Advantages and Limitations

+ Ensures good service to legitimate clients in the majority of cases
+ Does not require modifications of clients or servers
+ Stateless legitimacy tests ensure resiliency to DoS attacks on Netbouncer
+ Realistic deployment model:
 - Autonomous solution, close to the victim
 - Attackers can perform successful attacks by:
 - Misusing identities of legitimate clients
 - Recruiting a large number of agents
 - Some legitimate clients will not be validated
 - Challenge generation may exhaust defense

Can it work?

- Successfully defeats spoofed attacks
- Ensures fair sharing of resources among clients that have proved to be legitimate
- All legitimacy tests are stateless – defense system cannot be target of state-consumption attacks
- Some legitimate clients do not support certain legitimacy tests (i.e., ping test)
- Legitimate client identity can be misused for attacks
- Large number of agents can still degrade service to legitimate clients, creating “flash crowd” effect

2. Thomas, Mark, Johnson, Croall, DISCOS 2003

3. Keeps a list of legitimate clients:
 - Victim-end, inline defense system deployed in front of the choke point
 - Keeps a list of legitimate clients:
 - Only packets from these clients are served
 - Unknown clients receive a challenge to prove their legitimacy, several levels of legitimacy tests
 - Various QoS techniques are applied to assure fair sharing of resources by legitimate client traffic
 - Legitimacy of a client expires after a certain interval

4. Chord to route packets to beacons
 - Their identity has to be hidden, because their source address is a passport for the realm beyond the firewall
 - Nodes that know identity of secret servlets – beacons
 - Any node that receives a packet to the target uses Chord to reach a beacon
 - Chord is overlay routing algorithm hashes nodeIDs into the routing table and then routes to those hashed identifiers
 - It is guaranteed to reach node with a given nodeID within O(log N) hops
 - We use target IP address as nodeID for beacon nodes

5. User sends packets to access point
 - Approved nodes whose traffic can pass through the firewall – secret servlets
 - Their identity has to be hidden, because their source address is a passport for the realm beyond the firewall
 - Nodes that know identity of secret servlets – beacons
 - Any node that receives a packet to the target uses Chord to reach a beacon
 - Chord is overlay routing algorithm hashes nodeID as they travel through the firewall
 - It is guaranteed to reach node with a given nodeID within O(log N) hops
 - We use target IP address as nodeID for beacon nodes
Can it work?

- SOS should successfully protect communication with a private server:
 - Access points can distinguish legitimate from attack communications
 - Overlay protects traffic flow
 - Firewall drops attack packets
 - Redundancy in the overlay and secrecy of the path to the target provide security against DoS attacks on SOS

Advantages and Limitations

+ Ensures communication of “confirmed” user with the victim
+ Resilient to overlay node failure
+ Resilient to DoS
 - Does not work for public service
 - Clients must be aware of overlay and use it to access the victim
 - Traffic routed through the overlay travels on suboptimal path
 - Still allows brute force attack on links entering the filtering router in front of client
 - If the attacker can find it

Client Puzzles

- Goal: preserve resources during connection depletion attack
- When under attack:
 - Server distributes small cryptographic puzzle to clients requesting service
 - Clients spend resources to solve the puzzle
 - Correct solution, submitted on time, leads to state allocation and connection establishment
 - Non-validated connection packets are dropped
- Puzzle generation is stateless
- Client cannot reuse puzzle solutions
- Attacker cannot make use of intercepted packets

Advantages and Limitations

+ Forces the attacker to spend resources, protects server resources from depletion
+ Attacker can only generate a certain number of successful connections from one agent machine
+ Low overhead on server
 - Requires client modification
 - Will not work against highly distributed attacks
 - Will not work against bandwidth consumption attacks
 - Puzzle verification consumes server resources

COSSACK

- Goal: detect the attack, place response near the sources
- COSSACK watch dogs are located at edge networks and organized into a multicast tree
- Client watchdog detects the attack, notifies all involved sources via multicast tree
- Sources join victim-specific group and exchange information
- Involved sources perform smart filtering to control attack traffic

Can it work?

- Victim-end detection is very accurate
- Source-end response effectively stops attack, minimizes collateral damage
- COSSACK should successfully detect and stop flooding attacks from protected networks
- May inflict collateral damage if attack is similar to legitimate traffic

Advantages and Limitations

- Accurate detection at the victim, effective response at the source
- No changes are required at client machines
- Multicast communication is not scalable
- Attacks from unprotected networks cannot be stopped
- Collateral damage will be inflicted if attack is similar to legitimate traffic

DefCOM

Goal: detect the attack, rate-limit the attack traffic, forward legitimate traffic

Three types of nodes:
- Alert generator – detect the attack, inform other nodes
- Classifier – distinguish legitimate from suspicious traffic, forward legitimate packets marked with legitimate mark, rate-limit suspicious packets, mark them with monitored mark
- Rate-limiter – rate limit all traffic to the victim, give the highest priority to legitimate, then to marked traffic

Alert generators and classifiers deployed at the edge, rate-limiters deployed at the core

Advantages and Limitations

+ All actions are performed where they are most successful:
 + Accurate detection at the victim
 + Rate-limiting in the core
 + Traffic differentiation at the source
+ Selective response provides low collateral damage
+ Core nodes handle attacks from legacy networks
+ Overlay architecture provides scalability
+ Only a few deployment points are needed
 - Only effective with some core router deployment
 - Compromised overlay nodes can damage operation