CISC 105
Loops and Functions
June 20, 2005

Announcements

Midterm next Monday
Cumulative, including today’s lecture

Project 1 handed out next Monday
Due July 11

Email addresses for CPM during break
No class July 4

June 20, 2005 Sara Sprenkle - CISC105

Requesting Help

Before you ask...
Try to understand the compiler error message
Add debugging statements
Trace through your program, looking for
common problems, as discussed in class

If you need help, email (Gang or me)

The program (either copy-paste or as an
attachment, e.g. how you attach your tar file)

The error you're getting (either the compiler
error or the erroneous output)

June 20, 2005 Sara Sprenkle - CISC105

Review

Constants
Math Library
User Input
Conditionals
if, if-else, if-else-if, switch
Loops
while, do-while, for

June 20, 2005 Sara Sprenkle - CISC105

Quiz 2

June 20, 2005 Sara Sprenkle - CISC105

Review Quiz

June 20, 2005 Sara Sprenkle - CISC105

Sentinel-controlled Loops

Sentinel value
a special value that is used to terminate a loop
Also called signal or flag

How do we choose the sentinel value?
When possible, not a legitimate data value that
the loop will encounter

Examples:
Adding up positive integers
A user menu

June 20, 2005 Sara Sprenkle - CISC105

Using Do-while Loops

Better for loops where the body has to be
executed at least once
What is an example of this?

June 20, 2005 Sara Sprenkle - CISC105

User Menu

int main() {
char option;
printf("Welcome to my program!\n”);
do{
printf("Menu Options: \n"“);
printf("Option a:");

printf("Option q: quit”);
scanf("%c", &option);
/* perform action */
} while(option !="q");
printf(“Bye bye!\n");
return 0;

.Iur? 20, 2005 Sara Sprenkle - CISC105

Loop Extras

One trip through a loop is called an
iteration

Do some iterations by hand to get an idea of
what'’s going on

Put in print lines for yourself when
debugging gets difficult

June 20, 2005 Sara Sprenkle - CISC105

Testing your programs

To verify your program’s correctness, we
need to test it!

Given that the program compiles,
Where are problems likely to occur?

June 20, 2005 Sara Sprenkle - CISC105

Testing Examples

Averaging 3 numbers

Converting F-->C

June 20, 2005 Sara Sprenkle - CISC105

UNIX commands

Is has command-line options (or flags)
The | option:
Usage: Is -I
Shows the “long” form of the list, including the
date modified, permissions, and sizes of the files

The a option:
Usage: Is -a
Shows files that start with *.’

Can combine the options:
Usage: Is -la +——0Order of options does not matter

June 20, 2005 Sara Sprenkle - CISC105

Functions

Functions are small pieces of code that can

be used in other pieces of code.

They have 0 or more inputs, and 0 or 1

outputs.

You can write code once rather than many

times

Simplify a hard problem into easy ones.

Functions from libraries or user-defined
We've seen functions from the math library

June 20, 2005 Sara Sprenkle - CISC105

Why write functions?

Allows you to break up a hard problem into
smaller, more manageable parts
Makes your code easier to understand
Makes part of the code reusable so that you:

Only have to type it out once

Can debug it all at once

Isolates errors
Can make changes in one function

June 20, 2005 Sara Sprenkle - CISC105

User Menu Example

int main() { int main() {
char option; char option;
printf(*Welcome to my P !
program!\n"); printf("Welcome to my
do{ program!\n”);

printf(*Menu Options: \n");

printf("Option a:"); do{ cCalled a function call

printMenu(); <

scanf("%c", &option);

/* perform action */
} while(option !="q");
printf("Bye bye!\n");

printf("Option q: quit”);
scanf("%c", &option);
/* perform action */
} while(option !'="'q");
printf("Bye bye!\n");

Form of Functions

Output
Type Method Input Types

Name

\

<« Al
int max(int num1, int num2) { Function header or
int result = 0: function declarator
’

if (num1 >= num2) {
result = num1;

Input Names

Body (or function
definition)
else {

result = num2;

return result; <«——— How to give output

3

June 20, 2005 Sara Sprenkle - CISC105

return 0; return 0;
’)
See usermenu.c
June 20, 2005 Sara Sprenkle - CISC105
Parameters

The inputs to a function are called
parameters or arguments.

Parameters must appear in the order with
the types specified in the function header
For example, you cannot use
float x, y;

max(X,y);

max needs ints, not floats

June 20, 2005 Sara Sprenkle - CISC105

Parameters

The inputs to a function are called parameters or
arguments.

Parameters must appear in the order with the types
specified in the function header

From the math library:
NAME

pow - power function

SYNOPSIS
R TS To get the expected answer for

double a®®, the first parameter is a raised

pow(double x, double y); tO the second parameter exp
DESCRIPTION

The pow() functions compute x raised to the power y.

June 20, 2005 Sara Sprenkle - CISC105

Parameters

Formal Parameters are the variables
named at the top of the function.

Actual Parameters are the variables or
literals that really get used when the function
is called.

int max(int n1, int n2){
z = max(x,y); —
/'

Formal
Actual

Formal & actual parameters must match in
order, number, and type!

June 20, 2005 Sara Sprenkle - CISC105

Function Output

The type of output for the method is given in
the type signature.

If the method has no output, its return type
is void.

When the code reaches a statement
return x;

X is given as the output and the function
stops.

For void functions, return does not have a value
with it: just (optional) return;

June 20, 2005 Sara Sprenkle - CISC105

Using library functions

You've already done it
Every time you call printf or scanf
Calling the functions in math.h

June 20, 2005 Sara Sprenkle - CISC105

Using your own functions

int max1, max2, max3;
max1 = max(5,2);

max2 = max(6,7);

max3 =|max{maxi,max2): |

I\

Function Inputs
Name

Output is
assigned to max3

Keep in mind: what parameter order makes
the most sense (is most intuitive) to the user

June 20, 2005 Sara Sprenkle - CISC105

Where are functions in the code?

Must be declared before main
Can be defined before or after main

If after main, must have function prototype
(declaration) before main

June 20, 2005 Sara Sprenkle - CISC105

Where are the functions defined?

/* function definition */
int max(intx, inty) {

} Note that main is a

. . N P E—
int main() { function too!

z=max(Xx, Y);
return 0;

June 20, 2005 Sara Sprenkle - CISC105

Function Prototypes

Declare the function before defining it
/* function declaration */
int max(int x, inty); Prototype says the number
int main() { ¥~ and types of arguments
(parameters) and the type of
z=max(x,y); the return value;
}
/* function definition */
int max(intx, inty)<{

} Why would you use this way instead
of the other (in terms of readability)?

June 20, 2005 Sara Sprenkle - CISC105

Similar to a variable declaration

Output
Type Method
Name

\ \

int mgx(int numl, int num2);

Input Types Input Names

int max_value;

!

Variable Variable
Type Name

June 20, 2005 Sara Sprenkle - CISC105

Flow of Control

When you call the function, the computer
jumps to the other function and executes it.

When it is done, it returns to the same place
in the first code, where it left off.

int max(int num1, int num2) {
int result = 0;

int x,y,z; if (num1 >= num2) {
X = 2; y result = numi;
scanf(“%d”, &y) else {

result = num2;

z = max(x, y); }
printf(“The maxm return result;
}

June 20, 2005 Sara Sprenkle - CISC105

Flow of Control

int max(int num1, int num2) |

To
stdio.h
function int result=0;

scanf("%d”, &y);

numl >= num2

To true false
function 0 Y); [result=num1; | [result=num2; |

| printf("The max is %d\n”, z); |

— return result;

June 20, 2005 Sara Sprenkle - CISC105

Flow of Control

int max(int num1, int num2) |

To
stdio.h
function int result=0;

scanf("%d”, &y);

~[pum1l >= num2

o TN true, false
stdio.h fungtion’s output
function | result=num1; ||I‘eSult=num2; |

| printf("The max is %d\n”, z); |

— return result;

June 20, 2005 Sara Sprenkle - CISC105

Flow of Control for main()

Recall that main is also a
function

How many parameters does
main take?

What is main’s return type?

A
Sends flow of co_ntrol return 0;
back to the terminal

Iy

June 20, 2005 Sara Sprenkle - CISC105

Flow of Control: Using return values

Each function has its own variables
int max(int num1, int num2) {

if (num1 >= num2) {
return numi;

| int max(int num1, int num2) |

return numz2;

int main() {
int x=2, y=6, z;
z=max(x Y);
return 0;

return num1;

numl >= num2
Implicit false branch:
Only way got here is

if the condition was
return main return num2; not true
June 20, 2005 Sara Sprenklg - 0

num1 gets the value of x
num2 gets the value of y

Flow of Control

A

Flow of Control: Using return values

Each function has its own variables
int max(int num1, int num2) {

if (num1 >= num2) {
return numi;

| int max(int num1, int num2) |

else {
return numz2; numi >= num2
true false
|ntirr?ta)|(n=(%{y=6 oz | return numi; | | return num2; |
, , Z;

z=max(X,Y);

return 0; b <
} return main

June 20, 2005 Sara Sprenkle - CISC105

Passing Parameters

Only copies of the actual parameters are
given to the function. The actual parameters
in the calling code do not change.
Examples:

Max

Swap

June 20, 2005 Sara Sprenkle - CISC105

To int max(int num1, int num2) |
stdio.h
function int result=0;
:
%
To ' true false
function

| result=num1; ||result=num2; |

| printf("The max is %d\n”, z); |

printf("Done!\n");

return result;

June 20, 2005 Sara Sprenkle - CISC105 Show swap.c

Function Variables

Each function has its own variables and
parameters

June 20, 2005 Sara Sprenkle - CISC105

Function Variables

int max(int num1, int num2) {
int result = 0;
if (num1 >= num2) {

result = x;
Why can we name two
else { things max?
result=y;

return result;

} .

int main() { The stack Variable names are
int x=2, y=6, max;/ like first names

X 2

main |y 6

return 0;
b / max -

Function names are like last names
June 20, 2005 Sara Sprenkle - CISC105

Function Variables

int result = 0;

if (num1 >= num2) {
result = num1;

else {

_ . Called the function max, so need
result = num2;

to add its parameters to the stack

Function Variables

int max(int num1, int num2) {

if (num1 >= num2) {
result = num1;

else {
result = num2;
3 - numl 2
) return result; max | num2 6
int main() { result 0
int x=2, y=6, max;
- Y . X 2
max = max(X, y); .
return 0; (il |57 6
¥ max -
June 20, 2005 Sara Sprenkle - CISC105

N return result; o numi 2
int main() { num2 6
int x=2, y=6, max;
max = max(X,y); . X 2
return 0; (il |57 6
¥ max -
June 20, 2005 Sara Sprenkle - CISC105
Function Variables
int max(int num1, int num2) {
int result = 0;
if (num1 >= num2) {
result = num1;
else {
result = num2;
¥ numl 2
max |num2 6
} result 6
int main() {
int x=2, y=6, max;
max = max(X,y); . X 2
return 0; (il |57 6
¥ max -
June 20, 2005 Sara Sprenkle - CISC105

Function Variables

int max(int num1, int num2) {
int result = 0;

if (num1 >= num2) {
result = num1;

else {

result = num2; Function max returned, so we no

longer have to keep track of its

return result; variables on the stack
}
int main() {
int x=2, y=6, max;
Y X 2
return 0; main |y 6
) max 6
June 20, 2005 Sara Sprenkle - CISC105

Variable Scope

Functions can have the same parameter and
variable names as other functions
Need to look at the variable’s scope to
determine which one you're looking at
Scope levels
Local scope (also called function scope)
Can only be seen within the function
Global scope (also called file scope)
Whole program can access

June 20, 2005 Sara Sprenkle - CISC105 Show scope.c

Variable Scope

Use the stack to figure out which variable
you're using
Constants: global scope

No matter where #define is called

Because does a find-replace on whole file

June 20, 2005 Sara Sprenkle - CISC105

Variable Scope

int max(int x, int y) {

int max = 0;
if (x >=y){
max = X;
¥
| . .
SE3Y . For function call, which x and y
max=y;
do we use?
} :
rnimar Start looking from top of'stack
}
int main() { The stack
int x=2, y=6, max;
b X 2
return 0; (il |57 6
h max -
June 20, 2005 Sara Sprenkle - CISC105

Variable Scope

int max(int x, int y) {

int max = 0;
max = x; i i
For the comparison, which x
else { and y do we use?
max=y;
¥ ") X 2
} return max; max y 6
int main() { max_ 0
int x=2, y=6, max;
- Y . X 2
max = max(X, y); .
return 0; (il |57 6
b max -
June 20, 2005 Sara Sprenkle - CISC105

Why not make all variables global?

You don't want to mess yourself up, do you?
Global variables are considered bad style

Don't use them! (but you should know about
them)

Increase the chance that something will be
changed in a way that you didn't expect.

Hard to debug.

If your function changes a global variable, you
should document the change in the function’s
comment.

June 20, 2005 Sara Sprenkle - CISC105

Writing a “good” function

Should be an “intuitive chunk”
Should be reusable
Always have heading block of code that tells what
the method does
Precondition: Things that must be true in order
for the method to work correctly

E.g., num must be even
Postcondition: Things that will be true when
method finishes (if precondition is true)

E.g., the returned value is the max

June 20, 2005 Sara Sprenkle - CISC105

Writing good comments for functions

Good style: Each function must have a
comment

Written at a high-level

Include the precondition, postcondition

Describe the parameters and the result
(precondition and postcondition may cover this)

June 20, 2005 Sara Sprenkle - CISC105

Using functions

Temperature converter
Average calculator
Calculate a number raised to a power

June 20, 2005 Sara Sprenkle - CISC105

Recursive Functions

Functions can call themselves
Divide and conquer:
common way to solve problems
Break the problem down into a smaller problem
that you can solve
Consider factorial:
n! =n* (n-1)!
(n-1)! = (n-1) * (n-2)!
(n-2)! = (n-2) * (n-3)!
' Break down to a base case that

you know the answer to
June 20, 2005 Sara Sprenkle - CISC105

I!=1</

Practice: Recursive Functions

Consider power:
asxp = aexp-l * 3
aexp-l = aexp-z * 3

What's the base case?
What's the recursive call?

Write power
iteratively (using a loop)
recursively

June 20, 2005 Sara Sprenkle - CISC105

Goals of Good Programs:
Performance

Program only takes as much space, time as
needed

No extra variables

Don't use double if int will do

No extra comparisons

June 20, 2005 Sara Sprenkle - CISC105

Goals of Good Programs: Readability

Descriptive variable, function names
Good, descriptive, high-level comments
Indentation

Use Emacs!
Vertical spacing

Add space between “groups” of related code
Functions

Break up long code into smaller, more readable
components

Line length (Use esc-q in Emacs)

June 20, 2005 Sara Sprenkle - CISC105

Goals of Good Programs: Extensibility

Should be able to easily extend your
program’s use

Constants

User-input

Functions
Modularity

Functions that can be reused in other code

See the C coding standards on the course
web page for more info about these goals

June 20, 2005 Sara Sprenkle - CISC105

Debugging Advice

Build up your program in steps
Always write only small pieces of code
Test, debug. Repeat

Write function body as part of main, test
Then, separate out into its own function

Test function separately from other code

Comment out irrelevant code to make sure that
the function behaves as expected

June 20, 2005 Sara Sprenkle - CISC105

Questions?

June 20, 2005

Sara Sprenkle - CISC105

