CISC 105
Summer 2005

Instructor: Sara Sprenkle
sprenkle@cis.udel.edu
TA: Gang Situ
situ@cis.udel.edu
June 6, 2005

What to Expect from this Class

First programming course

Lots to learn!
Problem solving
Programming environment (UNIX)
Programming language (C)

A Cowboy’s Wisdom:
Good judgement comes from experience
Experiences comes from bad judgement

June 6, 2005 Sara Sprenkle - CISC105 2

Class Details

Monday lectures
Quiz at beginning of each class
See web page for example code, lecture slides
Thursday labs (basement of Smith Hall)
Mandatory attendance
Lab due following week (8 labs)
Participation

June 6, 2005 Sara Sprenkle - CISC105

Class Details

2 Exams
Midterm: June 28
Final: August 12
2 Projects
Demos with Gang and me
Course Project Manager
https://atlas.cis.udel.edu:8443/scheduler/group.html

June 6, 2005 Sara Sprenkle - CISC105 4

Survey Says...

More about you!

June 6, 2005 Sara Sprenkle - CISC105

Problem Solving 101

Computational Problem: Some problem that
can be solved by logic
Algorithm: A well-defined recipe for solving a
problem that

Has a finite number of steps

Completes in a finite amount of time
Program: An algorithm written in a computer
language (Also called code)

June 6, 2005 Sara Sprenkle - CISC105 6




More on Algorithms

Algorithms often have a defined type of
input and output.

Correct algorithms give the intended output
for a set of input.

Example: Multiply by 10
I/0 for a correct algorithm:

5,50
X, 10x I s

June 6, 2005 Sara Sprenkle - CISC105 7

Making a Peanut Butter & Jelly
Sandwich

How do you make a peanut butter and jelly
sandwich?

Write down the steps so that someone else
can follow your instructions

Make no assumptions about the person’s
knowledge of PB&J sandwiches

June 6, 2005 Sara Sprenkle - CISC105 8

Discussion of PB&J

Be unambiguous, descriptive
Must be clear for the computer to understand
“Do what I meant! Not what I said!”
Naming
Identify things we're using
Reusing similar techniques
Do the same thing with a little twist
Looping
For repeating the same action

June 6, 2005 Sara Sprenkle - CISC105 9

Programming Languages

Programming language:
Specific rules for what is and isn't allowed
Must be exact

Computer carries out commands as they are
given

Syntax: the symbols given

Semantics: what it means

Example: III*IV=3x4 =12
Programming languages are unambiguous

June 6, 2005 Sara Sprenkle - CISC105 10

A common programming language
Flexible, fast, useful language

Used by scientists, engineers, systems
programmers

June 6, 2005 Sara Sprenkle - CISC105 "

Example C Program

#include<stdio.h>

int main() {
int answer;

printf(“Hello, class.\n");
answer = 2 + 2;
printf("24+-2=%d\n", answer);
return 0;

June 6, 2005 Sara Sprenkle - CISC105 12




The Programming Process

Programmer types a into a text
editor (Emacs).
A (a program itself) turns the

program into binary code.
executes the commands.

Text Editor
(emacs)

Program
text file
program.c

Executable

Compiler (cc) ﬁ (a.out)

June 6, 2005 Sara Sprenkle - CISC105 13

UNIX operating system

Operating system
Manages the computer’s resources, e.g., CPU,
memory, disk space
Examples: UNIX, Windows XP, Windows 2000,
Mac X, Linux, etc.
UNIX
Command-line interface (not a GUI)
Type commands into terminal window
Example commands:
cp filel.c filelcopy.c (copy a file)
mkdir cisc105 (make a directory)

June 6, 2005 Sara Sprenkle - CISC105 14

Lab00: Let's Try It!

/*
* Sara Sprenkle 06/06/05
* first.c
* In-class example of a simple C program
*/
#include<stdio.h>
int main() {
printf(“Hello, class.\n");
return 0;
)
June 6, 2005 Sara Sprenkle - CISC105 15

The Programming Process

Text Editor
(emacs)

Program
text file
program.c

. | Executable
Compiler (cc) / (a.out)

In a terminal:
» emacs &

» CC program.c
> .[a.out

June 6, 2005 Sara Sprenkle - CISC105 16

The Program

/*
* Sara Sprenkle 06/06/05
* first.c
* In-class example of a simple C program
*/
#include<stdio.h>

dss.\n");

e e e e e
A, #%ﬁ i

June 6, 2005 Sara Sprenkle - CISC105 17

The Program

/*

* Sara Sprenkle 06/06/05

* first.c

* In-class example of a simple C program
*/

#include<stdio.h>

Called the body
of main

June 6, 2005 Sara Sprenkle - CISC105 18




The Program

s R
# |nclude<std|o h> Comments: describe the

int main() { program in English
printf(“Hello, class.\n");
return 0;

)
June 6, 2005 Sara Sprenkle - CISC105 19

The Program

/*

* Sara Sprenkle 06/06/05

* first.c

* In-class example of a simple C program
'3

#i/nclude<stdio.h>

int main() {

return 0
} 0 or more statements make up the body of main

June 6, 2005 Sara Sprenkle - CISC105 20

The Program

/*

* Sara Sprenkle 06/06/05

* first.c

* In-class example of a simple C program

*/
EREEHERE T headerfle
int mam() { - contains the definition
of the function printf

3

printf(“Hello, class.\n");
return 0;

}

June 6, 2005 Sara Sprenkle - CISC105 21

Introduction to Variables

Variables have names, called identifiers
A variable name (identifier) can be any one
word that:

Consists of letters, numbers, or _

Cannot start with a number

Cannot be a C keyword (like int or main)
Remember that C is case-sensitive:

change isn't the same as Change

June 6, 2005 Sara Sprenkle - CISC105 22

Types

Variable types are the kind of thing the variable can
hold

Types:
int
integers, e.g., -214, -2, 0, 2, 100, etc.
float
decimal numbers, e.g., .001, 1.234, 1000.1, 0.00
double
more accurate decimal numbers (more places)
char

letters (‘a’, ‘', 'K), numbers (*0’,'5’,'9"), **', ‘&, etc

June 6, 2005 Sara Sprenkle - CISC105 23

What is the value’s type?

Value Type

'q
3.14

-15.6432

12
\?I

’

June 6, 2005 Sara Sprenkle - CISC105 24




How big (or small or precise) can we
get?

We cannot represent all values

Problem: Computer has a finite capacity

The computer only has so much memory that it
can devote to one value.

Eventually, reach a cutoff
Limits size of value
Limits precision of value

[ofofolojof3].[1]4]1]s]s]2]6]s]

In reality, computers represent data in binary, using only Os and 1s

PI has more decimals,
but we're out of space!

June 6, 2005 Sara Sprenkle - CISC105 25

Declarations

A declaration is a C statement that sets up a
variable.

Declares the type and identifier for the
variable

Like most statements, it must end in a ;
int x;

double my_num;

char option;
You can only declare a variable once!

June 6, 2005 Sara Sprenkle - CISC105 26

Assignments

Variables can be given any value that
matches their type.

The C statement that gives a variable its
value is called an assignment statement.
After a variable is given a value, the variable
is said to be initialized.

These aren’t equations! Read “=" as “gets”
X =4

my_num = 3.4;

option ='q’;

June 6, 2005 Sara Sprenkle - CISC105 27

Literals

Pieces of data that are not variables are
called literals.

Ex:

4

3.2

'q

’

June 6, 2005 Sara Sprenkle - CISC105 28

Arithmetic

You can use the assignment operator (=)
and math operators (*,/,+,-) to do
arithmetic.

Remember your order of operations!
(PEMDAS)

The thing on the left gets changed.

- * .
X = 4+3*10; The right-hand sides are
y = 3.0/2.0; expressions, just like in
Z = X+y; math.

June 6, 2005 Sara Sprenkle - CISC105 29

Quick Steps

You can combine a variable declaration and
assignment:

intx =0;

double my_num = 3.4;

int num2 = (34/56)*3/2-6;

June 6, 2005 Sara Sprenkle - CISC105 30




Printing Output

input Executable output
(optional) 7 (a.out) > p

printf(“Hello, class\n");
%/—/

string literal

printf("Your answer is %d.\n", answer);

June 6, 2005 Sara Sprenkle - CISC105 31

Printing Output

Format specifiers
int -> %d
double -> %lf
float -> %f
char -> %c
Examples
double pi = 3.14159;
printf(“The value of pi is %lf.\n", pi);
printf(“The circumference of a circle of radius
%d is %If.\n"”, num, num*num*pi);

June 6, 2005 Sara Sprenkle - CISC105

Printf

Function in stdio.h

For every format specifier in the string literal,
you must have one parameter after the
quotes

printf("%c %d", ¢, count);
printf("%c,%d", c, d);
printf("%If\n”, result);
printf("%d * %d = %d\n”, ... );

June 6, 2005 Sara Sprenkle - CISC105 33

Examples

Example 1

int a;

char b;

printf(?, a, b);

Example 2

int numerator, denominator;

double answer;

printf(?, numerator, denominator, answer);

June 6, 2005 Sara Sprenkle - CISC105

Printing Output

Escape Sequences
newline character (carriage return) -> \n
tab -> \t
quote -> \"
forward slash -> \\
Examples:
printf("%d * %d \t = \t %d\n”, 3, 4, 3*4);
printf("To print a \\, you must use \"\\\\\"\n");

June 6, 2005 Sara Sprenkle - CISC105 35

Examples

Print To print a tab, you must use ‘\t’.

Print | said, "How are you?”

Given char carriage_return = \n’;
Print the character

June 6, 2005 Sara Sprenkle - CISC105




ERROR!

Sometimes the program doesn’t work
Types of programming errors:
Compiler error
No semicolon
Intv;
Logic error
answer = 2+3;
“The anser is "
Runtime error
answer = 2/0;

June 6, 2005 Sara Sprenkle - CISC105 37

And then what?

Fix the program, recompile, re-execute until
everything works

The error is often called a “bug”

Fixing it is called debugging

Text Editor ERROR!
(emacs) Identify bug, fix

Compiler (cc) ﬁ/ﬁ?le

June 6, 2005 Sara Sprenkle - CISC105 38

Program
text file
program.c

Variables: The Rules

You must declare and initialize a variable before
using it on the righthand side (rhs) of a rule.
Only the variable to the left of the = changes
There can be one and only one variable on the
lefthand side (lhs).

You cannot put data into a variable that does not
match the variable’s type.

You can only have one variable with any given
name in a particular block.

You must declare all variables before any other
statements.

June 6, 2005 Sara Sprenkle - CISC105 39

This is NOT Math Class

Assignment statements are NOT math
equations!

count = count + 1;

These are commands!

X =2;
Yy=X;
X=X+ 3;

What's the value of y?

June 6, 2005 Sara Sprenkle - CISC105 40

Two Types of Division

Double Division

3.0/6.0

6.0/3.0

x/1.5

At least one number must have a decimal
Integer Division

3/6

6/3

x/y, if both x and y are ints

Both numbers are integers

June 6, 2005 Sara Sprenkle - CISC105 4

Division Practice (NOT Math class)

int x = 6/4;

inty = 4/6;
double z = 4/6;
double a = 6/4;
double b = 6/12.0;
intc = 6.0/12;

June 6, 2005 Sara Sprenkle - CISC105 42




Modulo Operator

Modular Arithmetic: Remainder from division
Works with integers only

Operator is % (NOT PERCENT!)

6 % 4 is read “six mod four”

3%6=

7% 2=

7% 14 =

14% 7 =

June 6, 2005 Sara Sprenkle - CISC105 43

Brainstorm

What useful thing does % 10 do?
3% 10 =
51 % 10 =
40 % 10 =
678 % 10 =
What useful thing does /10 do (integer division?)
3/10 =
51/10 =
40/10=
678/10 =
What useful thing does % 2 do?

June 6, 2005 Sara Sprenkle - CISC105

Trick #1: Casting

To change a variable’s type, you can cast
from one type to another

intx = 4;

double y = 10/(double)x;

int x = 5.5;

int y = (int)5.5;

June 6, 2005 Sara Sprenkle - CISC105 45

Trick #2: Arithmetic Shorthands

Increment Operator
X=x+1;
X++;

Decrement Operator
X=x-1;
X--;

And others:
X+=2;
amount *= 1.05;

June 6, 2005 Sara Sprenkle - CISC105

Practice

Average three numbers
Celsius to Fahrenheit
F = (9/5)C + 32

June 6, 2005 Sara Sprenkle - CISC105 47




