Broadcast Routing
- Deliver packets from source to all other nodes
- Source duplication is inefficient:
 - Source duplication: how does source determine recipient addresses?

In-network duplication
- Flooding: when node receives broadcast packet, sends copy to all neighbors
 - Problems: cycles & broadcast storm
- Controlled flooding: node only broadcasts packet if it hasn’t broadcast same packet before
 - Node keeps track of packet IDs already broadcasted
 - Or reverse path forwarding (RPF): only forward packet if it arrived on shortest path between node and source
- Spanning tree
 - No redundant packets received by any node

Spanning Tree
- First construct a spanning tree
- Nodes forward copies only along spanning tree

Spanning Tree: Creation
- Center node
- Each node sends unicast join message to center node
 - Message forwarded until it arrives at a node already belonging to spanning tree

Multicast Routing: Problem Statement
- **Goal**: find a tree (or trees) connecting routers having local multicast group members
 - tree: not all paths between routers used
 - source-based: different tree from each sender to receiver
 - shared tree: one tree used by all group members

Approaches for building multicast trees
- Approaches:
 - source-based tree: one tree per source
 - shortest path trees
 - reverse path forwarding
 - group-shared tree: group uses one tree
 - minimal spanning (Steiner)
 - center-based trees
- We first look at basic approaches, then specific protocols adopting these approaches
Shortest Path Tree

- mcast forwarding tree: tree of shortest path routes from source to all receivers
 - Dijkstra's algorithm

![Diagram of Shortest Path Tree]

Reverse Path Forwarding

- rely on router's knowledge of unicast shortest path from it to sender
- each router has simple forwarding behavior:

  ```
  if (mcast datagram received on incoming link on shortest path back to center)
  then flood datagram onto all outgoing links
  else ignore datagram
  ```

Reverse Path Forwarding: example

- result is a source-specific reverse SPT
 - may be a bad choice with asymmetric links

![Diagram of Reverse Path Forwarding: example]

Reverse Path Forwarding: pruning

- forwarding tree contains subtrees with no mcast group members
 - no need to forward datagrams down subtree
 - "prune" msgs sent upstream by router with no downstream group members

![Diagram of Reverse Path Forwarding: pruning]

Shared-Tree: Steiner Tree

- Steiner Tree: minimum cost tree connecting all routers with attached group members
 - problem is NP-complete
 - excellent heuristics exists
 - not used in practice:
 - computational complexity
 - information about entire network needed
 - monolithic: rerun whenever a router needs to join/leave

![Diagram of Steiner Tree]

Center-based trees

- single delivery tree shared by all
- one router identified as “center” of tree
 - to join:
 - edge router sends unicast join-msg addressed to center router
 - join-msg "processed" by intermediate routers and forwarded towards center
 - join-msg either hits existing tree branch for this center, or arrives at center
 - path taken by join-msg becomes new branch of tree for this router

![Diagram of Center-based Trees]
Center-based trees: an example

Suppose R6 chosen as center:

![Diagram showing router connections and paths]

Legend
- Router with attached group member
- Router with no attached group member
- Path order in which join messages generated

Internet Multicasting Routing: DVMRP

- **DVMRP**: distance vector multicast routing protocol, RFC1075
- **Flood and prune**: reverse path forwarding, source-based tree
 - RPF tree based on DVMRP's own routing tables constructed by communicating DVMRP routers
 - No assumptions about underlying unicast
 - Initial datagram to mcast group flooded everywhere via RPF
 - Routers not wanting group: send upstream prune msgs

DVMRP: continued...

- **Soft state**: DVMRP router periodically (1 min.) "forgets" branches are pruned:
 - Mcast data again flows down unpruned branch
 - Downstream router: re-prune or else continue to receive data
- Routers can quickly regraft to tree following IGMP join at leaf
- Odds and ends
 - Commonly implemented in commercial routers
 - Mbone routing done using DVMRP

Tunneling

Q: How to connect "islands" of multicast routers in a "sea" of unicast routers?

![Diagram showing tunneling]

- Mcast datagram encapsulated inside "normal" (non-multicast-addressed) datagram
- Normal IP datagram sent thru "tunnel" via regular IP unicast to receiving mcast router
- Receiving mcast router unencapsulates to get mcast datagram

PIM: Protocol Independent Multicast

- Not dependent on any specific underlying unicast routing algorithm (works with all)
- Two different multicast distribution scenarios:
 - **Dense**:
 - Group members densely packed, in "close" proximity.
 - Bandwidth more plentiful
 - **Sparse**:
 - # networks with group members small wrt # interconnected networks
 - Group members "widely dispersed"
 - Bandwidth not plentiful

Consequences of Sparse-Dense Dichotomy:

Dense
- Group membership by routers assumed until routers explicitly prune
- Data-driven construction on mcast tree (e.g., RPF)
- Bandwidth and non-group-router processing profligate

Sparse
- No membership until routers explicitly join
- Receiver-driven construction of mcast tree (e.g., center-based)
- Bandwidth and non-group-router processing conservative
PIM - Dense Mode

- flood-and-prune RPF, similar to DVMRP but
- underlying unicast protocol provides RPF info
 for incoming datagram
- less complicated (less efficient) downstream
 flood than DVMRP reduces reliance on
 underlying routing algorithm
- has protocol mechanism for router to detect it
 is a leaf-node router

PIM - Sparse Mode

- center-based approach
 - router sends join msg
to rendezvous point
 (RP)
 - intermediate routers update state and
 forward join
 - after joining via RP, router can switch to
 source-specific tree
 - increased performance:
 less concentration,
 shorter paths

PIM - Sparse Mode

- sender(s):
 - unicast data to RP,
 which distributes down
 RP-rooted tree
 - RP can extend mcast
 tree upstream to
 source
 - RP can send stop msg
 if no attached
 receivers
 - "no one is listening!"