Monitoring And Early Warning For Internet Worms
Cliff C. Zou, Lixin Gao, Weibo Gong, Don Towsley (Univ. Massachusetts, Amherst)
Presented By: Xiaojin Niu

Outline
- Introduction and related work
- Worm propagation model
- Worm monitoring system
- Early warning scheme
- Experimental results
- Conclusion and discussion

Worm Threat Eg.
- Code Red, Nimda
 - Spread in 2001
 - Infected hundreds of thousands of computers
 - Caused millions of dollars of loss
- SQL Slammer
 - Spread on 1/25/2003
 - Doubled in size every 8.5 seconds
 - Infected more than 90% of vulnerable hosts within 10 minutes

What Is This Paper About?
- How to detect an unknown worm at its early stage?
- Monitoring:
 - Monitor and collect worm scan traffic
 - Observation data is very noisy
 - Old worms' scans
 - Port scans by hacking toolkits
- Detecting:
 - Anomaly detection for unknown worms
 - Traditional anomaly detection: threshold-based
 - Check traffic burst (short-term or long-term).
 - Difficulties: False alarm rate

A Different Approach
- Non-threshold-based worm detection method
 - "Trend Detection"
 - Detect traffic trend, not burst
- Trend: worm exponential growth trend at the beginning
- Detection: the exponential rate should be a positive, constant value

Fast Worm Spreading Pattern
- Fast worm has exponential growth pattern
 - Attacker's incentive: infect as many as possible before counteractions.
“Trend Detection”
— Detect traffic trend, not burst

Related Work
- “Network telescope”, D. Moore, 2002
- “Honeynet”
- “Enterprise early warning solution”, Symantec Corp.
- “Internet storm center”, SANS Institute
- “TRAFFEN”, Berk et al.

Assumption (1)
- Worms: uniformly scan the Internet
 - No prior knowledge of where vulnerable computers reside
- Worm scanning strategies
 - Hackers have tried various scanning strategies in their scan-based worms
 - Uniform scan — Code Red, Slammer
 - Local preference scan (hit-list) — Code Red II
 - Sequential scan — Blaster

Assumption (2)
- IP infrastructure: IPv4
 - IPv6 -> 2^2^3^2 IP address, hard for a worm to propagate through random IP scan

Worm Propagation Model
Simple Epidemic Model

\[N = I(t) + S(t) \]
\[\frac{dI(t)}{dt} = \beta I(t) S(t) \]

Worm infection rate: \(\alpha = \beta N \)

\(N \): # of hosts, \(S \): # of susceptible, \(I \): # of infectious, \(\beta \): Infectious ability, \(\alpha \): infection rate

Figure 1: Worm propagation model
Why Use Simple Epidemic Model?

- Can model most scan-based worms

![Graphs showing infection rate](Image)

Figure from:

Discrete-time Model

- Time is divided into intervals of length Δ
 \[I_t = (1 + \alpha)I_{t-1} - \beta I_{t-1}^2 \]
- I_t: the number of infected hosts at the real time t
- $\alpha = \beta N$
- α the infection rate
 - The average number of vulnerable hosts that can be infected per unit time by one infected host during the early stage of worm propagation

Monitoring System

- Provides comprehensive observation data on a worm’s activities for the early detection of the worm
- Consists of:
 - Malware Warning Center (MWC)
 - Distributed monitors
 - Ingress scan monitors
 - Egress scan monitors

Monitoring System Architecture

![Diagram of monitoring system architecture](Image)

Ingress Scan Monitors

- Monitor scan traffic coming into a local network by logging incoming traffic to unused IP addresses
- Located on gateways or borders of local networks

Egress Scan Monitors

- Monitor the outgoing traffic from a network to infer a potential worm’s scan behavior
- Located at the egress point of a local network
Data Collection

- Ingress monitors collect:
 - Number of scans received in t-th interval
 - IP address of infected hosts that have sent scans to the monitors by the time $t \Delta$
- Egress monitors collect:
 - Average worm scan rate
- Malware Warning Center (MWC) monitors:
 - Worm’s average scan rate: η
 - Total number of scans monitored: Z_t
 - Number of infected hosts observed: C_t

Correction Of Biased Observation

- Limited number of monitors:
 - Each worm scan has a very small probability of being observed
 - Number of infected hosts monitored C_t is not proportional to I_t
- How to estimate I_t using C_t?
 - Bias correction formula: $\bar{I}_t = \frac{C_{t+1} - (1-p)^\eta C_t}{1-(1-p)^\eta}$

Validity of the Biased Correction Formula

Kalman Filter Estimation

- Equivalent to Recursive Least Square Estimator:
 - Give estimation at each discrete time.
 - Robust to noise.
- System: Discrete-time simple epidemic model
 \[I_i = (1 + \alpha \Delta) I_{i-1} - \beta \Delta I_{i-1}^2 \quad i = 1, 2, \ldots, t/\Delta \]
- System state: $X = [1 + \alpha \Delta \beta \Delta]$.
- Worm infection rate α. ($\alpha = \beta N$, exponential growth rate at beginning)
- Epidemic parameter β. (worm infectious ability)
- Measurement from monitors: $y_t = \delta I_t + \omega_t$
- C_t: cumulative # of observed infected, Z_t: # of scans at time t.

Kalman Filter Estimation

\[
\begin{align*}
X_t &= X_{t-1} \\
y_t &= H_t X_t + \nu_t
\end{align*}
\]

Kalman Filter for estimation of X_t:

\[
\begin{align*}
H_t &= [y_{t-1} \ y_{t-1}^2] \\
K_t &= P_{t-1} H_t^T / (H_t P_{t-1} H_t^T + R_t) \\
P_t &= (I - K_t H_t) P_{t-1} \\
X_t &= X_{t-1} + K_t (y_t - H_t X_{t-1})
\end{align*}
\]

Estimate Vulnerable Population

Direct from Kalman filter: $X_t = [1 + \alpha \Delta \beta]$

\[\alpha = \beta N \quad \Rightarrow \quad \hat{N} = \frac{\alpha}{\beta} \]

Alternative method:

η: A worm sends out η scans per Δ time

\[\hat{N} = \frac{2^{2\Delta} \alpha}{\eta} \]

Estimation of population N
Overview Of Detecting Steps

- MWC collects and aggregates reports from distributed monitors
 - If scan traffic is over an alarm threshold for monitored illegitimated scan traffic Z_t for several consecutive intervals, MWC activates the Kalman filter and begins to recode C_t and η
 - MWC recursively estimates the infection rate α
 - If estimated oscillates slightly around a positive, constant value, a worm is spreading

Code Red Simulation Experiments

Population: N=160,000	Infection rate: $\alpha = 1.8$/hour,
Scan rate: $\eta = N(358/min, 100^2)$	Initially infected: $I_0 = 10$
Monitored IP space 2^{20}	Monitoring interval: $\Delta = 1$ minute

![Graph showing Code Red simulation results]

Before 2% (223 min): estimate is already stabilized and oscillating a little around a positive constant value

SQL Slammer Simulation Experiments

Population: N=100,000	Monitored IP space 2^{20},
Scan rate: $\eta = N(4000/sec, 2000^2)$	Initially infected: $I_0 = 10$
Monitoring interval: $\Delta = 1$ second	Consider background noise

![Graph showing SQL Slammer simulation results]

Before 1% (45 sec): estimate is already stabilized and oscillating around a positive constant value

Summary

- Effective algorithms for early detection of the presence of a worm and the corresponding monitoring system
- Use a Kalman filter to detect a worm’s propagation at its early stage in real-time
 - Simple epidemic model
 - Observation data from the monitoring system

Discussion And Future Work

- Trend detection: non-threshold-based methodology
 - Principle: detect traffic trend, not burst
 - Pros: Robust to background noise → low false alarm rate
 - Cons: Rely on worm model, representation of observation data
- The simple epidemic model?
- Uniform scan?
- Monitoring interval?
Questions?
Comments?

Thank you!