1. Let C be a clause and l be a literal. Then both the clauses C and $C \cup \{l\}$ are l-extensions of C.

Let S be a set of clauses and l be a literal. Then we say that S' is a l-extension of S if the following condition holds:

- If $C \in S$ then there is a $C' \in S'$ where C' is a l-extension of C.

a. Suppose C_1 and C_2 are two clauses and l is a literal. Let C'_1 and C'_2 be some l-extensions of C_1 and C_2 respectively. Show that if R is obtained by resolving C_1 and C_2 then there is an l-extension of R which can be obtained by resolving C'_1 and C'_2.

b. Suppose S is a set of clauses and l is a literal. Let S' be an l-extension of S. Show that if there is a resolution derivation of a clause C from S then there is an l-extension of C which can be derived by resolution from S'.

c. Let S be a set of clauses and A be a statement letter. Assume that there is no clause in S which contains both A and $\neg A$. Define S^A_0 as follows: for each $C \in S$, if $A \in C$ then $C - \{A\}$ is included in S^A_0; if $\neg A \in C$ then no counterpart of C is included in S^A_0; and if neither A nor $\neg A$ is in C then C is included in S^A_0. For example, if $S = \{[A, B, \neg C], [A, B], [\neg A, B, D], [\neg B, \neg C]\}$ then $S^A_0 = \{[B, \neg C], [B], [\neg B, \neg C]\}$.

Let S be a set of clauses. Show that if S^A_0 is satisfied by a valuation then there is a valuation that satisfies S.

2. Show

a. $\vdash_{res} ((A \Rightarrow B) \land (B \Rightarrow C)) \Rightarrow ((\neg C \land A) \Rightarrow B)$.

b. $\{((A \land B) \lor (C \Rightarrow D))\} \vdash_{res} ((A \lor (C \Rightarrow D)) \land (B \lor (C \Rightarrow D)))$

c. $(B \Rightarrow C)$ is a consequence of the set $\{\neg((\neg C \Rightarrow B) \Rightarrow B), (\neg C \Rightarrow \neg A), ((B \land \neg C) \Rightarrow A)\}$ using resolution.