How Routing Works?

- Internet is organized into Administrative Systems (AS) for routing purposes
- Network segments under a single administrative control
- Routing means learning how to get to various destinations
- Because we have packet-switched network we only need to learn next hop
- Routing protocols used inside AS are OSPF or RIP
- Routing protocol used between AS-es is Border Gateway Protocol (BGP)

BGP Update

- Contains
 - List of prefixes that are not reachable anymore
 - List of prefixes that are reachable
 - AS_PATH, list of AS-es to cross to reach those prefixes
- One router can advertise different information to different peers
- BGP router keeps all advertised routes from its neighbors, it chooses subset of these for itself, and another (same or different) subset to advertise
- Backbone routers know how to reach any address on the Internet

BGP Security

- Security of BGP is defined through correct operation:
 - Each update is authentic, contains recent information and has not been modified
 - Update was sent by an authorized speaker for a given AS
 - First AS in the path (closest to the destination prefixes) was authorized by their owners to advertise them
 - If the update advertises withdrawn prefixes, they were previously advertised as reachable by the same peer
 - Both sending and receiving BGP router correctly apply their policies

Threat Model: What Can Go Wrong

- Someone can hijack TCP connection between peers
- Someone can modify updates, delay them, replay them or suppress them
- Someone can subvert a BGP router
 - And then generate false advertisements, spoofing the prefixes it cannot reach
 - Or misconfigure the router
 - Or generate too frequent updates
 - Or generate updates that do not conform to local policies
S-BGP

- Handles all threats except those that pertain to correct policy implementation
- Aims to be scalable and deployable solution
- There is a careful analysis of expected performance
- Works under partial deployment
 - S-BGP information looks to legacy routers as extra information they do not understand
 - Legacy routers just process updates as they ordinarily would and send them further

S-BGP Update

- Contains
 - Route attestation for each router on the path – signs the AS_PATH info with K2
- Necessary for verification but distributed offline
 - Address attestation for each advertised prefix – gives the origin AS right to advertise, signed with K1
 - Address certificate for each advertised prefix – confirms that this is not a “made up” prefix but that each organization owns this prefix, verifying K1
 - Certificate for each router on the path – verifies K2
- S-BGP uses IPsec between peers to prevent replays

Residual Vulnerabilities

- Withholding advertisements
- Re-asserting previously withdrawn route
- Wrongful application of local policies

Performance Issues

- Updates are not that frequent – signing them should not take much time
- Also router could receive up to 1 update every 2 seconds
 - Validation overhead would not be a problem
- On reboot, a router receives a lot of updates at once
 - Verification may be costly
 - Router should save validated route attestations on non-volatile storage, then just compare those in the updates with stored ones
- Update size increases from 63B to 450B – but this is small compared to data traffic
- Memory requirements are reasonable (~10MB+26MB per peer)