Generating Random Numbers

We need to generate a sequence that looks random but is reproducible
There shouldn’t be any obvious regularities, otherwise Eve can learn the pattern after seeing several numbers, and guess the next ones
We would like to cover the whole range of numbers (e.g. 2^n if the number has n bits)

Linear Congruential Generators

Generators of the form

$$X_n = (aX_{n-1} + b) \mod m$$

A period of a generator is number of steps before it repeats the sequence
If a, b and m are properly chosen, this generator will be maximal period generator and have period of m
It has been proven that any polynomial congruential generator can be broken

Linear Feedback Shift Registers

Used for cryptography today
A shift register is transformed in every step through feedback function
Contents are shifted one bit to the right, the bit that “falls out” is the output
New leftmost bit is XOR of bits in the shift register, tap sequence
If we choose a proper tap sequence period will be 2^n-1

Linear Feedback Shift Registers

There are tables of primitive polynomials
LFSR is fast in hardware but slow in software
Internal state for LFSR is the next n output bits
Eve can observe those bits and learn the feedback function after $2n$ steps
LFSR are building blocks in encryption algorithms
Combining LFSR
Use several LFSR with different lengths and primitive polynomials
Combine them in non-linear fashion and use the output as random sequence

Combining LFSR

Geffe Generator
Use 3 LFSRs, two are input into a multiplexer and third selects the output bit
LFSR-1
LFSR-2
LFSR-3
MUX
Can be generalized to \(n \) LFSRs
Easily broken

Alternating Stop-and-Go Generator
Use 3 LFSRs of different length
LFSR-2 is clocked when the output of LFSR-1 is 1
LFSR-3 is clocked when the output of LFSR-1 is 0
Output is XOR between LFSR-2 and LFSR-3
Currently thought secure

Gollmann Cascade
Use \(k \) LFSRs of similar (or same) lengths
LFSR-2 is clocked when the output of LFSR-1 is 1
LFSR-3 is clocked when the output of LFSR-2 is 1 etc.
Currently thought secure if number of LFSR is large even if they are short

Shrinking Generator
Use 2 LFSRs
Clock both
If the output of LFSR-1 is 1 use the output of LFSR-2
Otherwise throw away both bits and clock again, output nothing
Currently thought secure

Additive Generators
Produce random words instead of random bits
Register holds sequence of words \(X_{m-1}X_{m-2}...X_0 \)
all \(n \)-bit long
\[X_i = (X_{i-a} + X_{i-b} + ... + X_{i-m}) \mod 2^n \]
If \(a, b, ..., m \) are chosen right the period of the generator is \(2^n - 1 \)
For example using \(a, b, ... \) from the table of primitive polynomials should work
Pike

Use 3 additive generators, for example

\[A_i = (A_{i-55} + A_{i-24}) \mod 2^{32} \]

\[B_i = (B_{i-57} + B_{i-7}) \mod 2^{32} \]

\[C_i = (C_{i-38} + C_{i-19}) \mod 2^{32} \]

Look at addition carry bits, if all three are 0 or 1 then clock all three generators, otherwise clock the two that agree; save carry bits for next time

Final output is XOR of the outputs of all three generators

Currently thought secure

Mush

Use 2 additive generators, for example

\[A_i = (A_{i-55} + A_{i-24}) \mod 2^{32} \]

\[B_i = (B_{i-57} + B_{i-7}) \mod 2^{32} \]

If carry bit of A is set, clock B

If carry bit of B is set, clock A

Clock A and set the carry bit, if there is carry

Clock B and set the carry bit, if there is carry

Final output is XOR of A and B outputs

Currently thought secure

Other Cool Crypto Stuff

Broadcasting a secure message

There are \(n \) people in the group, we know we will communicate with subsets but don't know which ones in advance

Strawman's approach generates a lot of keys \((2^n - 2)\) or encrypts a message separately to everyone in the subset

Multiple-key public-key cryptography solves this problem

Broadcasting a Secure Message

This scheme only needs \(n \) keys

Problem is that we now have to tell everyone which keys we have used, or who are intended recipients

Alice wants to broadcast a message to a subset of listeners; only people intended to receive the message can read it, everyone else receives garbage

Alice shares a key with every listener

Alice chooses random key K and encrypts message with K, then encrypts K with keys of intended listeners

Every listener tries to decrypt K and read the message
Broadcasting a Secure Message

Each listener shares a key with Alice, all pairwise keys are relatively prime
Alice encrypts the message in K, then computes R such that $R \equiv K \mod K_i$ for every intended listener i and $R \equiv 0 \mod K_i$ otherwise
She sends the ciphertext and R
Listeners attempt to recover K

Other Cool Crypto Stuff

Secret Splitting
Trent has invented a new beverage formula. He would like to be sure that none of his workers can go to competition and sell it
He splits the formula into n pieces and gives each piece to a worker
What if pieces carry some partial information?

Secret Splitting
Trent chooses $n-1$ random keys S_i same length as the message
He performs the step:
\[M \oplus S_1 \oplus S_2 \oplus \ldots \oplus S_{n-1} = S_n \]
He gives S_i to his workers
Problem: what if Trent goes on holiday and is shipwrecked and Alice is fired?

Threshold scheme solves the problem when we want to divide the message into n pieces so that $m, m < n$ people can reconstruct it
This is called (m,n) threshold scheme
Pieces are called shadows

Generating Shadows – LaGrange Interpolating Polynomial Scheme
Choose a prime p which is larger than n and also larger than any message you might wish to split
Generate an arbitrary polynomial of degree $m-1$
\[poly(x) = (ax^{m-1} + bx^{m-2} + \ldots + mx + M) \mod p \]
Evaluate polynomial at n points – these values will be shadows
Hand out shadows and p, forget coefficients

Advanced Threshold Schemes
You want one person to be more important than others?
Give her more shadows
You want two hostile delegations to be able to reconstruct the secret only if 2 people from one group and 3 people from another group agree
Create a polynomial which is a product of a linear and a quadratic equation, evaluate these equations and hand out shadows to two groups
Other Cool Crypto Stuff

Bit Commitment
Alice claims she can guess the winner in a horse race. She would like to prove it to Bob without revealing her guess. Bob would like to make sure she didn’t change her prediction.

Bob generates a random bit string R and sends it to Alice.
Alice creates a message consisting of R and her prediction and encrypts this with random key K and sends it to Bob.
If Bob did not use R, Alice could cheat.

Flipping a Fair Coin
Alice and Bob want to flip a coin fairly over the network.
Alice flips a coin, Bob guesses the flip.
Alice must not be able to re-flip the coin.
Bob must not be able to derive the value she flipped before guessing.
Bit-commitment scheme can help us here.

Other Cool Crypto Stuff

One-way accumulators
Alice is a spy and occasionally she has to meet other spies in bars.
Spies have to be able to verify that they work for the same agency but they don’t want to carry a membership list.
They also don’t want to carry ID cards.

One Way Accumulators
Like one-way hash function but commutative.
Alice calculates the accumulation of every name except hers and carries this around.
Bob does the same.
Nonmembers can be given accumulation of everybody.
Example: \(A(x_1, y) = x_{i-1} \mod n \)
\(X_0 \) and \(n \) must be agreed upon in advance.

Quantum cryptography
Alice and Bob communicate a shared secret.
If Eve eavesdrops she disturbs the message.