CISC 301

Handout: Conversion to CNF/Clausal Form

A literal is either an atomic formula (positive literal) or the negation of an atomic formula (negative literal). A clause contains literals and is interpreted as their disjunction. If a clause contains the literals l_1, \ldots, l_k then we will write it as $[l_1, \ldots, l_k]$ rather than the notation $\{l_1, \ldots, l_k\}$ used in the textbook. Thus, $[l_1, \ldots, l_k]$ is interpreted the same way as the formula $(l_1 \vee \ldots \vee l_k)$.

Here is a (non-deterministic) algorithm to convert a formula, F, (assumed to not include \leftrightarrow) into a set of clauses. Start with $\{[F]\}$.

At any point, we will have a set that has the form, $\{C_1, \ldots, C_i, \ldots, C_k\}$, where the C's have the form $[F_1, \ldots, F_n]$, and the F's are formulae. We are finished with a C if every formula in C is already a literal.

While not done do (i.e., some C has a non-literal)

Let C_i include a non-literal. WLOG, we can express C_i as $[F_1, \ldots, F_{n-1}, F_n]$ where F_n is a non-literal. Case 1: $F_n = \neg \neg G$, for some formula G. Replace C_i by $[F_1, \ldots, F_{n-1}, G]$. Case 2: (disjunctive case). Case 2a: $F_n = (F \lor G)$ for some F, G. Replace C_i by $[F_1, \ldots, F_{n-1}, F, G]$. Case 2b: $F_n = (F \to G)$ for some F, G. Replace C_i by $[F_1, \ldots, F_{n-1}, \neg F, G]$. Case 2c: $F_n = \neg (F \land G)$ for some F, G. Replace C_i by $[F_1, \ldots, F_{n-1}, \neg F, \neg G]$. Case 3: (conjunctive case). Case 3a: $F_n = (F \wedge G)$ for some F, G. Replace C_i by C_i^1 and C_i^2 , where $C_i^1 = [F_1, \dots, F_{n-1}, F]$, and $C_i^2 = [F_1, \dots, F_{n-1}, G]$ Case 3b: $F_n = \neg (F \to G)$ for some F, G. Replace C_i by C_i^1 and C_i^2 , where $C_i^1 = [F_1, \dots, F_{n-1}, F]$, and $C_i^2 = [F_1, \dots, F_{n-1}, \neg G]$ Case 3c: $F_n = \neg (F \lor G)$ for some F, G. Replace C_i by C_i^1 and C_i^2 , where $C_i^1 = [F_1, \dots, F_{n-1}, \neg F],$ and $C_i^2 = [F_1, \dots, F_{n-1}, \neg G]$

Example: Converting $F = (\neg A \lor B) \to (C \lor A)$ into a set of clauses:

$$\begin{split} &\{[(\neg A \lor B) \to (C \lor A)]\} \text{ (starting with } \{[F]\}) \\ &\{[\neg(\neg A \lor B), (C \lor A)]\} \text{ (applying rule 2b)} \\ &\{[\neg(\neg A \lor B), C, A]\} \text{ (applying rule 2a)} \\ &\{[\neg \neg A, C, A], [\neg B, C, A]\} \text{ (applying rule 3c)} \\ &\{[A, C], [A \neg B, C]\} \text{ (applying rule 1) Note we write } [A, C] \text{ rather than } [A, C, A] \text{ and that } [\neg B, C, A] \text{ can also be written as } [A, \neg B, C]. \end{split}$$