CISC 401/601
Homework 1

Answers

1. a. Write a program to compute the predicate \geq.

[A] IF $X_2 \neq 0$ GOTO B
 Y ← Y + 1
 GOTO E
[B] IF $X_1 \neq 0$ GOTO C
 GOTO E
[C] $X_1 \leftarrow X_1 - 1$
 $X_2 \leftarrow X_2 - 1$
 GOTO A

b. Write a program to compute the equality predicate.

Note: if $x_1 \geq x_2 \land x_2 \geq x_1$, then $x_1 = x_2$.

 IF $X_1 \geq X_2$ GOTO A
 GOTO E
[A] IF $X_2 \geq X_1$ GOTO B
 GOTO E
[B] Y ← Y + 1

c. Write a program that computes the "is-even" predicate.

[A] IF $Z = X_1$ GOTO B // $z = 2 \ast n$ for each $n \geq 0$
 IF $Z > X_1$ GOTO E
 $z \leftarrow z + 1$
 $Z \leftarrow Z + 1$
 GOTO A
[B] Y ← Y + 1

2. Write a program to compute $f(x) = n$, where n is the greatest number such that $n^2 \leq x$ (Ch.2, Sec. 2, Ex. 6).

Note: multiplication, \times, is a macro defined.

[A] $Z \leftarrow Z + 1$
 IF $X \geq Z \times Z$ GOTO B
 GOTO E
[B] Y ← Y + 1
 GOTO A
3. Ch.2, Sec. 4, Ex. 6.

(a) For every number \(k \geq 0 \), let \(f_k \) be the constant function \(f_k(x) = k \). Show that for every \(k \), \(f_k \) is computable.

For any \(k \geq 0 \), we can write a following program \(P_k \).

\[
\begin{align*}
Y & \leftarrow Y + 1 \\
Y & \leftarrow Y + 1 \\
& \quad \vdots \\
Y & \leftarrow Y + 1
\end{align*}
\]

\(k \) instructions

Obviously, \(\psi^{(1)}_P(x) = k \) for any \(x \geq 0 \), and, thus, \(\psi^{(1)}_P = f_k \). Therefore, for every \(k \), \(f_k \) is computable.

(b) Show by induction on the length of programs that if the length of a straightline program \(P \) is \(k \), then \(\psi^{(1)}_P(x) \leq k \) for all \(x \).

Basis: For \(k = 0 \), a program of length 0 is an empty program that always outputs 0.

Clearly, in this case, \(\psi^{(1)}_P(x) \leq 0 \) for all \(x \), where \(P \) is the empty program.

Hypothesis: Suppose, for \(k = n \), any straightline program that has a length \(n \) satisfies the claim.

Induction Step: Given any straightline program that has length \(n + 1 \), we could see it as a straightline program of length \(n \) followed by one extra instruction at the end. By the hypothesis, immediately before that instruction at the end is executed, the value of \(Y \) is known to be at most \(n \). As a straightline program, the last instruction cannot be jump. So, it is executed to add at most one to \(Y \), and the program halts. Therefore, the output can be \(n + 1 \), at most, and the claim is also satisfied in this case.

By induction, we conclude that the claim is satisfied for every \(k \geq 0 \).

(c) Show that, if \(P \) is a straightline program that computes \(f_k \), then the length of \(P \) is at least \(k \).

Suppose there is a straightline program that computes \(f_k \), but its length, say \(l \), is less than \(k \).
Then, from (b), we know that the output of such program can be at most \(l \) which is less than \(k \). This, however, contradicts to our assumption that the program implements \(f_k \), i.e., it outputs \(k \) for any \(x \). Therefore, we conclude there is no such straightline program.

Knowing also that there is a straightline program of length \(k \) that implements \(f_k \), e.g., (a), we conclude that, if \(P \) is a straightline program that computes \(f_k \), the length of \(P \) is at least \(k \).

(d) Show that no straightline \(\mathcal{L} \) program computes the function \(f(x) = x + 1 \). Conclude that the class of functions computable by straightline \(\mathcal{L} \) is contained in but is not equal to the class of computable functions.

Suppose there is a straightline program, say program \(Q \), that computes the function \(f(x) = x + 1 \), and let \(l \) be the length of \(Q \).

Then, \(\psi_Q(l) \) would be \(l + 1 \) by the definition of \(Q \). This result, however, contradicts to (b) that tells us \(\psi_Q(l) \leq l \) because \(Q \) is a straightline program of length \(l \).

Therefore, we know that there is no straightline program that computes the function \(f(x) = x + 1 \).

Since, obviously, there is a non-straightline program that can compute the function \(f(x) = x + 1 \), and a set of straightline programs is a subset of all (non-restricted) programs in the system, we conclude that the class of functions computable by straightline \(P \) is contained in but is not equal to the class of computable functions.

4. Let \(P(x) \) be a computable predicate. Show that

\[
EX_P(r) = \begin{cases}
1 & \text{if there are at least } r \text{ numbers } n \text{ such that } P(n) = 1 \\
\uparrow & \text{otherwise}
\end{cases}
\]

is partially computable.

(Ch.2, Sec. 5, Ex. 6).

Notice that, since \(P \) is computable, there is a program that implements \(P \). Using such program, a program for \(EX_P \) is written as follows:
[A] IF $Z_3 = X$ GOTO C // z_3 records how many n’s we find so far
 $Z_2 \leftarrow P(Z_1)$
 $Z_1 \leftarrow Z_1 + 1$
 IF $Z_2 = 1$ GOTO B
 GOTO A
[B] $Z_3 \leftarrow Z_3 + 1$
 GOTO A
[C] $Y \leftarrow Y + 1$

Since there is a program implementing EX_p, EX_p is partially computable.