
1

11

CISC 370: InCISC 370: Inheritance, heritance, AbstractAbstract
Classes, ExceptionsClasses, Exceptions

June 1June 15, 20065, 2006

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 22

ReviewReview
•• QuizzesQuizzes

Grades on CPMGrades on CPM

•• ConventionsConventions
Class names are capitalizedClass names are capitalized
Object names/variables are lower caseObject names/variables are lower case

•• String.String.doStuffdoStuff();();
•• string.string.doStuffdoStuff();();

•• EncapsulationEncapsulation
•• InheritanceInheritance
•• PackagesPackages



2

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 33

EncapsulationEncapsulation

•• Hide implementation detailsHide implementation details
 can change the implementation details withoutcan change the implementation details without

programmer's relying on itprogrammer's relying on it

•• Protect against accidental or willful stupidityProtect against accidental or willful stupidity
may have interdependent fieldsmay have interdependent fields

 can't modify one field without updating thecan't modify one field without updating the
othersothers
•• to keep in a consistent state --> method can doto keep in a consistent state --> method can do

all necessary stepsall necessary steps

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 44

EncapsulationEncapsulation
•• If fields can be manipulated directly, theIf fields can be manipulated directly, the

number of possibilities you have to testnumber of possibilities you have to test
becomes unmanageablebecomes unmanageable
What could the user do?What could the user do?
Can use methods to perform error checkingCan use methods to perform error checking

•• What if user set chicken to have a negativeWhat if user set chicken to have a negative
height?height?

•• Internal fields and methods visible outsideInternal fields and methods visible outside
the class clutter up APIthe class clutter up API
makes class tidy and easier to use andmakes class tidy and easier to use and

understandunderstand



3

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 55

InheritanceInheritance

• Build new classes based on existing classes
Allows you to reuse code

• Use extends keyword to make a subclass

•• The The is ais a relationship relationship
Classic mark of inheritanceClassic mark of inheritance

•• Constructor chainingConstructor chaining

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 66

InheritanceInheritance

•• Access modifiers in subclassesAccess modifiers in subclasses
 can make access to subclass more restrictivecan make access to subclass more restrictive

but not less restrictivebut not less restrictive

•• Class fields and methods are Class fields and methods are notnot inherited inherited

•• Constructors are not inheritedConstructors are not inherited
We had to define Rooster( String name, We had to define Rooster( String name, intint

height, double weight) event though similarheight, double weight) event though similar
constructor in Chickenconstructor in Chicken



4

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 77

InheritanceInheritance
•• If you're uncertain which to use (protected,If you're uncertain which to use (protected,

package, or private), use the most restrictivepackage, or private), use the most restrictive
Changing to less restrictive is easyChanging to less restrictive is easy
Changing to more restrictive may break the codeChanging to more restrictive may break the code

that uses your classes.that uses your classes.

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 88

Member VisibilityMember Visibility
Member VisibilityMember Visibility

NoNoNoNoNoNoYesYes
Non-subclassNon-subclass
differentdifferent
packagepackage

NoNoNoNoYesYesYesYes
Subclass inSubclass in
differentdifferent
packagepackage

NoNoYesYesYesYesYesYesClass in sameClass in same
packagepackage

YesYesYesYesYesYesYesYesDefiningDefining
ClassClass

PrivatePrivatePackagePackageProtectedProtectedPublicPublic
Accessible toAccessible to



5

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 99

ProtectedProtected

•• Accessible to subclasses Accessible to subclasses and and members ofmembers of
packagepackage

•• CanCan’’t keep encapsulation t keep encapsulation ““purepure””
DonDon’’t want others to access fields directlyt want others to access fields directly

May break code if you change yourMay break code if you change your
implementationimplementation

•• Assumption?Assumption?
 someone extending your class with protected

access knows about what they are doing

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1010

PackagesPackages

•• Hierarchical structure of Java classesHierarchical structure of Java classes
Directories of directoriesDirectories of directories

•• Use Use importimport to access packages to access packages

java

net

lang

util

Object

Date Fully qualified name: java.util.Date



6

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1111

Abstract ClassesAbstract Classes

•• Some methods defined, others not definedSome methods defined, others not defined
•• Classes in which not all methods areClasses in which not all methods are

implemented are implemented are abstract classesabstract classes..
 public abstract class public abstract class ZooAnimalZooAnimal

•• Blank methods are labeled with the Blank methods are labeled with the abstractabstract
keyword alsokeyword also
   public abstract void exercise();public abstract void exercise();

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1212

Abstract ClassesAbstract Classes

•• An abstract class cannot be instantiatedAn abstract class cannot be instantiated

•• Subclass of an abstract class can only beSubclass of an abstract class can only be
instantiated if it overrides instantiated if it overrides eacheach of the of the
abstract methodsabstract methods of its of its superclass superclass and and
provides provides implementationimplementation
 If subclass does not override all abstractIf subclass does not override all abstract

methods, it is also abstractmethods, it is also abstract



7

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1313

Abstract ClassesAbstract Classes
•• static, private, and final methods cannot bestatic, private, and final methods cannot be

abstractabstract
 these types cannot be overridden by a subclassthese types cannot be overridden by a subclass
 a final class cannot contain any abstracta final class cannot contain any abstract

methodsmethods

•• a class can be declared abstract even if ita class can be declared abstract even if it
does not actually have any abstract methodsdoes not actually have any abstract methods
 the implementation is somehow incomplete andthe implementation is somehow incomplete and

is meant to serve as ais meant to serve as a superclass superclass for one or for one or
more subclasses that will complete themore subclasses that will complete the
implementation.implementation.

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1414

Abstract ClassesAbstract Classes

•• Can have an array of objects of the abstractCan have an array of objects of the abstract
classclass
 does dynamic dispatch on themdoes dynamic dispatch on them

•• Use Use abstractabstract when have some partial when have some partial
implementationimplementation



8

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1515

Examples of abstract classesExamples of abstract classes
•• Define the abstract methodsDefine the abstract methods

Example 1:Example 1:
•• java.net.Socketjava.net.Socket

•• java.net.java.net.SSLSocket SSLSocket (abstract)(abstract)

Example 2:Example 2:
•• java.java.utilutil.Calendar (abstract).Calendar (abstract)

•• java.java.utilutil..GregorianCalendarGregorianCalendar

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1616

InterfacesInterfaces

•• Like abstract classes with only abstractLike abstract classes with only abstract
methodsmethods
A A set of requirements for classes to conform toset of requirements for classes to conform to

•• Pure specification, no implementationPure specification, no implementation

•• Classes Classes implementimplement one or more interfaces. one or more interfaces.



9

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1717

Example of an InterfaceExample of an Interface

•• We have seen before how to make an arrayWe have seen before how to make an array
of Chicken object variables.of Chicken object variables.

•• We can call the Arrays.sort() method, aWe can call the Arrays.sort() method, a
method of the Arrays classmethod of the Arrays class

•• Arrays.sort() has the ability to sort arrays of anyArrays.sort() has the ability to sort arrays of any
object class.object class.
 Need a way to decide if one object is less than,Need a way to decide if one object is less than,

greater than, or equal to another object.greater than, or equal to another object.

 Class of objects must be comparable.Class of objects must be comparable.

•• ComparableComparable is an interface is an interface……

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1818

java.java.langlang.Comparable.Comparable

•• Any object that is Comparable must have aAny object that is Comparable must have a
method namedmethod named compareTo compareTo(), which takes an(), which takes an
Object as a parameter and returns an integerObject as a parameter and returns an integer
 < 0 for less than< 0 for less than

 0 for equals0 for equals

 > 0 for greater than> 0 for greater than

public interface Comparable
{

int compareTo(Object other);
}



10

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1919

Implementing an InterfaceImplementing an Interface

•• To make a class implement an interfaceTo make a class implement an interface
 In the class definition, you need to specify thatIn the class definition, you need to specify that

the class will implement the specific interface.the class will implement the specific interface.

You provide a definition for all of the methodsYou provide a definition for all of the methods
specified in the interface.specified in the interface.

•• An interface is very similar to an abstract (orAn interface is very similar to an abstract (or
virtual) class in C++virtual) class in C++……
 a set of requirements that any implementinga set of requirements that any implementing

class must haveclass must have

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2020

How to determine Chicken order?How to determine Chicken order?

•• What if made the Chicken classWhat if made the Chicken class
Comparable?Comparable?



11

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2121

Comparable ChickensComparable Chickens
class Chicken implements Comparable
{
  . . .
  public int compareTo(Object otherObject)
  {
  Chicken other = (Chicken)otherObject;
  if (height < other.getHeight() ) return –1;

if (height > other.getHeight()) return  1;
return  0;

  }
}

One way: order by height

What if otherObject is not a Chicken?

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2222

Comparable ChickensComparable Chickens
class Chicken implements Comparable
{
  . . .
  public int compareTo(Object otherObject)
  {
  Chicken other = (Chicken)otherObject;
  if (height < other.getHeight() ) return –1;

if (height > other.getHeight()) return  1;
if( weight < other.getWeight()) return -1;
if (weight > other.getWeight()) return 1;
return  0;

  }
}

Order by height, then weight
Could have more conditions for “breaking ties” -->

comparing names  



12

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2323

Comparable Interface in Java DocsComparable Interface in Java Docs

•• API documentation says what theAPI documentation says what the
compareTocompareTo() method should do:() method should do:
Return a Return a ––1 if the first object is less than the1 if the first object is less than the

second object (passed as a parameter)second object (passed as a parameter)

Return a 1 if the second object (passed as aReturn a 1 if the second object (passed as a
parameter) is less than the first objectparameter) is less than the first object

Return a 0 if the two objects are equalReturn a 0 if the two objects are equal

•• Can see what Java library classes implementCan see what Java library classes implement
ComparableComparable

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2424

InterfacesInterfaces

•• only object (not class) methodsonly object (not class) methods

•• all are public methodsall are public methods
 implied if not explicitimplied if not explicit

 error to have protected or private (error to have protected or private (WhyWhy?)?)

•• fields are constants that are fields are constants that are staticstatic and  and finalfinal

•• Can implement multiple interfacesCan implement multiple interfaces
 separated by commas in definitionseparated by commas in definition



13

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2525

Testing for InterfacesTesting for Interfaces

•• We can also use theWe can also use the  instanceofinstanceof
operator to see if an object implements aoperator to see if an object implements a
particular interfaceparticular interface
 e.g., to determine if an object can be comparede.g., to determine if an object can be compared

to another object using the Comparableto another object using the Comparable
interface.interface.

if (obj instanceof Comparable) { 
// runs if whatever class obj is an instance of
// implements the Comparable interface

}
else {

// runs if it does not implement the interface 
}

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2626

Interface Object VariablesInterface Object Variables
•• We can use an object variable to refer to an objectWe can use an object variable to refer to an object

of any class that implements an interfaceof any class that implements an interface

•• Using this object variable, we can only accessUsing this object variable, we can only access
methods that are present in the interface.methods that are present in the interface.

•• For exampleFor example……

Object obj;
…
if (obj instanceof Comparable)
{

Comparable comp = (Comparable)obj;
boolean res = comp.compareTo(obj2);

}



14

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2727

Interface DefinitionsInterface Definitions

•• We do not need to specify the methods asWe do not need to specify the methods as
publicpublic
All interface methods are public by defaultAll interface methods are public by default

public interface Comparable
{

int compareTo(Object other);
}

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2828

Interface Definitions and InheritanceInterface Definitions and Inheritance

•• We can also extend interfacesWe can also extend interfaces
 allows a chain of interfaces that go from generalallows a chain of interfaces that go from general

to more specific with each stepto more specific with each step

•• For example, letFor example, let’’s define an interface for as define an interface for a
object which is capable of moving:object which is capable of moving:

public interface Movable
{

void move(double x, double y);
}



15

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2929

Interface Definitions and InheritanceInterface Definitions and Inheritance

•• A powered vehicle is also MovableA powered vehicle is also Movable
 it must also have a MPG() method, which willit must also have a MPG() method, which will

return its gas mileagereturn its gas mileage

public interface Powered extends Movable
{

double miles_per_gallon();
}

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3030

Constants in an InterfaceConstants in an Interface

•• If a variable is specified in an interface, itIf a variable is specified in an interface, it
is automatically a constantis automatically a constant
public static finalpublic static final variable variable

•• An object that implements the PoweredAn object that implements the Powered
interface has a constant SPEED_LIMITinterface has a constant SPEED_LIMIT
defineddefined

public interface Powered extends Movable
{

double miles_per_gallon();
double SPEED_LIMIT = 95;

}



16

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3131

Interface Definitions and InheritanceInterface Definitions and Inheritance

•• Powered interface extends the MovablePowered interface extends the Movable
interface.interface.

•• Any object that implements the PoweredAny object that implements the Powered
interface must satisfy all the requirements ofinterface must satisfy all the requirements of
that interface as well as itsthat interface as well as its superinterface superinterface..
A Powered object must have aA Powered object must have a

miles_per_gallon() and move() methodmiles_per_gallon() and move() method

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3232

Multiple InterfacesMultiple Interfaces

•• A class can implement multiple interfacesA class can implement multiple interfaces
An interface is a promise to implement givenAn interface is a promise to implement given

methodsmethods

Can have more than one interface and fulfill theCan have more than one interface and fulfill the
requirements of each one.requirements of each one.

•• But, NOT possible with inheritanceBut, NOT possible with inheritance
 a class can only a class can only extendextend (or inherit from) one (or inherit from) one

class.class.

public final class String implements
Serializable, Comparable, CharSequence { …



17

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3333

Using InterfacesUsing Interfaces

•• Common use:Common use:
 define constants for multiple classes/packagedefine constants for multiple classes/package

Something like global constantsSomething like global constants

•• Marker InterfaceMarker Interface
 Interface that is emptyInterface that is empty

Use to identify an object that has a certainUse to identify an object that has a certain
propertyproperty

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3434

Using interface or abstract class?Using interface or abstract class?
•• InterfacesInterfaces

 Any class can use (can implement multiple Any class can use (can implement multiple 
interfaces)interfaces)

 no implementationno implementation

 Implementing lots of methods multiple times can beImplementing lots of methods multiple times can be
annoyingannoying

 Adding a method will break classes that implementAdding a method will break classes that implement

•• Abstract classAbstract class
 Can contain partial implementationCan contain partial implementation

 CanCan’’t extend/subclass multiple classest extend/subclass multiple classes

 Can add non-abstract methods without breakingCan add non-abstract methods without breaking
subclassessubclasses



18

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3535

One option: Use Both!One option: Use Both!

•• Define interface, e.g.,Define interface, e.g.,  MyInterfaceMyInterface

•• Define abstract class, e.g.,Define abstract class, e.g.,
AbstractMyInterfaceAbstractMyInterface
 implements interfaceimplements interface

 provides implementation for some methodsprovides implementation for some methods

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3636

ExceptionsExceptions



19

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3737

ErrorsErrors

•• Programs encounter errors when they run.Programs encounter errors when they run.
Users may enter data in the wrong formUsers may enter data in the wrong form

 files that should exist sometimes do notfiles that should exist sometimes do not

 printers run out of paper in the middle of printingprinters run out of paper in the middle of printing

 program code always has bugs.program code always has bugs.

•• Errors are bad.  When one happens, yourErrors are bad.  When one happens, your
program should do one of two things:program should do one of two things:
Revert to a stable state and continue.Revert to a stable state and continue.

Allow the user to save data and then exit theAllow the user to save data and then exit the
program gracefully.program gracefully.

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3838

Error Codes Error Codes –– Why They Don Why They Don’’tt
Always WorkAlways Work
•• The traditional method of indicating an errorThe traditional method of indicating an error

in a method (function) call is to return ain a method (function) call is to return a
specific specific sentinelsentinel value. value.
 the read() function in C returns a the read() function in C returns a ––1 if the read1 if the read

was unsuccessfulwas unsuccessful

•• What is the general problem with What is the general problem with sentinelssentinels??

•• What does a function that returns an integerWhat does a function that returns an integer
return in the case of an error?return in the case of an error?
 It is not always possible to return an error code,It is not always possible to return an error code,

when an error has occurred in a method.when an error has occurred in a method.



20

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3939

Methods: An Alternate EndingMethods: An Alternate Ending

•• Java allows a method to take an alternateJava allows a method to take an alternate
exit path if it is unable to complete its task inexit path if it is unable to complete its task in
the normal, correct way.the normal, correct way.

•• A method can opt to not return a value.A method can opt to not return a value.
 Instead it Instead it throws an object that encapsulates the an object that encapsulates the

error information.error information.

•• ExceptionException: the object that is thrown: the object that is thrown

•• A method can return its specified return typeA method can return its specified return type
(the normal/correct case) or it can throw an(the normal/correct case) or it can throw an
exception (the error case).exception (the error case).

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 4040

Methods: An Alternate EndingMethods: An Alternate Ending

•• If a method throws an exceptionIf a method throws an exception
 it does not return anythingit does not return anything

 execution does not resume immediatelyexecution does not resume immediately
following the method call (as it would if thefollowing the method call (as it would if the
method returns a normal value)method returns a normal value)

•• JVMJVM’’s s exception-handling mechanism
searches for an searches for an exception handler
Exception handlerException handler: error recovery code: error recovery code

•• runs to deal with a particular error condition.runs to deal with a particular error condition.



21

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 4141

Exception ClassificationException Classification
•• All exceptions indirectly derive from a classAll exceptions indirectly derive from a class

ThrowableThrowable..
Subclasses: Error: Error and  and ExceptionException

•• Important Important ThrowableThrowable methods methods
getMessagegetMessage

•• Detailed message about errorDetailed message about error

printStackTraceprintStackTrace
•• Prints out where problem occurred and path toPrints out where problem occurred and path to

reach that pointreach that point
•• Also Also getStackTracegetStackTrace to get the stack in non-text to get the stack in non-text

formatformat

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 4242

Exception Classification: ErrorException Classification: Error
•• ErrorError is an internal error is an internal error

JVM-generated in the case of resourceJVM-generated in the case of resource
exhaustion or an internal problemexhaustion or an internal problem
•• Out of Memory error (Out of Memory error (When can that happenWhen can that happen?)?)

ProgramProgram’’s code should not and can not throw ans code should not and can not throw an
object of this type.object of this type.

Unchecked exceptionUnchecked exception



22

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 4343

Exception ClassificationException Classification

•• An An ExceptionException is the kind of  is the kind of ThrowableThrowable
objects programs deal with.objects programs deal with.
RuntimeExceptionRuntimeException something that happens due something that happens due

to a programming error you madeto a programming error you made
•• Unchecked exceptionUnchecked exception

•• ArrayOutOfBoundsExceptionArrayOutOfBoundsException

•• NullPointerExceptionNullPointerException

•• ClassCastExceptionClassCastException

Lots of Lots of checked exceptions exceptions

•• e.g., e.g., IOExceptionIOException, , SQLExceptionSQLException

Seen before

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 4444

Exception ClassificationException Classification

•• So, if something is programmerSo, if something is programmer’’s faults fault
RuntimeExceptionRuntimeException..

 otherwise, an otherwise, an ErrorError or another  or another ExceptionException..

•• CommonCommon:: IOException IOException
 trying to read past the end of a filetrying to read past the end of a file

 trying to open a bad URLtrying to open a bad URL

 File not foundFile not found

 etcetc……



23

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 4545

Exception ClassificationException Classification

Throwable

ExceptionError

IOException RuntimeException

SQLException

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 4646

Checked and UncheckedChecked and Unchecked
• Unchecked: any exception that derives from: any exception that derives from

ErrorError or  or RuntimeExceptionRuntimeException
•• CheckedChecked: any other exception, e.g., from: any other exception, e.g., from

IOExceptionIOException
•• Programmer need to create and handleProgrammer need to create and handle

checked exceptionschecked exceptions
not unchecked exceptions (except to try to makenot unchecked exceptions (except to try to make

sure that they donsure that they don’’t occur in the first place!)t occur in the first place!)



24

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 4747

Unchecked ExceptionsUnchecked Exceptions
•• Two types of unchecked exceptions:Two types of unchecked exceptions:

Derived from the class Derived from the class ErrorError::
•• Any line of code in a Java program can generateAny line of code in a Java program can generate

this because it is internalthis because it is internal
•• You donYou don’’t need to worry about what to do if thist need to worry about what to do if this

happens.happens.

Derived from the class Derived from the class RuntimeExceptionRuntimeException
•• Indicates a bug in the programIndicates a bug in the program
•• DonDon’’t worry about what to do if it happenst worry about what to do if it happens

fix the bug!fix the bug!

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 4848

Checked ExceptionsChecked Exceptions
•• Need to be handled in your programNeed to be handled in your program

•• AdvertiseAdvertise the exceptions that a particular the exceptions that a particular
method throwsmethod throws
For each method, tell the compiler:For each method, tell the compiler:

•• what the method returnswhat the method returns

•• what could possibly go wrongwhat could possibly go wrong

•• As an example, java.As an example, java.ioio..BufferedReaderBufferedReader



25

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 4949

The BufferedReader ClassThe BufferedReader Class
•• contains a method, contains a method, readLinereadLine(), which(), which

reads a line from a stream, such as a file orreads a line from a stream, such as a file or
network connectionnetwork connection

•• Its header looks like:Its header looks like:

public String public String readLinereadLine() throws () throws 

IOExceptionIOException

•• readLine readLine cancan
 return a String (if everything went right)return a String (if everything went right)

 throw anthrow an IOException  IOException (if something went wrong)(if something went wrong)

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 5050

Programmer-Defined MethodsProgrammer-Defined Methods

•• Advertise only the Advertise only the checkedchecked methods that methods that
your method can throwyour method can throw
Your method calls a method that throws aYour method calls a method that throws a

checked exceptionchecked exception

Your method detects an error in its processingYour method detects an error in its processing
and decides to throw an exceptionand decides to throw an exception



26

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 5151

Passing an Exception UpPassing an Exception Up

•• So, if we were to write a method which callsSo, if we were to write a method which calls
the the readLinereadLine() method of a BufferedReader:() method of a BufferedReader:

String readData(BufferedReader in)
   throws IOException
{

String str1;
str1 = in.readLine();
return str1;

}

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 5252

Passing an Exception UpPassing an Exception Up

•• Our Our readDatareadData() method calls a method that() method calls a method that
can throw an can throw an IOExceptionIOException

•• readLinereadLine() will throw this exception to us() will throw this exception to us
Assuming we donAssuming we don’’t want to deal with exceptions,t want to deal with exceptions,

we simply throw the exception as wellwe simply throw the exception as well
•• whoever called whoever called readData readData will handle exceptionwill handle exception

String readData(BufferedReader in)
   throws IOException
{

String str1;
str1 = in.readLine();
return str1;

}

Throws the IOException



27

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 5353

Throwing Our Own ExceptionThrowing Our Own Exception

•• If we have a program which is reading aIf we have a program which is reading a
file byte-by-byte.  We know in advancefile byte-by-byte.  We know in advance
how big this file is supposed to be.how big this file is supposed to be.

•• What do we do if we reach an EOF byteWhat do we do if we reach an EOF byte
while we should still have data to read in?while we should still have data to read in?

•• We need to generate our own exception.We need to generate our own exception.

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 5454

Throwing Our Own ExceptionThrowing Our Own Exception
•• For exampleFor example……

String readBytes(BufferedReader in, int num_bytes)
     throws EOFException
{

while (. . .)
{
  if (char_in == EOF)
  {
  if (number_read < num_bytes)
  throw new EOFException();
  }
  . . .
}
. . .

} Fibanacci.java



28

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 5555

Throwing Our Own ExceptionThrowing Our Own Exception

•• If we encounter an EOF, we make a newIf we encounter an EOF, we make a new
object of class object of class EOFExceptionEOFException
class derived from class derived from IOExceptionIOException

•• After making exception object, we throw itAfter making exception object, we throw it
The method ends at this pointThe method ends at this point
The calling program needs to deal with ourThe calling program needs to deal with our

exception, which tells it that we encountered anexception, which tells it that we encountered an
EOF before we should have.EOF before we should have.

if (num_read < num_bytes)
throw new EOFException();

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 5656

A More Descriptive ExceptionA More Descriptive Exception

•• There are actually two constructors for There are actually two constructors for allall
Exception classesException classes
 default (no parameters)default (no parameters)

 one that takes a Stringone that takes a String
•• describe the condition that generated thisdescribe the condition that generated this

exception more fullyexception more fully

if (num_read < num_bytes)
{

String gripe = “I read “ + num_read + 
“ when I should have read ” + num_bytes;

throw new EOFException(gripe);
}



29

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 5757

Creating Our Own Exception ClassCreating Our Own Exception Class

•• The The EOFExceptionEOFException class described the class described the
error our method encountered well.error our method encountered well.
 not always the case.not always the case.

Many exceptions derived from Many exceptions derived from IOExceptionIOException, but, but
plenty more conditions.plenty more conditions.

•• What do you do when you cannot find aWhat do you do when you cannot find a
predefined exception class the describespredefined exception class the describes
your condition?your condition?
Make a new exception class!Make a new exception class!

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 5858

Creating Our Own Exception ClassCreating Our Own Exception Class

public class FileFormatException extends IOException
{

public FileFormatException()
{ }

public FileFormatException(String gripe)
{

super(gripe);
}

}

•• Now, we are ready to throw exceptions ofNow, we are ready to throw exceptions of
type type FileFormatExceptionFileFormatException



30

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 5959

Catching ExceptionsCatching Exceptions

•• After we throw an exception, some part ofAfter we throw an exception, some part of
our program needs to our program needs to catchcatch it it
some part of our programsome part of our program

•• knows how to deal with the situation that causedknows how to deal with the situation that caused
the exceptionthe exception

•• receives itreceives it

•• handles the problemhandles the problem
Hopefully gracefully, without exitingHopefully gracefully, without exiting

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 6060

The try/catch BlockThe try/catch Block

•• The simplest way to catch an exception is toThe simplest way to catch an exception is to
use a use a try/catchtry/catch  blockblock

•• Simplest form of this block looks like:Simplest form of this block looks like:

try {
code;
more code;

} 
catch (ExceptionType e)
{

error code for ExceptionType
}



31

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 6161

Try/Catch BlockTry/Catch Block

•• The code in the The code in the trytry block runs first block runs first
If it completes without an exception, the catchIf it completes without an exception, the catch

block(s) are skippedblock(s) are skipped

If the try code generates an exception, a catchIf the try code generates an exception, a catch
block runsblock runs
•• remaining code in the try block is skipped.remaining code in the try block is skipped.

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 6262

The try/catch BlockThe try/catch Block

•• If the code inside the If the code inside the trytry {} {}
block does block does notnot throw an throw an
exception of ExceptionType,exception of ExceptionType,
the the catchcatch {} block is skipped. {} block is skipped.

•• If an exception of a typeIf an exception of a type
other than ExceptionType isother than ExceptionType is
thrown inside the thrown inside the trytry {} block, {} block,
the method exitsthe method exits
immediately and theimmediately and the
program dies.program dies.

try {
code;
more code;

}
catch (ExceptionType e)
{

error code for
ExceptionType

}



32

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 6363

The try/catch BlockThe try/catch Block

•• You can have more thanYou can have more than
one catch {} block.one catch {} block.
 lets you handle more thanlets you handle more than

one type of exception thatone type of exception that
can be thrown inside yourcan be thrown inside your
try {} block.try {} block.

•• If ExceptionType1 doesIf ExceptionType1 does
not catch the exception, itnot catch the exception, it
falls to ExceptionType2,falls to ExceptionType2,
and so forthand so forth
 run the first matching catchrun the first matching catch

{} block.{} block.

try {
code;
more code;

}
catch (ExceptionType1 e)
{

error code
for ExceptionType

}
catch (ExceptionType2 e)
{

error code
for ExceptionType

}

Can catch any type with Exception e,
but won’t have customized messages

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 6464

try/catch try/catch …… an Example an Example
public void read(BufferedReader in)
{

try {
boolean done = false;
while (!done)
{

String line=in.readLine();
// this could throw IOException!
if (line == null)

done = true;
}

} 
catch (IOException exp) {

exp.printStackTrace();
}

}
Prints out stack trace to method call that
caused the error



33

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 6565

try/catch try/catch …… an Example an Example
public void read(BufferedReader in)
{

boolean done = false;
while (!done)
{

try {
String line=in.readLine();
// this could throw IOException!
if (line == null)

done = true;
}
catch (IOException exp) {

exp.printStackTrace();
}

}
} More precise try/catch may help pinpoint error

But could result in messier code

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 6666

The finally BlockThe finally Block

•• Can add a Can add a finally block after all possible block after all possible
catch blockscatch blocks
Code inCode in finally  finally block block alwaysalways runs, after the code runs, after the code

in the try and/or catch blocksin the try and/or catch blocks
•• after the try block finishes, or if an exceptionafter the try block finishes, or if an exception

occurs, after the catch block finishes.occurs, after the catch block finishes.

•• Allows you to clean up or do maintenanceAllows you to clean up or do maintenance
before the method ends (one way or thebefore the method ends (one way or the
other)other)
E.g., closing database connectionsE.g., closing database connections



34

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 6767

The try/catch/finally BlocksThe try/catch/finally Blocks

•• Which statements run if:Which statements run if:
Neither statement 1 norNeither statement 1 nor

statement 2 throws anstatement 2 throws an
exceptionexception

Statement 1 throws anStatement 1 throws an
EOFExceptionEOFException

Statement 2 throws anStatement 2 throws an
EOFExceptionEOFException

Statement 1 throws anStatement 1 throws an
IOExceptionIOException

try {
statement1;
statement2;

}
catch (EOFException e)
{

statement3;
statement4;

}
finally
{

statement5;
statement6;

}

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 6868

What to do with a Caught Exception?What to do with a Caught Exception?
•• We dump the stack after the exception occursWe dump the stack after the exception occurs

What else can we do?What else can we do?

•• Often, the best answer is to do nothing but reportOften, the best answer is to do nothing but report
the problemthe problem

•• If an exception occurs in the If an exception occurs in the readLinereadLine() method, our() method, our
read() method should probably pass up to whoeverread() method should probably pass up to whoever
called itcalled it

•• Instead of catching this exception, simply advertiseInstead of catching this exception, simply advertise
that the read() method can throw an IOException.that the read() method can throw an IOException.
Let whoever calls the read() method catch andLet whoever calls the read() method catch and
handle the exception.handle the exception.



35

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 6969

A Further ExampleA Further Example

public void read(BufferedReader in)
      throws IOException
{

boolean done = false;
while (!done)
{

String line=in.readLine();
// this could throw IOException!
if (line == null)

done = true;
}

}

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 7070

Checked ExceptionsChecked Exceptions
•• Why are these called checked exceptions?Why are these called checked exceptions?

the compiler the compiler checkschecks to make sure you deal to make sure you deal
with such an exception.with such an exception.

•• If you call a method that could generate aIf you call a method that could generate a
checked exception, you can eitherchecked exception, you can either
catch and handle it, orcatch and handle it, or

have your method throw the exception up tohave your method throw the exception up to
whoever called it by advertising the exceptionwhoever called it by advertising the exception

You MUST do one of these two thingsYou MUST do one of these two things



36

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 7171

Methods Throwing ExceptionsMethods Throwing Exceptions

•• The online API documentation will tell you if aThe online API documentation will tell you if a
method can throw an exception.method can throw an exception.
If so, you must handle itIf so, you must handle it

•• If your method could possibly throw anIf your method could possibly throw an
exception (by generating it or by callingexception (by generating it or by calling
another method that could), advertise it!another method that could), advertise it!
If you canIf you can’’t handle all sorts of errors, thatt handle all sorts of errors, that’’ss

OKOK……let whoever is calling you worry about it.let whoever is calling you worry about it.
However, they can only do that if you advertiseHowever, they can only do that if you advertise
any exceptions you canany exceptions you can’’t deal with.t deal with.

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 7272

Programming with ExceptionsProgramming with Exceptions

•• Exception handling is slowException handling is slow
•• Use one big Use one big try try block instead of nesting try-block instead of nesting try-

catch blocks too deepcatch blocks too deep
•• Don't ignore exceptionsDon't ignore exceptions

 it's better to pass them along to higher callsit's better to pass them along to higher calls



37

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 7373

Benefits of exceptions?Benefits of exceptions?

June 15, 2006June 15, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 7474

Benefits of ExceptionsBenefits of Exceptions

•• Force error checking/handlingForce error checking/handling
Otherwise, wonOtherwise, won’’t compilet compile

Does not guarantee Does not guarantee ““goodgood”” exception handling exception handling

•• Ease debuggingEase debugging
Stack traceStack trace


