CISC 304

Handout: Conversion to CNF/Clausal Form

A literal is either an atomic formula (positive literal) or the negation of an atomic formula (negative literal). A clause contains literals and is interpreted as their disjunction. If a clause contains the literals l_1, \ldots, l_k then we will write it as $[l_1, \ldots, l_k]$, which is *different* from the notation used in the textbook. Thus, $[l_1, \ldots, l_k]$ is interpreted the same way as the formula $(l_1 \vee \ldots \vee l_k)$.

Here is a (non-deterministic) algorithm to convert a formula, A, into a set of clauses. Start with $\{[A]\}$.

At any point, we will have a set that has the form, $\{C_1, \ldots, C_i, \ldots, C_k\}$, where the C's will be in the form $[A_1, \ldots, A_n]$, and the A's are formulae. We are finished with a C if it contains only literals. (i.e., C is already a clause)

While some C has a non-literal

Let C_i include a non-literal.

WLOG, we can express C_i as $[A_1, \ldots, A_{n-1}, A_n]$ where A_n is a non-literal.

Case 1: (double negation case)

 $A_n = \neg \neg B$, for some formula B. Replace C_i by $[A_1, \dots, A_{n-1}, B]$.

Case 2: (disjunctive case).

 A_n is a "disjunctive" formula, say β .

Replace C_i by $[A_1, \ldots, A_{n-1}, \beta_1, \beta_2]$, where

 β_1 and β_2 can be determined from β by using the table in Page 18 of the textbook.

Case 3: (conjunctive case).

 A_n is a "conjunctive" formula, say α .

Replace C_i by C_i^1 and C_i^2 where $C_i^1 = [A_1, \ldots A_{n-1}, \alpha_1],$ $C_i^2 = [A_1, \ldots A_{n-1}, \alpha_2],$ and α_1 and α_2 can be determined from α by using the table in Page 18 of the textbook.

Example: Converting $A = (\neg p \lor q) \rightarrow (r \lor p)$ into a set of clauses:

 $\{[(\neg p \lor q) \to (r \lor p)]\} \text{ (starting with } \{[A]\})$ $\{[\neg(\neg p \lor q), (r \lor p)]\} \text{ (applying Rule 2)}$ $\{[\neg(\neg p \lor q), r, p]\} \text{ (applying Rule 2)}$ $\{[\neg\neg p, r, p], [\neg q, r, p]\} \text{ (applying Rule 3)}$

 $\{[p,r], [p\neg q,r]\}$ (applying Rule 1)

Note we write [p, r] rather than [p, r, p] and that $[\neg q, r, p]$ can also be written as $[p, \neg q, r]$.