CISC 401/601
Midterm Exam

Answers

1. (5 pts) Let f be a unary one-to-one, onto, and computable function. Show that f^{-1} is also computable.

Ans.
Since there exists a corresponding L program for the computable function f, the following program is clearly a valid L program.

[A] $Z_2 \leftarrow f(Z_1)$
$Z_1 \leftarrow Z_1 + 1$
IF $Z_2 \neq X$ GOTO A
$Y \leftarrow Z_1 - 1$

Since f is one-to-one and onto, for all y there exists one and only one x such that $f^{-1}(y) = x$, or $f(x) = y$. Therefore, the program above halts on any input and it implements f^{-1}. Thus, f^{-1} is computable.

2. (5 pts) Let $f(n)$ be the number of prime numbers $\leq n$. Show f is a primitive recursive function.

Ans.
f is defined as a composition of primitive recursive functions as follows:

$$f(x) = \sum_{i=0}^{x} \text{Prime}(i)$$

Therefore, f is also a primitive recursive function.

3. (10 pts) Let g be a primitive recursive function. Let $f(n) = g(n, f'(n))$ where $f'(0) = 1$ and $f'(n) = [f(0), \ldots, f(n-1)]$ when $n > 0$. Show that f is a primitive recursive function.

Ans.
First, show that f' is primitive recursive.
The recursion equations are
\[f'(0) = 1, \]
\[f'(n + 1) = h(n, f'(n)) \]

and

\[h(x_1, x_2) = x_2 \cdot f_{x_1+1}^{p_{x_1} x_2}. \]

Clearly, \(f' \) is primitive recursive, and \(f(n) \), a composition of primitive recursive functions, is also primitive recursive.

4. (10 pts) Let \(f \) be computable and also be a strictly increasing function. Let \(B \) be the range of \(f \). Show that \(B \) is recursive.

Ans.

Show that the characteristic function of \(B \), say \(P_B \), is computable. \(^1\)

Given a strictly increasing function \(f \), note that \(f(y) \geq y \) for all \(y \). \(^2\)

Also, for all \(x > y \), \(f(x) \neq y \) because \(f(x) > f(y) \geq y \), i.e., if there exists \(z \) such that \(f(z) = y \), then \(z \leq y \).

In other words, given \(y \), it is sufficient to check \(y + 1 \) cases at most to determine if \(y \) is in the range of \(f \) or not, namely to check \(f(0) = y \), \(f(1) = y \), \(\ldots \) up to \(f(y) = y \) and see if there is \(t \) such that \(f(t) = y \). Thus,

\[P_B(y) = (\exists t \leq y)[f(t) = y]. \]

Clearly, \(P_B \) is computable.

5. a. (5 pts) Let \(g \) and \(h \) be partially computable functions of one argument. Show that there is a partially computable function, \(f \), such that \(f(x) \downarrow \) for precisely those values of \(x \) for which \(g(x) \downarrow \) or \(h(x) \downarrow \) and such that when \(f(x) \downarrow \), \(f(x) = g(x) \) or \(f(x) = h(x) \).

Ans.

There exist \(\mathcal{L} \) programs, say \(G \) and \(H \), for partially computable functions \(g \) and \(h \), respectively. Let \(p_g = \#(G) \) and \(p_h = \#(H) \).

\(^1\) “... to say that set \(B \) is computable or recursive is just to say that \(P(x_1, x_2, \ldots, x_m) \) is a computable function.” (text p78)

\(^2\) We can show this by mathematical induction.
Define a \mathcal{L} program F as follows: 3

\begin{align*}
[A] & \quad Z_1 = p_y \\
& \quad \text{IF STP}(X, Z_1, Z_2) \text{ GOTO B} \\
& \quad Z_1 = pn \\
& \quad \text{IF STP}(X, Z_1, Z_2) \text{ GOTO B} \\
& \quad Z_2 \leftarrow Z_2 + 1 \\
& \quad \text{GOTO A} \\
[B] & \quad Y \leftarrow \Phi^{(1)}(X, Z_1)
\end{align*}

Clearly, F is a valid \mathcal{L} program.
Moreover, $\Psi_F^{(1)}$ is equivalent to f, and, thus, the partially computable function f exists.

\textbf{b.} (5 pts) Can f be found if in addition we require that $f(x) = g(x)$ whenever $g(x) \downarrow$? Justify your answer.

\textbf{Ans.}
No such f can be found.

Prove it by contradiction.
Define g and h as follows:

\[g(x) = \begin{cases}
1 & \text{if } \Phi(x, x) \downarrow \\
\uparrow & \text{otherwise}
\end{cases} \]

\[h(x) = 0 \]

Clearly, g and h are partially computable. 4

Suppose there exists f.
Clearly, for all x, $f(x) \downarrow \in \{0, 1\}$ because $h(x) \downarrow \in \{0\}$ for all x, and $g(x) \downarrow \in \{1\}$ for some x. Moreover,

\[f(x) \downarrow = h(x) \downarrow \Leftrightarrow g(x) \uparrow. \]

Therefore,

\[[f(x) = h(x)] \Leftrightarrow \text{Halt}(x, p_y) \]

where p_y is defined in (a).

3 \textit{Dovetailing} (text p80)
4 g is the same as H_1 in problem 1 in homework 3. h is obviously computable.
Thus, if \(f \) exists, \([f(x) = h(x)]\) is a computable predicate because \(f \) and \(h \) are both computable, and so is \(\text{Halt}(x, p_y) \). \(\text{Halt}(x, p_y) \), however, is shown to be \textit{not} computable in homework 3 problem 1 (b).

Therefore, we conclude that there is no such \(f \).