CISC 304
Handout: Conversion to CNF/Clausal Form

A literal is either an atomic formula (positive literal) or the negation of an atomic formula (negative literal).
A clause contains literals and is interpreted as their disjunction. If a clause contains the literals I1, ...,
then we will write it as [l1, ..., lx], which is different from the notation used in the textbook. Thus, [l1, ..., k]
is interpreted the same way as the formula (I; V...V).

Here is a (non-deterministic) algorithm to convert a formula, A, into a set of clauses. Start with {[A]}.

At any point, we will have a set that has the form, {Cy,...,C;,...,Ck}, where the C’'s will be in the form
[A1,...A,], and the A’s are formulae. We are finished with a C' if it contains only literals. (i.e., C' is already
a clause)

While some C has a non-literal
Let C; include a non-literal.

WLOG, we can express C; as [A1,...A,—1, Ay] where A, is a non-literal.

Case 1: (double negation case)
A, = B, for some formula B.
Replace C; by [A1,...A,—1, B].

Case 2: (disjunctive case).
A, is a "disjunctive” formula, say (3.
Replace C; by [A1,...An_1,f1, B2], where
£1 and B2 can be determined from [by using the table in Page 18 of the textbook.

Case 3: (conjunctive case).
A, is a ”"conjunctive” formula, say «.
Replace C; by C} and C? where
Cl=1[A1,... An_1, 1],
C? =[A1,... Ap_1, 2], and

a1 and as can be determined from « by using the table in Page 18 of the textbook.

Example: Converting A = (-pV ¢) — (rV p) into a set of clauses:
{l(=p V@) = (rvp)]} (starting with {[A]})

{[=(=pVq), (r vp)]} (applying Rule 2)

{[=(=p Vv q),7,p]} (applying Rule 2)

{[==p, 7], [7g; 7, pl} (applying Rule 3)

{lp.], [p—q, 7]} (applying Rule 1)

Note we write [p, r] rather than [p,r, p] and that [—-q,r,p] can also be written as [p, =g, r].

