Nested For Loops,
Functions, Arrays,
and File I/O

July 11, 2005

Announcements

Project 1 due today
Sign up for demos on CPM

Mid-semester survey during break
Returning midterms at end of class

Final is August 12 at 7 p.m. in Gore 306
Also posted on course web site

July 11, 2005 Sara Sprenkle - CISC105

Nested For Loops

Two questions when writing single for loop
What are you repeating?
How many times are you repeating?
Nested for loops
May repeat a loop!
Example: printing the square of asterisks

July 11, 2005 Sara Sprenkle - CISC105

Printing a square of asterisks

Previously, we counted the total number of
asterisks and used an if statement to add
newline characters
Rethinking...

What are we repeating?

How many times do we repeat?

Draw 3 stars in each row Pk ok ok
E A k%%
* % %

Drawing 3 stars? That sounds like a loop!

July 11, 2005 Sara Sprenkle - CISC105

Nested For Loops

Inside loop
Done once for each iteration of outside loop
Outside loop
Each loop has its own counter variable
Example:
For each row
For each column
Print a star

Code simple nested for loop with two
different counter variables (nestedfor.c)

July 11, 2005 Sara Sprenkle - CISC105

Handling your quota

Disk Space

user1 | user2

prof1

prof2

Disk space is broken into pieces, one for each user.

You need to manage your allotted piece.
Around 512 MB

July 11, 2005 Sara Sprenkle - CISC105

Unix Commands: Handling your

quota
List the amount of disk usage for the files,
look for largest files (contain MB of data)
du -sh <file list> Called "pipe”.
. Means pass output of
du -sh <file list>| grep M command to input of next
How much disk space am I using?
quota -v
Find the a.out files
find . -name a.out
Remove the a.out files
find . -name a.out | xargs rm

July 11, 2005 Sara Sprenkle - CISC105

Different types of “space”
requirements: disk versus memory

program.c / S /

. . Executable takes up more
Takes up relatively little disk space than the .c file
disk space

When executed, requires
memory space

July 11, 2005 Sara Sprenkle - CISC105

Computer Architecture

Central
Processing
Unit (CPU)

Main memory: volatile
memory gets erased
when program exits or
machine shuts down

Disk: persistent
Retained even
after machine

shuts down
Note: picture is not to scale
CPU << Main Memory << Disk
July 11, 2005 Sara Sprenkle - CISC105

Computer Architecture

Executable (and original Central
program text file) are stored Processing

on disk Unit (CPU)

Load executable
into main memory
and process

July 11, 2005 Sara Sprenkle - CISC105

What affects memory requirements

During execution of the program
How many variables used?
Appropriate variable types/sizes

Often have a tradeoff between time and
space

Can compute faster if store more information in
variables, but requires more memory!

July 11, 2005 Sara Sprenkle - CISC105

Variable Sizes in Memory

We can find out the size of a variable
Using sizeof()
See sizeof.c

July 11, 2005 Sara Sprenkle - CISC105

Review: local variables

Parameters and variables in a function

Cannot be accessed or used by other functions
(except by being passed as arguments or as
return values)

Created (or allocated) on function entry

Deallocated on function return
Remember our stacks

Parameters are initialized by copying the
value of the argument (“call-by-value”)

Localize information, reduce iteractions

July 11, 2005 Sara Sprenkle - CISC105

Dealing with lots of data

Recall the lab problem of finding the
minimum, maximum, and average of
students’ grades

We basically “threw away” each input value

Only kept what we needed in the current min
and max variables and a running sum

What if we wanted to keep those grades for
later processing?

Grades (sentinel -1):
90 85 70 68 57 91 82 81 95 75 78 -1

July 11, 2005 Sara Sprenkle - CISC105

Solutions to storing student grades

Could create a variable for each student

grade:
int gradel, grade2, grade3, ...;
Problem?
July 11, 2005 Sara Sprenkle - CISC105
Arrays!
Named, ordered collection of variables of the
same type 0] 90
1 85
2 70 Values
. 3 68
Indices
—>| 4 57
Conceptually, array e L
contains 11 variables. 6 82
7 81
8 95
9 75
10 78
July 11, 2005 Sara SpIEnRE - CISTT05

Arrays!

Example declaration: int grades[11];

Need to specify the 0 90
of the array 1 85
2 70
_ . . 3 68
Indices: identify the 4 57
separate variables
5 91
Access array’s content: s :i
grades[0] is 90
grades[10] is 78 61 9%
2*grades[4] is 104 91 75
10(78
July 11, 2005 Saraspre =

Values: the data

stored in the variables

Array Declaration Syntax

type identifier[size];

size must be a positive int constant or literal

int grades[11];

grades is of type array of int with size 11
grades[0], grades[1], ..., grades[10] are

elements of the array grades
Each is a variable of type int

the bounds are the lowest and highest values of
the indices (0 and 10 in this example)

July 11, 2005 Sara Sprenkle - CISC105

Storing and Retrieving Data in Arrays

Array: collection of variables

An element is a variable, can be used
anywhere that a simple variable of that type can
be used

Assignment, expressions, I/O
Must be declared before use

July 11, 2005 Sara Sprenkle - CISC105

Storing and Retrieving Data in Arrays

An array is treated differently than a single variable
Can't assign or compare arrays with =, ==, <, ...
Can't use printf or scanf on an entire array
Can do them one element at a time
Examples:
grades[4] = 100;
total += grades[i];
if(grades[0] == grades[1]) {/*do something*/}

July 11, 2005 Sara Sprenkle - CISC105

10

Index Rule

An array index must evaluate to an int
between 0 and n-1 (inclusive), where n is
the size of the array

Accessing at indices < 0 or >= n will cause
problems (e.g., seg. faults or weird values, etc.)

Example. The size-1
grades[i+3+k] // OKaslongas 0 <= i+3+k <= 10

The index may be simple: grades[0]

Or complex:
grades[(int) (3.1*fabs(sin(2.0*PI*sqrt(29.067))))]
July 11, 2005 Sara Sprenkle - CISC105

Keeping Track of Elements in-use

When we're reading in grades, we don't
know how big to make the array

Arrays must be of fixed size
Declare the array bigger than you think you'll

need 5 %0
#define MAXGRADES 200 1 85
int grades| MAXGRADES]; 2 70

3 68
4 57
199

July 11, 2005 Sara Sprenkle - CISC105

11

Keeping Track of Elements in-use

Need to keep track of which entries contain
valid entries
Keep all valid entries at beginning of array
Another variable with number of valid elements

0 90
1 85
After element 10, all entries are “empty”. 2 70
Keep variable numGrades = 11 3 63
4 57

199

July 11, 2005 Sara Sprenkle - CISC105

Practice programs

Change averaging student grades to
maintain the grades

Extension: How do we calculate and print the
number of grades that are above average?

Demonstrate tradeoff between execution space
and time!

July 11, 2005 Sara Sprenkle - CISC105

Array Initialization

Initialization:
int grades[5];
grades[0]=90;
grades[1]=85; What are the valid
grades[2]=70; indices for this array?

Single-line initialization:
int grades[5] = {90, 85, 70, 68, 57};
Implicit initialization: Rest of entries are
int grades[5] = {90}; implicitly initialized to 0

July 11, 2005 Sara Sprenkle - CISC105

Using Array Elements in Functions

Adding two numbers together
int sum(inta, intb){
return a+b;

}
Declare an array of integers

Declare another array of integers

Store the result of adding two consecutive
elements in the array

July 11, 2005 Sara Sprenkle - CISC105

13

Using Whole Arrays in Functions

Compute average in a function:

How to pass array The number of valid
(empty brackets) entries in the array
—

double computeAverage(int a[], int num) {
int i; double total;
for(i=0; i < num; i++){
total+=ali];
} Anything stylistically

nice about this function?
return total/num;

}

July 11, 2005 Sara Sprenkle - CISC105

Using Whole Arrays in Functions

Compute average in a function:
Note that prototype includes the brackets too

double computeAverage(int a[], int num);

int main() {
int grades[MAXGRADES]; Don’t need the brackets
double gradeAvg; when passing the array

/

gradeAvg = average(grades, numGrades);

}

July 11, 2005 Sara Sprenkle - CISC105

14

Whole Arrays As Parameters

Entire arrays as parameters work differently
than variables
Array is never copied, i.e., pass-by-reference
We'll talk more about pass-by-ref next week
If modify the array in the function, the array
changes outside the function
Arrays do not contain information about their
size
Must pass the size of the array as an additional
parameter (or use a constant)

July 11, 2005 Sara Sprenkle - CISC105

Reading Data From a File

Inputting all those grades by hand is tedious

Put data in a file and read from the file
New data type: FILE

Defined in stdio.h data.txt
Initialization: 90 85 70
FILE *file_ptr; 68 57 91
/4 82 8195
7578
Need the “*”
July 11, 2005 Sara Sprenkle - CISC105

15

Checklist for reading files

Open the file

Specify what opening the file for (read or write)
Check that the file actually opened
Read the file

Use fscanf, similar to scanf

Adds the file pointer as the first parameter
Close the file

July 11, 2005 Sara Sprenkle - CISC105
i i Either
Opening the file e
Prototype . / “w” for write

FILE* fopen(char* filename, char* mode);
Returns NULL if there was some problem
File does not exist, incorrect permissions
Example usage:
file_ptr = fopen(“data.txt”, “r");
Check that file opened
if(file_ptr == NULL) {
printf(“File ‘data.txt’ did not open.\n");
exit(1);
}

July 11, 2005 Sara Sprenkle - CISC105

16

Reading from the file

int fscanf(FILE* stream, char* format, ...);
Returns number of matches (variables defined)
0 if incorrect format specifier
EOF (a defined constant) if no more to read
» From stdio.h
» Means “End-of-File”
» Use: while(fscanf(...) '= EOF) { /* do stuff */ }

Keeps track of where you are in the file

July 11, 2005 Sara Sprenkle - CISC105

Reading from the file

int fscanf(FILE* stream, char* format, ...);
Returns number of matches (variables defined)
Keeps track of where you are in the file

Before any read data.txt After one call to
\ | fscanf(file_ptr, “%d”, &input);

9085 70 input now has value 90.
68 57 91

82 8195 Note that don’t need “*”

7578 before file_ptr variable in
function call.
July 11, 2005 Sara Sprenkle - CISC105

17

Close the file

Prototype:
int fclose(FILE *stream);

Example use:
fclose(file_ptr);

July 11, 2005 Sara Sprenkle - CISC105

Practicing Reading from a File

Modify the grade program to read from a file

2 different stopping criteria
a sentinel value
EOF

July 11, 2005 Sara Sprenkle - CISC105

18

Reading from the terminal (stdin)

Can read from the terminal using fprintf and
fscanf

stdin is FILE* variable
stdin is short for “standard in”

July 11, 2005 Sara Sprenkle - CISC105

Writing Data to a File

Instead of writing to a terminal, may want to keep
the program output in @ more permanent form

Similar to printing to the terminal:
fprintf: adds file pointer as first parameter
Prototype:
int fprintf(FILE* stream, char* format, ...);
Example use:
fprintf(file_ptr, “Val is %d.\n", val);
Can use stdout to write to the terminal

July 11, 2005 Sara Sprenkle - CISC105

19

Writing Data to a File

fprintf also keeps track of where written in
the file

Before writing out.txt After one call to
| fprintf(file_ptr, “start out\n”);
out
Note that don’t need “*”
before file_ptr variable in
function call.
July 11, 2005 Sara Sprenkle - CISC105

Data Structures

Functions help us organize programs

How can we organize data?

Data structures!
Organize large amounts of data
Organize variable amounts of data
Organize related data

In this course, we will structure data using
arrays and structs

July 11, 2005 Sara Sprenkle - CISC105

20

Multidimensional arrays
int mult[4][4];
el

Number of columns
Number of rows

B o [2]
o ool o]o
1 [o [1 [273
2 | o[2] 4]s
3 J o366 |09

Each row is an array of size 4 (columns)
mult[1] is the array {0, 1, 2, 3}, mult[2][2] is 4

July 11, 2005 Sara Sprenkle - CISC105

Multidimensional Arrays

Can have lots of dimensions!

But what is the most logical way to organize
the data?

Consider storing the high and low
temperatures for every day for several years

What data structure/array form would you use
to store that information?

July 11, 2005 Sara Sprenkle - CISC105

21

Initializing multidimensional arrays

Can initialize arrays like 1-d arrays
int array[2][3] = {1, 2, 3,4, 5, 6}
int array[4][3] = {{1, 2, 3},
{4, 5, 6},
{7, 8,9},
{10,11,12}}
If leave out any of value, implicitly set to 0

July 11, 2005 Sara Sprenkle - CISC105

Multidimensional Arrays as

Parameters
void mod_array(int a[][COLS], int rows);

Need to specify the size of the dimensions for all
but the first dimension

Calling function:

int matrixROWS][COLS];
modMatrix(matrix, ROWS);

July 11, 2005 Sara Sprenkle - CISC105

22

Sorting Numbers in an Array

We may want to sort the values in an array

Sorting grades makes it easier to find the
median grade

Consider a small example:
Sort int array[3] such that array[0] <= array[1]
<= array[2]
Can we extend the basic idea to larger
arrays?

July 11, 2005 Sara Sprenkle - CISC105

Midterm

20% of your grade

Everyone gets 2 bonus points to make exam
out of 150 points

Solutions to problems
Field width includes precision and decimal point
Negating a condition

July 11, 2005 Sara Sprenkle - CISC105

23

