey. 1999. Extracting patterns and relations
from the world wide web. In The World Wide Web
and Databases, pages 172–183. Springer Berlin
Heidelberg.

Thelen, Michael and Riloff, Ellen. 2002. A boot-
strapping method for learning semantic lexicons us-
ing extraction pattern contexts. In Proceedings of
the ACL-02 conference on Empirical methods in nat-
ural language processing, Volume 10, pages 214–
221. Association for Computational Linguistics.

Yangarber, Roman, Lin, Winston, and Grishman,
Ralph. 2002. Unsupervised learning of general-
ized names. In Proceedings of the 19th international
conference on Computational linguistics, Volume 1.
Association for Computational Linguistics.

Lin, Winston, Yangarber, Roman, and Grishman,
Ralph. 2003. Bootstrapped learning of semantic
classes from positive and negative examples. In Pro-
ceedings of ICML-2003 Workshop on The Contin-
uum from Labeled to Unlabeled Data, Volume 4,
No. 4.

Riloff, Ellen, Wiebe, Janyce and Wilson, Theresa.
2003. Learning subjective nouns using extraction
pattern bootstrapping. In Proceedings of the seventh
conference on Natural language learning at HLT-
NAACL, Volume 4, pages 25–32. Association for
Computational Linguistics.

Riloff, Ellen and Wiebe, Janyce. 2003. Learning ex-
traction patterns for subjective expressions. In Pro-
ceedings of the 2003 conference on Empirical meth-

ods in natural language processing, pages 105–112.
Association for Computational Linguistics.

Riloff, Ellen and Jones, Rosie. 1999. Learning dic-
tionaries for information extraction by multi-level
bootstrapping. In AAAI/IAAI, pages 474–479.

