CISC301 HW2 Solutions Sketch

1. a) We will prove this by contradiction. Suppose (bwoc) $\{A \to (B \to \neg A)\} \not\models (B \to \neg A)$. Then there is an assignment \mathcal{A} such that $\mathcal{A}(A \to (B \to \neg A)) = 1$ and $\mathcal{A}(B \to \neg A) = 0$. Therefore, (from the latter) $\mathcal{A}(B) = 1$ and $\mathcal{A}(A) = 1$. But then $\mathcal{A}(A \to (B \to \neg A)) = 0$, a contradiction.

b) Counterexample: Consider \mathcal{A} where $\mathcal{A}(A) = 1$, $\mathcal{A}(B) = 0$, and $\mathcal{A}(C) = 0$.

c) BWOC, suppose $\{A \to C, B \to C, A \lor B\} \not\models C$. Then there is an assignment \mathcal{A} such that $\mathcal{A}(A \to C) = 1$, $\mathcal{A}(B \to C) = 1$, $\mathcal{A}(A \lor B) = 1$, and $\mathcal{A}(C) = 0$. Since $\mathcal{A}(A \to C) = 1$ and $\mathcal{A}(C) = 0$ it must be the case that $\mathcal{A}(A) = 0$. Similarly, we can infer that $\mathcal{A}(B) = 0$. But then, $\mathcal{A}(A \lor B) = 0$, a contradiction.

d) Consider \mathcal{A} where $\mathcal{A}(A_i) = 1$ if *i* is odd and $\mathcal{A}(A_i) = 0$ if *i* is even.

2. BWOC, suppose $S \models F$ and $S \bigcup \{\neg F\}$ is satisfiable. Then there is an assignment \mathcal{A} such that \mathcal{A} makes every element of S true and \mathcal{A} makes $\neg F$ true. Then \mathcal{A} makes F false and satisfies all members of S, a contradiction with $S \models F$.