CISC 301 Homework 4 Sample Solution

1. (a) The following structure satisfies F_1 and F_2 , but not F_3 .

 $U_{\mathcal{A}} = \mathbb{N}$

 $P^{\mathcal{A}} = \{ (m, n) \mid m, n \in \mathbb{N}, |m - n| \le 1 \}$

It does not satisfy F_3 because $P^{\mathcal{A}}$ is not transitive. For example, $(0,1) \in P^{\mathcal{A}}$ and $(1,2) \in P^{\mathcal{A}}$ but $(0,2) \notin P^{\mathcal{A}}$.

(b) The following structure satisfies F_1 and F_3 , but not F_2 .

$$U_{\mathcal{A}} = \mathbb{N}$$

 $P^{\mathcal{A}} = \{(m, n) \mid m, n \in \mathbb{N}, m \le n\}$

It does not satisfy F_2 because $P^{\mathcal{A}}$ is not symmetric. For example, $(0,1) \in P^{\mathcal{A}}$ holds but $(1,0) \notin P^{\mathcal{A}}$.

(c) The following structure satisfies F_3 and F_2 , but not F_1 .

 $U_{\mathcal{A}} = \mathbb{N}$ $P^{\mathcal{A}} = \{(m, n) \mid m, n \in \mathbb{N}, m \cdot n > 0\}$

It does not satisfy F_1 because $P^{\mathcal{A}}$ is not reflexive as $(0,0) \notin P^{\mathcal{A}}$.

2. (a) Satisfies:

i. $U_{\mathcal{A}} = \mathbb{N}$ $P^{\mathcal{A}} = \{(m, n) \mid m, n \in \mathbb{N}, m \leq n\}$ ii. $U_{\mathcal{A}} = \mathbb{Q}$ (the rationals) $P^{\mathcal{A}} = \{(m, n) \mid m, n \in \mathbb{N}, m < n\}$ will also satisfy the given formula.

Falsifies:

 $\begin{aligned} U_{\mathcal{A}} &= \mathbb{N} \\ P^{\mathcal{A}} &= \{(m,n) \mid m, n \in \mathbb{N}, m < n\} \end{aligned}$

To see that this structure falsifies the formula, consider the assignment of 0 to x and 1 to y.

(b) Satisfies:

 $U_{\mathcal{A}} = \mathbb{N}$ $P^{\mathcal{A}} = \mathbb{N}$ $Q^{\mathcal{A}} = \mathbb{N}$ Falsifies:

 $\begin{aligned} U_{\mathcal{A}} &= \mathbb{N} \\ P^{\mathcal{A}} &= \{n \mid n \in \mathbb{N}, n \geq 1\} \\ Q^{\mathcal{A}} &= \{n \mid n \in \mathbb{N}, n \geq 2\} \end{aligned}$

To see why, note that $\forall x [P(x) \rightarrow Q(x)]$ is not satisfied in this structure (consider the assignment of 1 to x). However, $(\forall x P(x) \rightarrow$ $\forall x Q(x)$) is satisfied in this structure because $\forall x P^{\mathcal{A}}(x)$ is not true in it.

- (c) Satisfies: $U_{\mathcal{A}} = \mathbb{N}$ $P^{\mathcal{A}} = \{(\ell, m, n) \mid \ell, m, n \in \mathbb{N}, \ell + m = n\}$ $f^{\mathcal{A}}(x, y) = x + y$ Falsifies: $U_{\mathcal{A}} = \mathbb{N}$ $P^{\mathcal{A}} = \{(\ell, m, n) \mid \ell, m, n \in \mathbb{N}, \ell + m = n\}$ $f^{\mathcal{A}}(x, y) = 0$
- (d) Any structure which interprets P as a relation that is not transitive will satisfy F_4 .

Consider $U_{\mathcal{A}} = \{0, 1, 2...\}$ and $P^{\mathcal{A}} = \{\langle m, n \rangle \mid m < n\}$. This structure will falsify F_4 . Since < is transitive and irreflexive, it satisfies $[\forall x \forall y \forall z[(P(x, y) \land P(y, z)) \rightarrow P(x, z)] \land \forall x \neg P(x, x)]$. Additionally, since every natural number has a number larger than it, this structure satisfies $\forall x \exists y P(x, y)$. Hence this structure falsifies $\exists x \forall y \neg P(x, y)$.

(e) A structure that satisfies $(\forall x P(x) \leftrightarrow \forall x Q(x))$ will satisfy F_5 . This can be done by setting $U_{\mathcal{A}} = P^{\mathcal{A}} = Q^{\mathcal{A}} = \{1\}.$

For a structure \mathcal{A} to falsify F_5 , it must satisfy $\exists x P(x) \leftrightarrow \exists x Q(x)$ and falsify $\forall x P(x) \leftrightarrow \forall x Q(x)$. To meet the latter constraint, it must satisfy one of $\forall x P(x)$ or $\forall x Q(x)$ but not the other. So let's say $\mathcal{A}(\forall x P(x)) = 1$. That is, $P^{\mathcal{A}} = U_{\mathcal{A}}$. Then we must have $\mathcal{A}(\forall x Q(x)) = 0$, i.e., $Q^{\mathcal{A}} \neq U_{\mathcal{A}}$. Note $\mathcal{A}(\exists x P(x)) = 1$ since $\mathcal{A}(\forall x P(x)) =$ 1. Hence, in order for \mathcal{A} to satisfy $\exists x P(x) \leftrightarrow \exists x Q(x)$, we must have $\mathcal{A}(\exists x Q(x)) = 1$, i.e., $Q^{\mathcal{A}} \neq \phi$.

All of these requirements are met by letting $U_{\mathcal{A}} = \{1, 2\} = P^{\mathcal{A}}$ and $Q^{\mathcal{A}} = \{1\}.$