Symmetric Algorithms

Stream ciphers: polyalphabetic
- Work on message a bit or a byte at a time
- Same bit/byte will encrypt differently, depending on the position of the key

Block ciphers: polygram
- Work on message block by block
- Block size is usually the same as key size
- Same plaintext block will always encrypt into the same ciphertext block

A cryptographic mode combines basic cipher, some sort of feedback and some simple operations
Block Cipher Example

plaintext → key → ciphertext

Efficiency
Patterns in plaintext should be concealed
Loss or modification of one block/byte/bit should not invalidate the whole message

Requirements for Symmetric Algorithm

Stream Ciphers
Work on one bit/byte at a time, XOR-ing it with key
Security depends entirely on RNG generating the key
Key should be pseudorandom – hard to break but easily reproduced for decryption
If Eve can get hold of plaintext/ciphertext pair she can retrieve the key
Keystream is generated continuously and is the function of the secret stored inside the RNG

Keystream Generator

Internal State → Next State Function
→ Key
Output Function
Keystream
Synchronous Stream Cipher
- Keystream is generated from the key K
- Sender and receiver must be synchronized
- One-bit error in ciphertext produces one-bit error in plaintext
- Upon loss of synchronization both sides start afresh with a new key
- Any deletions and insertions will cause loss of synchronization
- Mallory can toggle/change bits

Self-Synchronizing Stream Cipher
- Internal state is the function only of the previous n ciphertext bits
- The function depends on the key K
- Decryption keystream generator will completely synchronize with encryption KG after receiving n bits
- Drawback:
 - Error extension – one-bit error in ciphertext produces n errors in plaintext
 - Mallory can also capture and replay any message if timestamps are not used

Electronic Code Book (ECB)
- Precompute and store mapping for every possible block
- Fast encryption/decryption – just a table lookup
- Ability to process text in any order and in parallel
- Table size could be enormous even for 64 bit keys
- Eve can detect which blocks map to other blocks, by seeing several plaintext and corresponding ciphertext messages
- Due to language redundancy even partial decryption might provide enough information
- Bit errors invalidate one block, bit losses are not recoverable

Dealing with Short Blocks
- Plaintext has to be padded to block boundary
- Add a number of bytes with any content, last byte carries the padding length
- Ciphertext stealing (avoids transmission overhead)

Block Replay
- Mallory does this couple of times, looks for similar block sequences.
- She can now replay 12B7 7783 38AC CDC7 at will
Block Replay

Bank A → Mallory → Bank B

Transfer $100 to my account in Bank B

Bank adds timestamps
Mallory picks specific blocks of message carrying his name and account number and replaces those in other messages between Bank A and Bank B

Cipher Block Chaining (CBC)

Mallory can replace, add or drop blocks at will
Chaining prevents this by adding feedback
Each ciphertext block depends on all previous blocks

Cipher Block Chaining (CBC)

Initialization vector (IV) is just a block of random numbers, to ensure that no messages have the same beginning

Dealing with Short Blocks

Sometimes the ciphertext must be the same length as plaintext, we can’t use padding
Last plaintext block is of length \(j \)
Encrypt last full plaintext block twice, take leftmost \(j \) bits and XOR with last block

Ciphertext stealing
Error Recovery

An error in plaintext affects the rest of the message but are easily spotted and removed after decryption.
An error in ciphertext affects one block and several bits of plaintext.

Potential Problems

Mallory can:
- Add blocks
- Drop blocks
- Introduce bit errors

Cipher-Feedback Mode (CFB)

Self-Synchronizing Block Cipher

Enables encryption one unit at a time, where unit is smaller than the block.

Cipher-Feedback Mode (CFB)

Similar to CFB but unit is taken from the output queue, not from the ciphertext.
Output-Feedback Mode (OFB)

Most of the work can be done offline, plaintext is then just XOR-ed when it arrives.

One-bit error in ciphertext produces one-bit error in plaintext.

Synchronization errors are not recoverable, must be detected and sender/receiver input queues synchronized.

Which Mode is the Best?

Stream ciphers can be analysed mathematically and can be efficiently implemented in hardware.

Block ciphers are more general and can be efficiently implemented in software.

ECB is easiest and fastest but also weakest. Can be used for encrypting random data, such as other keys.

CBC is good for encrypting files, no danger of lack of synchronization.

CFB is good for encrypting streams of characters.

OFB is good if error propagation cannot be tolerated.

Interleaving

All chaining ciphers depend on encryption results of previous blocks – this hinders parallel processing.

The trick is to divide plaintext stream into several parallel streams and feed it into several encryption processors.

Data Encryption Standard (DES)

Block cipher, symmetric algorithm.

Encrypts data in 64-bit blocks.

Key length 56-bits.

Combination of substitution and transposition – round.

Round is repeated on same block 16 times.
Initial Permutation

Traverses the plaintext is steps 8-bits wide and recombines bits.

It does not affect security, just makes it easier to load data in byte-sized pieces on the chip.

Many software implementations leave out IP.

Encryption Function (f)

Key Transformation

64-bit key K is reduced to 56-bit key by ignoring every 8-th bit (these can be used for parity check).

16 different 48-bit subkeys (K_0 to K_{15}) are generated from K.

K is divided in two halves, each 26-bit long.

Halves are shifted 1 or 2 bits left.

48 out of 56 bits are selected (compression permutation).

This effectively generates new key for each round.

Expansion Permutation

Expands R_i from 32 to 48 bits.

Makes the block length equal to key length.

Provides redundancy that can be compressed later.

Main purpose is to make every bit of ciphertext depend on every bit of plaintext.

S-Box Substitution

Critical operation for security – non-linear.

Performed by 8 boxes, each has 6-bit input and 4-bit output.

Bits 2, 3, 4, 5 are substituted.

Bits 1 and 6 choose one out of four substitution functions.

P-Box Permutation

Recombines 32-bit output of S-box.

No bits are added or deleted.
More on DES

Decryption is same as encryption, just keys have to be fed in reverse

DES can be used in ECB, CBC, OFB and CFB modes (think of the whole DES as performing encryption step)

There are some weak keys that generate less than 16 different keys in key transformation step

Also if K_1 is a complement of K, and P_1 is a complement of P, then C_1 will be a complement of C

This means that attackers must test only half of the keys

Triple DES

Several encryptions can be performed to increase strength

With multiple different keys