
1

CISC 105CISC 105
Loops and FunctionsLoops and Functions

June 20, 2005June 20, 2005

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

AnnouncementsAnnouncements

•• Midterm next MondayMidterm next Monday
Cumulative, including todayCumulative, including today’’s lectures lecture

•• Project 1 handed out next MondayProject 1 handed out next Monday
Due July 11Due July 11

•• Email addresses for CPM during breakEmail addresses for CPM during break
•• No class July 4No class July 4

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Requesting HelpRequesting Help

•• Before you askBefore you ask……
 Try Try to understand the compiler error messageto understand the compiler error message
Add debugging statementsAdd debugging statements
 Trace through your program, looking forTrace through your program, looking for

common problems, as discussed in classcommon problems, as discussed in class
•• If you need help, email (Gang or me)If you need help, email (Gang or me)

 The program (either copy-paste or as anThe program (either copy-paste or as an
attachment, e.g. how you attach your tar file)attachment, e.g. how you attach your tar file)

 The error youThe error you’’re getting (either the compilerre getting (either the compiler
error or the erroneous output)error or the erroneous output)

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

ReviewReview

•• ConstantsConstants
•• Math LibraryMath Library
•• User InputUser Input
•• ConditionalsConditionals

 if, if-else, if-else-if, switchif, if-else, if-else-if, switch

•• LoopsLoops
while, do-while, forwhile, do-while, for

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Quiz 2Quiz 2

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Review QuizReview Quiz

2

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Sentinel-controlled LoopsSentinel-controlled Loops

•• Sentinel valueSentinel value
 a special value that is used to terminate aa special value that is used to terminate a loop
Also called signal or flag

•• How do we choose the sentinel value?How do we choose the sentinel value?
When possible, not a legitimate data value thatWhen possible, not a legitimate data value that

the loop will encounterthe loop will encounter

•• Examples:Examples:
Adding up positive integersAdding up positive integers
A user menuA user menu

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Using Do-while LoopsUsing Do-while Loops

•• Better for loops where the body has to beBetter for loops where the body has to be
executed at least onceexecuted at least once
What is an example of this?What is an example of this?

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

User MenuUser Menu
int int main() {main() {

char option;char option;
printfprintf((““Welcome to my program!\nWelcome to my program!\n””););
do{do{
printfprintf((““Menu Options: \nMenu Options: \n““););
printfprintf((““Option a:Option a:””););
……
printfprintf((““Option q: quitOption q: quit””););
scanfscanf((““%c%c””, &option);, &option);
/* perform action *//* perform action */

} while(option != } while(option != ‘‘qq’’););
printfprintf((““Bye bye!\nBye bye!\n””););
return 0;return 0;

}} June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Loop ExtrasLoop Extras

•• One trip through a loop is called anOne trip through a loop is called an
iterationiteration

•• Do some iterations by hand to get an idea ofDo some iterations by hand to get an idea of
whatwhat’’s going ons going on

•• Put in print lines for yourself whenPut in print lines for yourself when
debugging gets difficultdebugging gets difficult

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Testing your programsTesting your programs

•• To verify your programTo verify your program’’s correctness, wes correctness, we
need to need to testtest it! it!

•• Given that the program compiles,Given that the program compiles,
Where are problems likely to occur?Where are problems likely to occur?

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Testing ExamplesTesting Examples

•• Averaging 3 numbersAveraging 3 numbers

•• Converting F-->CConverting F-->C

3

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

UNIX commandsUNIX commands

•• lsls has command-line options (or flags)has command-line options (or flags)
 The The ll option: option:

•• Usage: Usage: ls ls -l-l
•• Shows the Shows the ““longlong”” form of the list, including the form of the list, including the

date modified, permissions, and sizes of the filesdate modified, permissions, and sizes of the files

 The The aa option: option:
•• Usage:Usage: ls ls -a-a
•• Shows files that start with Shows files that start with ‘‘..’’

Can combine the options:Can combine the options:
•• Usage: Usage: ls ls -la-la Order of options does not matter

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

FunctionsFunctions
•• Functions Functions are small pieces of code that canare small pieces of code that can

be used in other pieces of code.be used in other pieces of code.
•• They have 0 or more inputs, and 0 or 1They have 0 or more inputs, and 0 or 1

outputs.outputs.
•• You can write code once rather than manyYou can write code once rather than many

timestimes
•• Simplify a hard problem into easy ones.Simplify a hard problem into easy ones.
•• Functions from libraries or user-definedFunctions from libraries or user-defined

WeWe’’ve seen functions from the ve seen functions from the math librarymath library

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Why write functions?Why write functions?

•• Allows you to break up a hard problem intoAllows you to break up a hard problem into
smaller, more manageable partssmaller, more manageable parts

•• Makes your code easier to understandMakes your code easier to understand
•• Makes part of the code reusable so that you:Makes part of the code reusable so that you:

Only have to type it out onceOnly have to type it out once
Can debug it all at onceCan debug it all at once

•• Isolates errorsIsolates errors

Can make changes in one functionCan make changes in one function

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

User Menu ExampleUser Menu Example
intint main() { main() {

char option;char option;
printfprintf((““Welcome to myWelcome to my
program!\nprogram!\n””););
do{do{

printfprintf((““Menu Options: \nMenu Options: \n““););
printfprintf((““Option a:Option a:””););
……
printfprintf((““Option q: quitOption q: quit””););
scanfscanf((““%c%c””, &option);, &option);
/* perform action *//* perform action */

} while(option != } while(option != ‘‘qq’’););
printfprintf((““Bye bye!\nBye bye!\n””););
return 0;return 0;

}}

intint main() { main() {
char option;char option;

printfprintf((““Welcome to myWelcome to my
program!\nprogram!\n””););

do{do{
printMenuprintMenu();();

scanfscanf((““%c%c””, &option);, &option);
/* perform action *//* perform action */

} while(option != } while(option != ‘‘qq’’););
printfprintf((““Bye bye!\nBye bye!\n””););
return 0;return 0;

}}

Called a function call

See usermenu.c

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Form of FunctionsForm of Functions

intint max(max(intint num1, num1, int int num2) {num2) {
int int result = 0;result = 0;
if (num1 >= num2) {if (num1 >= num2) {

result = num1;result = num1;
}}
else {else {

result = num2;result = num2;
}}
return result;return result;

}}

Output
Type Method

Name

Input Types
Input Names

Body (or function
definition)

How to give output

Function header or
function declarator

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

ParametersParameters

•• The inputs to a function are calledThe inputs to a function are called
parametersparameters or or argumentsarguments..

•• Parameters must appear in the order withParameters must appear in the order with
the types specified in the function headerthe types specified in the function header
 For example, you For example, you cannotcannot use use

float x, y;float x, y;
……

max(x, y);max(x, y);

max needs ints, not floats

4

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

ParametersParameters
•• The inputs to a function are called The inputs to a function are called parametersparameters or or

argumentsarguments..
•• Parameters must appear in the order with the typesParameters must appear in the order with the types

specified in the function headerspecified in the function header
 From the math library:From the math library:
NAMENAME
 pow pow - power function - power function
SYNOPSISSYNOPSIS
 #include <math.h> #include <math.h>
 double double
 pow pow(double x, double y);(double x, double y);
DESCRIPTIONDESCRIPTION
 The The pow pow() functions compute x raised to the power y.() functions compute x raised to the power y.

To get the expected answer for
aexp, the first parameter is a raised
to the second parameter exp

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

ParametersParameters
•• Formal ParametersFormal Parameters are the variables are the variables

named at the top of the function.named at the top of the function.
•• Actual ParametersActual Parameters are the variables or are the variables or

literals that really get used when the functionliterals that really get used when the function
is called.is called.

 int int max(max(intint n1, n1, int int n2){ n2){
z = max(x,y);z = max(x,y);

Formal & actual parameters must match inFormal & actual parameters must match in
order, number, and type!order, number, and type!

Formal
Actual

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Function OutputFunction Output
•• The type of output for the method is given inThe type of output for the method is given in

the type signature.the type signature.
•• If the method has no output, its return typeIf the method has no output, its return type

is is voidvoid..
•• When the code reaches a statementWhen the code reaches a statement

returnreturn x; x;
x is given as the output and the functionx is given as the output and the function
stops.stops.
 For void functions, return does not have a valueFor void functions, return does not have a value

with it: just (optional) with it: just (optional) return;return;

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Using library functionsUsing library functions

•• YouYou’’ve already done itve already done it
 Every time you call Every time you call printfprintf or or scanfscanf
Calling the functions in math.hCalling the functions in math.h

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Using your own functionsUsing your own functions

int int max1, max2, max3;max1, max2, max3;
max1 = max(5,2);max1 = max(5,2);
max2 = max(6,7);max2 = max(6,7);
max3 = max(max1,max2);max3 = max(max1,max2);

•• Keep in mind: what parameter order makesKeep in mind: what parameter order makes
the most sense (is most intuitive) to the userthe most sense (is most intuitive) to the user

Output is
assigned to max3Function

Name
Inputs

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Where are functions in the code?Where are functions in the code?

•• Must be Must be declareddeclared before main before main
•• Can be defined before or after mainCan be defined before or after main

 If after main, must have function prototypeIf after main, must have function prototype
(declaration) before main(declaration) before main

5

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Where are the functions defined?Where are the functions defined?

/* function definition *//* function definition */
intint max(max(int int x, x, intint y) { y) {
……
}}
int int main() {main() {

……
z = max(x, y);z = max(x, y);

return 0;return 0;

}}

Note that main is a
function too!

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Function PrototypesFunction Prototypes
•• Declare the function before defining itDeclare the function before defining it

/* function declaration *//* function declaration */
int int max(max(int int x, x, intint y); y);
int int main() {main() {

……
z = max(x, y);z = max(x, y);

}}
/* function definition *//* function definition */
intint max(max(int int x, x, int int y) {y) {
……
}}

Prototype says the number
and types of arguments
(parameters) and the type of
the return value;

Why would you use this way instead
of the other (in terms of readability)?

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Similar to a variable declarationSimilar to a variable declaration

intint max(max(intint num1, num1, int int num2);num2);

intint max_value; max_value;

Output
Type Method

Name

Input Types
Input Names

Variable
Name

Variable
Type

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Flow of ControlFlow of Control

•• When you call the function, the computerWhen you call the function, the computer
jumps to the other function and executes it.jumps to the other function and executes it.

•• When it is done, it returns to the same placeWhen it is done, it returns to the same place
in the first code, where it left off.in the first code, where it left off.

intint x,y,z; x,y,z;
x = 2;x = 2;
scanfscanf((““%d%d””, &y), &y)
z = max(x, y);z = max(x, y);
printfprintf((““The max is %d\nThe max is %d\n””, z);, z);

intint max(max(intint num1, num1, int int num2) { num2) {
 intint result = 0; result = 0;
 if (num1 >= num2) {if (num1 >= num2) {

result = num1;result = num1;
 }}
 else { else {

result = num2;result = num2;
 }}
 return result;return result;
}}

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Flow of ControlFlow of Control

result=num1;

num1 >= num2

int result=0;

true false

result=num2;

return result;

printf(“The max is %d\n”, z);

z=max(x, y);

int x, y, z;

return 0;

x=2;

scanf(“%d”, &y);

int max(int num1, int num2)To
stdio.h
function

To
stdio.h
function

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Flow of ControlFlow of Control

result=num1;

num1 >= num2

int result=0;

true false

result=num2;

return result;

printf(“The max is %d\n”, z);

z=max(x, y);

int x, y, z;

return 0;

x=2;

scanf(“%d”, &y);

int max(int num1, int num2)To
stdio.h
function

To
stdio.h
function

Gets replaced with
function’s output

6

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Flow of Control for main()Flow of Control for main()

int x, y, z;

…

return 0;

int main()
•• Recall Recall that main is also a

function
 How many parameters does

main take?
 What is main’s return type?

Sends flow of control
back to the terminal

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Flow of Control: Using return valuesFlow of Control: Using return values
•• Each function has its own variablesEach function has its own variables
intint max(max(intint num1, num1, int int num2) { num2) {

if (num1 >= num2) {if (num1 >= num2) {
return num1;return num1;

}}
else {else {

return num2;return num2;
}}

}}
intint main() { main() {

intint x=2, y=6, z; x=2, y=6, z;
z = max(x, y);z = max(x, y);
return 0;return 0;

}}

return num1;

num1 >= num2

true false

return num2;

int max(int num1, int num2)

return main

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Flow of Control: Using return valuesFlow of Control: Using return values
•• Each function has its own variablesEach function has its own variables
intint max(max(intint num1, num1, int int num2) { num2) {

if (num1 >= num2) {if (num1 >= num2) {
return num1;return num1;

}}
return num2;return num2;

}}
intint main() { main() {

int int x=2, y=6, z;x=2, y=6, z;
z = max(x, y);z = max(x, y);
return 0;return 0;

}}

return num1;

num1 >= num2

true

return num2;

int max(int num1, int num2)

return main

Implicit false branch:
Only way got here is
if the condition was

not true

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Passing ParametersPassing Parameters

•• Only copies of the actual parameters areOnly copies of the actual parameters are
given to the function. The actual parametersgiven to the function. The actual parameters
in the calling code do not change.in the calling code do not change.

•• Examples:Examples:
MaxMax
 SwapSwap

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Flow of ControlFlow of Control

result=num1;

num1 >= num2

int result=0;

true false

result=num2;

return result;

printf(“The max is %d\n”, z);

z=max(x, y);

int x, y, z;

printf(“Done!\n”);

x=2;

scanf(“%d”, &y);

int max(int num1, int num2)To
stdio.h
function

To
stdio.h
function

num1 gets the value of x
num2 gets the value of y

Show swap.c June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Function VariablesFunction Variables

•• Each function has its own variables andEach function has its own variables and
parametersparameters

7

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Function VariablesFunction Variables
intint max(max(intint num1, num1, int int num2) { num2) {

intint result = 0; result = 0;
if (num1 >= num2) {if (num1 >= num2) {

result = x;result = x;
}}
else {else {

result= y;result= y;
}}
return result;return result;

}}
int int main() {main() {

int int x=2, y=6, max;x=2, y=6, max;
max = max(x, y);max = max(x, y);
return 0;return 0;

}}

main

The stack

x 2
y 6
max --

Why can we name two
things max?

Function names are like last names

Variable names are
like first names

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Function VariablesFunction Variables
intint max(max(intint num1, num1, int int num2) { num2) {

intint result = 0; result = 0;
if (num1 >= num2) {if (num1 >= num2) {

result = num1;result = num1;
}}
else {else {

result = num2;result = num2;
}}
return result;return result;

}}
int int main() {main() {

int int x=2, y=6, max;x=2, y=6, max;
max = max(x, y);max = max(x, y);
return 0;return 0;

}}

main
x 2
y 6
max --

max
num1 2
num2 6

Called the function max, so need
to add its parameters to the stack

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Function VariablesFunction Variables
intint max(max(intint num1, num1, int int num2) { num2) {

intint result = 0; result = 0;
if (num1 >= num2) {if (num1 >= num2) {

result = num1;result = num1;
}}
else {else {

result = num2;result = num2;
}}
return result;return result;

}}
int int main() {main() {

int int x=2, y=6, max;x=2, y=6, max;
max = max(x, y);max = max(x, y);
return 0;return 0;

}}

main
x 2
y 6
max --

max
num1 2
num2 6
result 0

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Function VariablesFunction Variables
intint max(max(intint num1, num1, int int num2) { num2) {

intint result = 0; result = 0;
if (num1 >= num2) {if (num1 >= num2) {

result = num1;result = num1;
}}
else {else {

result = num2;result = num2;
}}
return result;return result;

}}
int int main() {main() {

int int x=2, y=6, max;x=2, y=6, max;
max = max(x, y);max = max(x, y);
return 0;return 0;

}}

main
x 2
y 6
max --

max
num1 2
num2 6
result 6

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Function VariablesFunction Variables
intint max(max(intint num1, num1, int int num2) { num2) {

intint result = 0; result = 0;
if (num1 >= num2) {if (num1 >= num2) {

result = num1;result = num1;
}}
else {else {

result = num2;result = num2;
}}
return result;return result;

}}
int int main() {main() {

int int x=2, y=6, max;x=2, y=6, max;
max = max(x, y);max = max(x, y);
return 0;return 0;

}}

main
x 2
y 6
max 6

Function max returned, so we no
longer have to keep track of its
variables on the stack

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Variable ScopeVariable Scope

•• Functions can have the same parameter andFunctions can have the same parameter and
variable names as other functionsvariable names as other functions
Need to look at the variableNeed to look at the variable’’s s scopescope to to

determine which one youdetermine which one you’’re looking atre looking at

•• Scope levelsScope levels
 LocalLocal scope (also called function scope) scope (also called function scope)

•• Can only be seen within the functionCan only be seen within the function

GlobalGlobal scope (also called file scope) scope (also called file scope)
•• Whole program can accessWhole program can access

Show scope.c

8

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Variable ScopeVariable Scope

•• Use the stack to figure out which variableUse the stack to figure out which variable
youyou’’re usingre using

•• Constants: global scopeConstants: global scope
No matter where #define is calledNo matter where #define is called
Because does a find-replace on whole fileBecause does a find-replace on whole file

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Variable ScopeVariable Scope
intint max(max(intint x, x, int int y) { y) {

intint max = 0; max = 0;
if (x >= y) {if (x >= y) {

max = x;max = x;
}}
else {else {

max= y;max= y;
}}
return max;return max;

}}
int int main() {main() {

int int x=2, y=6, max;x=2, y=6, max;
max = max(x, y);max = max(x, y);
return 0;return 0;

}}

main
x 2
y 6
max --

The stack

For function call, which x and y
do we use?
Start looking from top of stack

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Variable ScopeVariable Scope
intint max(max(intint x, x, int int y) { y) {

intint max = 0; max = 0;
if (x >= y) {if (x >= y) {

max = x;max = x;
}}
else {else {

max= y;max= y;
}}
return max;return max;

}}
int int main() {main() {

int int x=2, y=6, max;x=2, y=6, max;
max = max(x, y);max = max(x, y);
return 0;return 0;

}}

main
x 2
y 6
max --

max
x 2
y 6
max 0

For the comparison, which x
and y do we use?

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Why not make all variables global?Why not make all variables global?

•• You donYou don’’t want to mess yourself up, do you?t want to mess yourself up, do you?
•• Global variables are considered bad styleGlobal variables are considered bad style

DonDon’’t use them! (but you should know aboutt use them! (but you should know about
them)them)

 Increase the chance that something will beIncrease the chance that something will be
changed in a way that you didn't expect.changed in a way that you didn't expect.

Hard to debug.Hard to debug.
 If your function changes a global variable, youIf your function changes a global variable, you

should document the change in the functionshould document the change in the function’’ss
comment.comment.

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Writing a Writing a ““goodgood”” function function
•• Should be an Should be an ““intuitive chunkintuitive chunk””
•• Should be reusableShould be reusable
•• Always have heading block of code that tells whatAlways have heading block of code that tells what

the method doesthe method does
•• PreconditionPrecondition: Things that must be true in order: Things that must be true in order

for the method to work correctlyfor the method to work correctly
 E.g., num must be evenE.g., num must be even

•• PostconditionPostcondition: Things that will be true when: Things that will be true when
method finishes (if precondition is true)method finishes (if precondition is true)
 E.g., the returned value is the maxE.g., the returned value is the max

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Writing good comments for functionsWriting good comments for functions

•• Good style: Each function Good style: Each function mustmust have a have a
commentcomment
Written at a high-levelWritten at a high-level
 Include the precondition, Include the precondition, postconditionpostcondition
Describe the parameters and the resultDescribe the parameters and the result

(precondition and (precondition and postconditionpostcondition may cover this) may cover this)

9

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Using functionsUsing functions

•• Temperature converterTemperature converter
•• Average calculatorAverage calculator
•• Calculate a number raised to a powerCalculate a number raised to a power

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Recursive FunctionsRecursive Functions
•• Functions can call themselvesFunctions can call themselves

Divide and conquer:Divide and conquer:
•• common way to solve problemscommon way to solve problems

Break the problem down into a smaller problemBreak the problem down into a smaller problem
that you can solvethat you can solve

•• Consider factorial:Consider factorial:
 n! = n * (n-1)!n! = n * (n-1)!
 (n-1)! = (n-1) * (n-2)!(n-1)! = (n-1) * (n-2)!
 (n-2)! = (n-2) * (n-3)!(n-2)! = (n-2) * (n-3)!
……
 1! = 11! = 1

Break down to a base case that
you know the answer to

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Practice: Recursive FunctionsPractice: Recursive Functions
•• Consider power:Consider power:

 aaexpexp = = a aexpexp-1-1 * a * a
 aaexpexp-1-1 = = a aexpexp-2-2 * a * a
……
WhatWhat’’s the base case?s the base case?
WhatWhat’’s the recursive call?s the recursive call?

•• Write powerWrite power
 iteratively (using a loop)iteratively (using a loop)
 recursivelyrecursively

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Goals of Good Programs:Goals of Good Programs:
PerformancePerformance
•• Program only takes as much space, time asProgram only takes as much space, time as

neededneeded
No extra variablesNo extra variables
DonDon’’t use double ift use double if int int will do will do
No extra comparisonsNo extra comparisons

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Goals of Good Programs: ReadabilityGoals of Good Programs: Readability
•• Descriptive variable, function namesDescriptive variable, function names
•• Good, descriptive, high-level commentsGood, descriptive, high-level comments
•• IndentationIndentation

Use Use EmacsEmacs!!

•• Vertical spacingVertical spacing
Add space between Add space between ““groupsgroups”” of related code of related code

•• FunctionsFunctions
Break up long code into smaller, more readableBreak up long code into smaller, more readable

componentscomponents

•• Line length (Use esc-q inLine length (Use esc-q in Emacs Emacs))
June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Goals of Good Programs: ExtensibilityGoals of Good Programs: Extensibility
•• Should be able to easily extend yourShould be able to easily extend your

programprogram’’s uses use
ConstantsConstants
User-inputUser-input
 FunctionsFunctions

•• ModularityModularity
 Functions that can be reused in other codeFunctions that can be reused in other code

•• See the C coding standards on the courseSee the C coding standards on the course
web page for more info about these goalsweb page for more info about these goals

10

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Debugging AdviceDebugging Advice

•• Build up your program in stepsBuild up your program in steps
Always write only small pieces of codeAlways write only small pieces of code
 Test, debug. RepeatTest, debug. Repeat

•• Write function body as part of main, testWrite function body as part of main, test
 Then, separate out into its own functionThen, separate out into its own function

•• Test function separately from other codeTest function separately from other code
Comment out irrelevant code to make sure thatComment out irrelevant code to make sure that

the function behaves as expectedthe function behaves as expected

June 20, 2005June 20, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105

Questions?Questions?

