
1

Strings and PointersStrings and Pointers

July 18, 2005July 18, 2005

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

AnnouncementsAnnouncements

•• Lab 4Lab 4
Why are you taking this course?Why are you taking this course?

•• Lab 5Lab 5
#7, 8: Reading in data from file using #7, 8: Reading in data from file using fscanffscanf

•• QuizQuiz

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

QuizQuiz

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

StringsStrings

•• Special character arraysSpecial character arrays
 End in End in null characternull character, , ‘‘\0\0’’

\0\0ssiieemmaannyymm,,oolllleeHH

Null character--not a space--
marks end of string

\0\0!!iiHH

char hi[6];

char hello[20];

554433221100

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Initializing StringsInitializing Strings

•• char hello[] = {char hello[] = {““hellohello””};};
 Implicitly, the null character is added to the endImplicitly, the null character is added to the end
 The length of the array is set to 6The length of the array is set to 6

•• char hi[] = char hi[] = ““hihi””;;
Null Null characted characted appendedappended
 Length of the array is 3Length of the array is 3

•• char greetings[10] = {char greetings[10] = {‘‘gg’’,,’’rr’’,,’’ee’’,,’’ee’’,,’’tt’’,,’’ii’’,,’’nn’’,,’’gg’’}}
 Just a character array, not a string because Just a character array, not a string because nono

null characternull character

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Character I/OCharacter I/O

•• Have to understand how to manipulateHave to understand how to manipulate
characters to manipulate stringscharacters to manipulate strings

•• scanfscanf
 scanfscanf((““%c%c””, &x);, &x);

•• getChargetChar
Returns a character from Returns a character from stdin stdin (terminal)(terminal)
Use:Use:

char x;char x;
……
x =x = getChar getChar();();

2

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Pitfalls in reading in charactersPitfalls in reading in characters
•• ““EnterEnter”” ((‘‘\\nn’’) triggers) triggers getChar getChar oror scanf scanf

But, But, ‘‘\\nn’’ isis a character! a character!

•• Be careful when using Be careful when using scanfscanf
 scanfscanf((““%c %c%c %c””, &x, &y);, &x, &y);

•• If youIf you’’re having trouble with input withre having trouble with input with
newline newline chars, try adding chars, try adding fflushfflush(stream)(stream)
Get rid of Get rid of ‘‘\\nn’’ that may still be in input streamthat may still be in input stream

scanf looks for the white space character between
characters. But, isn’t whitespace a character?

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Outputting charactersOutputting characters

•• printfprintf((““%c%c””, char); (or , char); (or fprintffprintf))
•• putcharputchar(char)(char)

 Since a character is represented as an integer,Since a character is represented as an integer,
can print out integerscan print out integers
•• Get their character representationGet their character representation

•• puts(char),puts(char), fputs fputs(char)(char)

strings.c

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Integer representation of charactersInteger representation of characters
•• ASCII (integer) values for charactersASCII (integer) values for characters

At a low-level, each character is At a low-level, each character is representedrepresented by by
an an integerinteger

Can actually print out integers as charactersCan actually print out integers as characters
using using putcharputchar
•• Example: Example: putcharputchar(35) --> prints (35) --> prints ‘‘##’’

•• Integer representation allows C to do easierInteger representation allows C to do easier
character manipulation and processingcharacter manipulation and processing
 Ex: Ex: ‘‘aa’’ and and ‘‘bb’’ are 1 apart and are 1 apart and ‘‘aa’’ < < ‘‘bb’’

•• See Table 3.11 for the character/integerSee Table 3.11 for the character/integer
representation orrepresentation or ascii ascii_table.c_table.c ascii_table.c

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Formatting Strings in Formatting Strings in printfprintf

•• String format String format specifierspecifier has a field width has a field width
Right-justify the stringRight-justify the string
 Example:Example: printf printf((““%40s%40s””, string);, string);

•• Has width of 40Has width of 40
•• Right-justifies string so that it takes up 40Right-justifies string so that it takes up 40

characterscharacters
•• If string is longer than 40 characters, it will lookIf string is longer than 40 characters, it will look

as if you did not specify a field widthas if you did not specify a field width

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Assigning to StringsAssigning to Strings

•• Cannot just assignCannot just assign
 hello = hello = ““hihi””;;

•• Why?Why?
 hellohello is actually the address of the first element is actually the address of the first element

in the character arrayin the character array

\0\0ssiieemmaannyymm,,oolllleeHH

char hello[20];

hello Can’t change hello’s address in memory

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

String Functions for AssignmentsString Functions for Assignments

•• Include Include string.hstring.h
•• Need to Need to copycopy a string into another one a string into another one

 strcpystrcpy(char *(char *dstdst, char *, char *srcsrc))
char a[10];char a[10];
……
strcpystrcpy(a, (a, ““new stringnew string””););

 aa now contains the string now contains the string ““new stringnew string””

Implicitly ends in a null character

3

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

String Functions: Determining SizeString Functions: Determining Size

•• sizeofsizeof(char_array_name)(char_array_name)
Returns amount of memory allocated to theReturns amount of memory allocated to the

arrayarray

•• strlenstrlen(char_array_name)(char_array_name)
Returns length of the stringReturns length of the string

•• Example:Example:
 char example[10] = char example[10] = ““exampleexample””;;
 sizeofsizeof: 10 Bytes: 10 Bytes
 strlenstrlen: 7: 7

Why don’t we have a similar “length”
function for numeric arrays?

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

String I/O: InputString I/O: Input
•• scanfscanf((““%s%s””, char_array_name);, char_array_name);

DonDon’’t need the [] or & when passing thet need the [] or & when passing the
argument, argument, char_array_namechar_array_name

Reads in one word (until Reads in one word (until whitespacewhitespace) from) from stdin stdin
 fscanffscanf works similarlyworks similarly

•• gets(char_array_name);gets(char_array_name);
Reads until Reads until newline newline charactercharacter
 Stored in char_array_nameStored in char_array_name
Newline Newline character is not included in the stringcharacter is not included in the string
Appends a null character to the stringAppends a null character to the string

stringio.c
Why is gets unsafe?

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

String I/O: InputString I/O: Input
•• fgetsfgets(char_array_name, length, stream)(char_array_name, length, stream)

Reads untilReads until newline newline character or character or length-1length-1
characters characters from the input stream, e.g., filefrom the input stream, e.g., file
streamstream

 Stored in char_array_nameStored in char_array_name
Newline Newline character character isis included in the stored string included in the stored string
Appends a null character to the string (after theAppends a null character to the string (after the

\n)\n)
•• Why is Why is fgetsfgets the preferred way to readthe preferred way to read

character input?character input?

stringio.2.c
July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

String Input Functions SummaryString Input Functions Summary

Reads in one line until some limit,Reads in one line until some limit,
includes includes newline newline charactercharacterfgetsfgets

Reads in one line, does notReads in one line, does not
include include newlinenewlinegetsgets

Reads in one wordReads in one wordscanfscanf, , fscanffscanf

NotesNotesNameName

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

String I/O: OutputString I/O: Output

•• printfprintf((““%s%s””, char_array_name), char_array_name)
Unlike Unlike scanfscanf, prints the whole string, regardless, prints the whole string, regardless

of white spaceof white space

•• puts(char_array_name)puts(char_array_name)
 Prints the string outPrints the string out
Appends aAppends a newline newline character to outputcharacter to output

•• fputsfputs(char_array_name, (char_array_name, outputstreamoutputstream))
 Prints out the stringPrints out the string

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

String Output Functions SummaryString Output Functions Summary

Prints string to streamPrints string to streamfputsfputs

Prints string, appends Prints string, appends newlinenewlineputsputs

Prints whole stringPrints whole stringprintfprintf, , fprintffprintf

NotesNotesNameName

4

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Manipulating CharactersManipulating Characters

•• Character Functions: Table 7.1 in BookCharacter Functions: Table 7.1 in Book
•• Handle textual inputHandle textual input
•• Determine character typeDetermine character type

 isalnumisalnum: alpha-numeric character: alpha-numeric character
 isalphaisalpha: alphabetic character: alphabetic character
 iscntrliscntrl: control character (like : control character (like newlinenewline, tab), tab)
……

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Manipulating CharactersManipulating Characters

•• tolowertolower
Return the lowercase version of the characterReturn the lowercase version of the character
Could we implement this function?Could we implement this function?

•• touppertoupper
Return the uppercase version of the characterReturn the uppercase version of the character

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

More string functionsMore string functions

•• Common string functions: Table 7.3Common string functions: Table 7.3
•• atoiatoi: returns the : returns the intint value of a string value of a string
•• strcatstrcat: combine two strings into one string: combine two strings into one string
•• strcmpstrcmp: compares two strings: compares two strings

Use to sort strings (using algorithms from lastUse to sort strings (using algorithms from last
week)week)

•• Lots more!Lots more!

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

2-D Character Arrays2-D Character Arrays

•• Similar to 2-D numeric arraysSimilar to 2-D numeric arrays
•• Example, a dictionaryExample, a dictionary

/* 100 words, at most 39 characters long (plus the/* 100 words, at most 39 characters long (plus the
null character) */null character) */

char dictionary[100][40];char dictionary[100][40];

•• dictionary[1] is dictionary[1] is ““catcat””, which is a char[], which is a char[]
•• dictionary[1][2] is dictionary[1][2] is ‘‘tt’’, which is a char, which is a char

““zebrazebra””9999

…………

““dogdog””22

““catcat””11

““boyboy””00

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

2-D Character Arrays2-D Character Arrays

•• How would you print each word?How would you print each word?
for(i=0; i < 100; i++)for(i=0; i < 100; i++)

printfprintf((““%s%s””, dictionary[i]);, dictionary[i]);

•• How would you print the second character inHow would you print the second character in
each word?each word?
for(i=0; i < 100; i++)for(i=0; i < 100; i++)

printfprintf((““%c%c””, dictionary[i][1]);, dictionary[i][1]);

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

PointersPointers

•• Points to a location in memoryPoints to a location in memory

x9996x9996

……

x0008x0008

x0000x0000x0004x0004

77x0000x0000

ValueValueMemoryMemory
LocationLocationint x = 7;

int *ptr=&x;

x is stored in first available
memory location, x0000

Means that ptr is of
type pointer to an int.

pointerex.c

“ptr points to the location of x”
New Operators:

&: “address of”
*: “value of” (or dereferencing)

x

ptr

5

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

PointersPointers

•• Points to a location in memoryPoints to a location in memory

x9996x9996

……

x0008x0008

x0000x0000x0004x0004

77x0000x0000

ValueValueMemoryMemory
LocationLocation

int x = 7;

int *ptr=&x;

To get the value of ptr,
use *ptr

Print a memory location: %p

To assign to ptr outside of an
initialization: ptr = &x;

x

ptr

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

PointersPointers

•• Points to a location in memoryPoints to a location in memory

x9996x9996

……

x0008x0008

x0000x0000x0004x0004

88x0000x0000

ValueValueMemoryMemory
LocationLocation

int x = 7;
int *ptr=&x;

What happens if we …

*ptr = 8;

pointerex.2.c

x

ptr

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

PointersPointers

•• Points to a location in memoryPoints to a location in memory

x9996x9996

……

x0008x0008

x0000x0000x0004x0004

99x0000x0000

ValueValueMemoryMemory
LocationLocation

int x = 7;
int *ptr=&x;

What happens if we …

x = 9;

pointerex.2.c

x

ptr

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Using pointersUsing pointers

•• Besides initialization to point to an address,Besides initialization to point to an address,
most uses of pointers will have the star (*)most uses of pointers will have the star (*)
before the variablebefore the variable

•• Usually, want the Usually, want the valuevalue of the pointer, not of the pointer, not
the addressthe address
 Examples:Examples:

•• Assignment: *Assignment: *ptr ptr = value;= value;
•• Use: x = *Use: x = *ptr ptr + *ptr2+ *ptr2
•• Assignment/Use: *Assignment/Use: *ptr ptr = *ptr2 + 1= *ptr2 + 1

•• But you have to be careful with precedence!But you have to be careful with precedence!
pointerex.3.c

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Using pointersUsing pointers

•• Never use Never use ‘‘&&’’ on LHS of assignment on LHS of assignment
CanCan’’t change the memory addresst change the memory address
How would you know if a memory location isHow would you know if a memory location is

available?available?

•• ‘‘&&’’ can be used with any can be used with any useuse (not definition) (not definition)
of a variableof a variable
 variablevariable’’s address is always valids address is always valid

•• ‘‘**’’ can only be used with pointer variables can only be used with pointer variables
Otherwise, will look up values at weird memoryOtherwise, will look up values at weird memory

locations (e.g., memory location 7).locations (e.g., memory location 7).
July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Using pointers: data typesUsing pointers: data types
int int x;x;
int int **ptrptr = &x; = &x;
int int **ptrPtr ptrPtr = &= &ptrptr; /* a pointer to an; /* a pointer to an int int pointer */pointer */

intint**&x&x

intint****ptrPtrptrPtr

intint**ptrptr

intintxx

TypeTypeVariableVariable

pointerex.4.c

& -> adds a * to the data type

Trend?

Pointers can be used
with any data type

6

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

We have been using pointers!We have been using pointers!

•• Array identifiers are pointers to the firstArray identifiers are pointers to the first
element in the arrayelement in the array

•• InIn scanf scanf, we had to use , we had to use &&varvar notationnotation
 So we could So we could modifymodify the value in the value in varvar
Now, you know why the ampersand!Now, you know why the ampersand!

838391918888767697978585757596966767100100

int grades[10];

grades

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Pointers and FunctionsPointers and Functions

•• Instead of pass-by-value, we can Instead of pass-by-value, we can pass-by-pass-by-
referencereference
We discussed pass-by-ref briefly last weekWe discussed pass-by-ref briefly last week
Using pointers allows us to modify theUsing pointers allows us to modify the

parameters passed in (also called parameters passed in (also called referencereference
parametersparameters))
•• Example: swapping numbersExample: swapping numbers
•• Recall that before, our swap function did notRecall that before, our swap function did not

change the variables after returning to the mainchange the variables after returning to the main
functionfunction

swap.*.c

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Pointers and FunctionsPointers and Functions

•• Two different functions to square a numberTwo different functions to square a number
 int int square(square(int int n);n);
 void square(void square(int int *n);*n);

square.2.c
July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Pass By ReferencePass By Reference

•• Allows us to Allows us to ““returnreturn”” more than one variable more than one variable
from a functionfrom a function
Can change values in multiple variablesCan change values in multiple variables

•• Passing arrays is pass by referencePassing arrays is pass by reference
Because arrays are pointersBecause arrays are pointers
Why we could modify arraysWhy we could modify arrays

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Arrays passed to functionsArrays passed to functions

•• The following two function prototypes areThe following two function prototypes are
equivalent:equivalent:
 void void modArraymodArray((int int array[]);array[]);
 void void modArraymodArray((int int *array);*array);

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Strings as character pointersStrings as character pointers

•• Since arrays and pointers are equivalentSince arrays and pointers are equivalent
 string == character array == character pointerstring == character array == character pointer

•• However, once youHowever, once you’’ve chosen either the array orve chosen either the array or
pointer, must be consistent in use in functionpointer, must be consistent in use in function
headers and passing parametersheaders and passing parameters

•• Why would we choose one representationWhy would we choose one representation
over another?over another?
Character arrays have an associated lengthCharacter arrays have an associated length

•• May not want to deal with a fixed lengthMay not want to deal with a fixed length

7

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Command-line ArgumentsCommand-line Arguments

•• Pass the program arguments through thePass the program arguments through the
command-linecommand-line
 Ex: cp file.c Ex: cp file.c filecopyfilecopy.c.c

•• Adds more flexibility to your programsAdds more flexibility to your programs
Change program depending on the argumentsChange program depending on the arguments

or even the number of argumentsor even the number of arguments

file.c and filecopy.c are command-line
arguments to the UNIX command “cp”

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Adding command-line arguments toAdding command-line arguments to
the programthe program

““filecopyfilecopy.c.c””22

““file.cfile.c””11

““cpcp””00argc = 3

argv

•• Modify the type signature of main()Modify the type signature of main()
 Takes two parameters:Takes two parameters: int argcint argc, char *, char *argvargv[][]
 argcargc: the number of arguments (argument: the number of arguments (argument

countcount))
 argvargv: the : the vectorvector of arguments as strings of arguments as strings
 Example: Example: int int main(main(int argcint argc, char *, char *argvargv[])[])

Name of the program

First argument

Second argument

Names of parameters
to main can change
but types cannot

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

argvargv: close up: close up

““filecopyfilecopy.c.c””22

““file.cfile.c””11

““cpcp””00argc = 3

argv

•• char *char *argvargv[][]
An An arrayarray of of character pointerscharacter pointers
Why not a fixed-length, 2-d array?Why not a fixed-length, 2-d array?

•• What does 2-d array look like as a parameter?What does 2-d array look like as a parameter?
What if an argument is a number?What if an argument is a number?

• Quotation marks are not
part of the argument. They
emphasize that each
argument is a string.

args.c July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

argvargv: close up: close up

““88””22

““3.143.14””11

““a.outa.out””00argc = 3

argv

•• What if an argument is a number?What if an argument is a number?
Must convert the string into a number using aMust convert the string into a number using a

string functionstring function
•• atofatof: convert the value of the string to a float: convert the value of the string to a float
•• atoiatoi: convert the value of the string to an integer: convert the value of the string to an integer

Name of the program

First argument

Second argument

args.2.c

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Review: Opening the fileReview: Opening the file
•• Prototype:Prototype:

 FILE *FILE *fopenfopen(char *filename, char *mode);(char *filename, char *mode);
Returns NULL if there was some problemReturns NULL if there was some problem

•• File does not exist, incorrect permissionsFile does not exist, incorrect permissions

•• Example usage:Example usage:
 file_file_ptr ptr = = fopenfopen((““data.txtdata.txt””, , ““rr””););

•• Check that file openedCheck that file opened
if(file_if(file_ptr ptr == NULL) {== NULL) {

printfprintf((““File File ‘‘data.txtdata.txt’’ did not open.\n did not open.\n””););
exit(1);exit(1);

}}

Either
“r” for read
“w” for write

We’ll talk more about
char * next week

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

How Character Arrays change whatHow Character Arrays change what
we can do with file I/Owe can do with file I/O
•• Passing a variable stringPassing a variable string

8

July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Review: Selection SortReview: Selection Sort

•• Key idea: keep track of the sorted andKey idea: keep track of the sorted and
unsorted parts of the arrayunsorted parts of the array

•• Algorithm:Algorithm:
While array is not sortedWhile array is not sorted

•• Find the maximum of the unsorted partFind the maximum of the unsorted part
•• Swap with element in the highest position in theSwap with element in the highest position in the

unsorted partunsorted part

1010661212997788554411-3-3

Highest position in
unsorted part

Max in unsorted part
July 18, 2005July 18, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Extend Selection Sort to StringsExtend Selection Sort to Strings

•• While array is not sortedWhile array is not sorted
 Find the maximum of the unsorted partFind the maximum of the unsorted part
 Swap with element in the highest position in theSwap with element in the highest position in the

unsorted partunsorted part

•• What is the maximum?What is the maximum?
•• How do we swap?How do we swap?

aarmrmsoapsoapfishfishmanmanballballlamblambkitekitezebrazebrabatbatcarcar

stringsort.1.c

99887766554433221100

