
1

CISC 105CISC 105
Summer 2005Summer 2005

Instructor: Sara SprenkleInstructor: Sara Sprenkle
sprenklesprenkle@@ciscis..udeludel..eduedu

TA: Gang SituTA: Gang Situ
situ@situ@ciscis..udeludel..eduedu

June 6, 2005June 6, 2005

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 22

What to Expect from this ClassWhat to Expect from this Class

•• First programming courseFirst programming course
•• Lots to learn!Lots to learn!

 Problem solvingProblem solving
 Programming environment (UNIX)Programming environment (UNIX)
 Programming language (C)Programming language (C)

•• A CowboyA Cowboy’’s Wisdom:s Wisdom:
Good Good judgement judgement comes from experiencecomes from experience
 Experiences comes from bad Experiences comes from bad judgementjudgement

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 33

Class DetailsClass Details

•• Monday lecturesMonday lectures
Quiz at beginning of each classQuiz at beginning of each class
 See web page for example code, lecture slidesSee web page for example code, lecture slides

•• Thursday labs (basement of Smith Hall)Thursday labs (basement of Smith Hall)
MandatoryMandatory attendance attendance
 Lab due following week (8 labs)Lab due following week (8 labs)

•• ParticipationParticipation

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 44

Class DetailsClass Details

•• 2 Exams2 Exams
Midterm: June 28Midterm: June 28
 Final: August 12Final: August 12

•• 2 Projects2 Projects
Demos with Gang and meDemos with Gang and me

•• Course Project ManagerCourse Project Manager
 https://atlas.https://atlas.ciscis..udeludel..eduedu:8443/scheduler/group.html:8443/scheduler/group.html

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 55

Survey SaysSurvey Says……

•• More about you!More about you!

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 66

Problem Solving 101Problem Solving 101

•• Computational Problem: Some problem thatComputational Problem: Some problem that
can be solved by logiccan be solved by logic

•• Algorithm: A well-defined recipe for solving aAlgorithm: A well-defined recipe for solving a
problem thatproblem that
Has a finite number of stepsHas a finite number of steps
Completes in a finite amount of timeCompletes in a finite amount of time

•• Program: An algorithm written in a computerProgram: An algorithm written in a computer
language (Also called code)language (Also called code)



2

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 77

More on AlgorithmsMore on Algorithms

•• Algorithms often have a defined type ofAlgorithms often have a defined type of
input and output.input and output.

•• Correct algorithms give the intended outputCorrect algorithms give the intended output
for a set of input.for a set of input.

•• Example: Multiply by 10Example: Multiply by 10
•• I/O for a correct algorithm:I/O for a correct algorithm:

 5,505,50
 .32, 3.2.32, 3.2
 x, 10xx, 10x

input algorithm output

I O

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 88

Making a Peanut Butter & JellyMaking a Peanut Butter & Jelly
SandwichSandwich

•• How do you make a peanut butter and jellyHow do you make a peanut butter and jelly
sandwich?sandwich?

•• Write down the steps so that someone elseWrite down the steps so that someone else
can follow your instructionscan follow your instructions
Make no assumptions about the personMake no assumptions about the person’’ss

knowledge of PB&J sandwichesknowledge of PB&J sandwiches

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 99

Discussion of PB&JDiscussion of PB&J

•• Be unambiguous, descriptiveBe unambiguous, descriptive
Must be clear for the computer to understandMust be clear for the computer to understand
 ““Do what I Do what I meantmeant!  Not what I said!!  Not what I said!””

•• NamingNaming
 Identify things weIdentify things we’’re usingre using

•• Reusing similar techniquesReusing similar techniques
Do the same thing with a little twistDo the same thing with a little twist

•• LoopingLooping
 For repeating the same actionFor repeating the same action

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 1010

Programming LanguagesProgramming Languages
•• Programming language:Programming language:

 Specific rules for what is and isnSpecific rules for what is and isn’’t allowedt allowed
Must be exactMust be exact
Computer carries out commands as they areComputer carries out commands as they are

givengiven

•• Syntax: the symbols givenSyntax: the symbols given
•• Semantics: what it meansSemantics: what it means
•• Example:  III * IV = 3 x 4 = 12Example:  III * IV = 3 x 4 = 12
•• Programming languages are unambiguousProgramming languages are unambiguous

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 1111

CC

•• A common programming languageA common programming language
•• Flexible, fast, useful languageFlexible, fast, useful language
•• Used by scientists, engineers, systemsUsed by scientists, engineers, systems

programmersprogrammers

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 1212

Example C ProgramExample C Program

#include<#include<stdiostdio.h>.h>
int int main() {main() {

intint answer; answer;
      printfprintf((““Hello, class.\nHello, class.\n””););

answer = 2 + 2;answer = 2 + 2;
printfprintf((““2+2=%d\n2+2=%d\n““, answer);, answer);

   return 0;   return 0;
}}



3

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 1313

The Programming ProcessThe Programming Process

1.1. Programmer types a Programmer types a programprogram into a  into a texttext
editoreditor  ((EmacsEmacs).).

2.2. A A compilercompiler (a program itself) turns the (a program itself) turns the
program into binary code.program into binary code.

3.3. ExecutableExecutable executes the commands. executes the commands.

Compiler (cc)
Program
text file

program.c  

Executable
(a.out)

Text Editor
(emacs)

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 1414

UNIX operating systemUNIX operating system
•• Operating systemOperating system

Manages the computerManages the computer’’s resources, e.g., CPU,s resources, e.g., CPU,
memory, disk spacememory, disk space

 Examples: UNIX, Windows XP, Windows 2000,Examples: UNIX, Windows XP, Windows 2000,
Mac X, Linux, etc.Mac X, Linux, etc.

•• UNIXUNIX
Command-line interface (not a GUI)Command-line interface (not a GUI)
 Type commands into terminal windowType commands into terminal window
 Example commands:Example commands:

•• cp file1.c file1copy.c       (copy a file)cp file1.c file1copy.c       (copy a file)
•• mkdir mkdir cisc105                 (make a directory)cisc105                 (make a directory)

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 1515

Lab00: LetLab00: Let’’s Try It!s Try It!
/*/*
 * Sara Sprenkle 06/06/05 * Sara Sprenkle 06/06/05
 * first.c * first.c
 * In-class example of a simple C program * In-class example of a simple C program
 */ */
#include<#include<stdiostdio.h>.h>
intint main() { main() {
      printfprintf((““Hello, class.\nHello, class.\n””););

return 0;return 0;
}}

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 1616

The Programming ProcessThe Programming Process

Compiler (cc)
Program
text file

program.c  

Executable
(a.out)

Text Editor
(emacs)

In a terminal:
 emacs &
 cc program.c
 ./a.out

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 1717

The ProgramThe Program
/*/*
 * Sara Sprenkle 06/06/05 * Sara Sprenkle 06/06/05
 * first.c * first.c
 * In-class example of a simple C program * In-class example of a simple C program
 */ */
#include<#include<stdiostdio.h>.h>
intint main() { main() {
      printfprintf((““Hello, class.\nHello, class.\n””););

return 0;return 0;
}}

Required in every C program

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 1818

The ProgramThe Program
/*/*
 * Sara Sprenkle 06/06/05 * Sara Sprenkle 06/06/05
 * first.c * first.c
 * In-class example of a simple C program * In-class example of a simple C program
 */ */
#include<#include<stdiostdio.h>.h>
intint main() { main() {
      printfprintf((““Hello, class.\nHello, class.\n””););

return 0;return 0;
}}

}Called the body
of main



4

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 1919

The ProgramThe Program
/*/*
 * Sara Sprenkle 06/06/05 * Sara Sprenkle 06/06/05
 * first.c * first.c
 * In-class example of a simple C program * In-class example of a simple C program
 */ */
#include<#include<stdiostdio.h>.h>
intint main() { main() {
      printfprintf((““Hello, class.\nHello, class.\n””););

return 0;return 0;
}}

Comments: describe the
program in English

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 2020

The ProgramThe Program
/*/*
 * Sara Sprenkle 06/06/05 * Sara Sprenkle 06/06/05
 * first.c * first.c
 * In-class example of a simple C program * In-class example of a simple C program
 */ */
#include<#include<stdiostdio.h>.h>
intint main() { main() {
      printfprintf((““Hello, class.\nHello, class.\n””););

return 0;return 0;
}}

a statement

0 or more statements make up the body of main

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 2121

The ProgramThe Program
/*/*
 * Sara Sprenkle 06/06/05 * Sara Sprenkle 06/06/05
 * first.c * first.c
 * In-class example of a simple C program * In-class example of a simple C program
 */ */
#include<#include<stdiostdio.h>.h>
intint main() { main() {
      printfprintf((““Hello, class.\nHello, class.\n””););

return 0;return 0;
}}

header file
- contains the definition
  of the function printf

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 2222

Introduction to VariablesIntroduction to Variables

•• Variables have names, called Variables have names, called identifiersidentifiers
•• A variable name (identifier) can be any oneA variable name (identifier) can be any one

word that:word that:
Consists of letters, numbers, or _Consists of letters, numbers, or _
Cannot start with a numberCannot start with a number
Cannot be a C Cannot be a C keywordkeyword (like  (like int int or main)or main)

•• Remember that C is case-sensitive:Remember that C is case-sensitive:
 change isnchange isn’’t the same as Changet the same as Change

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 2323

TypesTypes
•• Variable types are the kind of thing the variable canVariable types are the kind of thing the variable can

holdhold
•• Types:Types:

 intint
•• integers, e.g., -214, -2, 0, 2, 100, etc.integers, e.g., -214, -2, 0, 2, 100, etc.

 floatfloat
•• decimal numbers, e.g., .001, 1.234, 1000.1, 0.00decimal numbers, e.g., .001, 1.234, 1000.1, 0.00

 doubledouble
•• more accurate decimal numbers (more places)more accurate decimal numbers (more places)

 charchar
•• letters (letters (‘‘aa’’, , ‘‘zz’’, , ‘‘KK’’), numbers (), numbers (‘‘00’’, , ‘‘55’’, , ‘‘99’’), ), ‘‘**’’, , ‘‘&&’’, etc, etc

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 2424

What is the valueWhat is the value’’s type?s type?

‘‘00’’
00
‘‘??’’
1212

-15.6432-15.6432
3.143.14
‘‘qq’’

TypeTypeValueValue



5

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 2525

How big (or small or precise) can weHow big (or small or precise) can we
get?get?
•• We cannot represent all valuesWe cannot represent all values
•• Problem: Computer has a finite capacityProblem: Computer has a finite capacity

 The computer only has so much memory that itThe computer only has so much memory that it
can devote to one value.can devote to one value.

 Eventually, reach a cutoffEventually, reach a cutoff
•• Limits size of valueLimits size of value
•• Limits precision of valueLimits precision of value

In reality, computers represent data in binary, using only 0s and 1s

0  0  0  0  0  3  .  1  4  1  5  9  2  6  5

PI has more decimals,
but we’re out of space!

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 2626

DeclarationsDeclarations
•• A declaration is a C statement that sets up aA declaration is a C statement that sets up a

variable.variable.
Declares the Declares the typetype and  and identifieridentifier for the for the

variablevariable
•• Like most statements, it must end in a Like most statements, it must end in a ;;

intint x; x;
double my_num;double my_num;
char option;char option;

•• You can only declare a variable You can only declare a variable onceonce!!

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 2727

AssignmentsAssignments
•• Variables can be given any value thatVariables can be given any value that

matches their type.matches their type.
•• The C statement that gives a variable itsThe C statement that gives a variable its

value is called an value is called an assignmentassignment statement. statement.
•• After a variable is given a value, the variableAfter a variable is given a value, the variable

is said to be is said to be initializedinitialized..
•• These arenThese aren’’t equations! Read t equations! Read ““==”” as  as ““getsgets””

x = 4;x = 4;
my_num = 3.4;my_num = 3.4;
option = option = ‘‘qq’’;;

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 2828

LiteralsLiterals

•• Pieces of data that are not variables arePieces of data that are not variables are
called called literalsliterals..

•• Ex:Ex:
44
3.23.2
‘‘qq’’

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 2929

ArithmeticArithmetic

•• You can use the assignment operator (=)You can use the assignment operator (=)
and math operators (*,/,+,-) to doand math operators (*,/,+,-) to do
arithmetic.arithmetic.

•• Remember your order of operations!Remember your order of operations!
(PEMDAS)(PEMDAS)

•• The thing on the left gets changed.The thing on the left gets changed.
x = 4+3*10;x = 4+3*10;
y = 3.0/2.0;y = 3.0/2.0;
z = x+y;z = x+y;

The right-hand sides are
expressions, just like in
math.

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 3030

Quick StepsQuick Steps

•• You can combine a variable declaration andYou can combine a variable declaration and
assignment:assignment:
intint x = 0; x = 0;
double my_num = 3.4;double my_num = 3.4;
intint num2 = (34/56)*3/2-6; num2 = (34/56)*3/2-6;



6

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 3131

Printing OutputPrinting Output

•• printfprintf((““Hello, class\nHello, class\n””););

•• printfprintf((““Your answer is %d.\nYour answer is %d.\n””, answer);, answer);

input 
(optional)

Executable
(a.out)

output

string literal

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 3232

Printing OutputPrinting Output

•• Format Format specifiersspecifiers
 int int -> %d-> %d
 double -> %lfdouble -> %lf
 float -> %ffloat -> %f
 char -> %cchar -> %c

•• ExamplesExamples
 double pi = 3.14159;double pi = 3.14159;
 printfprintf((““The value of pi is %lf.\nThe value of pi is %lf.\n””, pi);, pi);
 printfprintf((““The circumference of a circle of radiusThe circumference of a circle of radius

%d is %lf.\n%d is %lf.\n””, num, num*num*pi);, num, num*num*pi);

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 3333

PrintfPrintf

•• Function inFunction in stdio stdio.h.h
•• For every format For every format specifier specifier in the string literal,in the string literal,

you must have one parameter after theyou must have one parameter after the
quotesquotes

•• printfprintf((““%c %d%c %d””, c, count);, c, count);
•• printfprintf((““%c,%d%c,%d””, c, d);, c, d);
•• printfprintf((““%lf\n%lf\n””, result);, result);
•• printfprintf((““%d * %d = %d\n%d * %d = %d\n””, , …… ); );

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 3434

ExamplesExamples

•• Example 1Example 1
int int a;a;
char b;char b;
printfprintf(?, a, b);(?, a, b);

•• Example 2Example 2
intint numerator, denominator; numerator, denominator;
double answer;double answer;
printfprintf(?, numerator, denominator, answer);(?, numerator, denominator, answer);

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 3535

Printing OutputPrinting Output

•• Escape SequencesEscape Sequences
 newline newline character (carriage return) -> \ncharacter (carriage return) -> \n
 tab -> \ttab -> \t
 quote -> \quote -> \””
 forward slash -> \\forward slash -> \\

•• Examples:Examples:
 printfprintf((““%d * %d \t = \t %d\n%d * %d \t = \t %d\n””, 3, 4, 3*4);, 3, 4, 3*4);
 printfprintf((““To print a \\, you must use \To print a \\, you must use \””\\\\\\\\\\””\n\n””););

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 3636

ExamplesExamples

•• Print Print To print a tab, you must use To print a tab, you must use ‘‘\\tt’’..

•• Print Print I said, I said, ””How are you?How are you?””

•• Given char carriage_return = Given char carriage_return = ‘‘\\nn’’;;
 Print the characterPrint the character



7

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 3737

ERROR!!ERROR!!

•• Sometimes the program doesnSometimes the program doesn’’t workt work
•• Types of programming errors:Types of programming errors:

Compiler errorCompiler error
•• No semicolonNo semicolon
•• Int Int v;v;

 Logic errorLogic error
•• answer = 2+3;answer = 2+3;
•• ““The The anser anser is is ““

Runtime errorRuntime error
•• answer = 2/0;answer = 2/0;

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 3838

And then what?And then what?

•• Fix the program, recompile, re-execute untilFix the program, recompile, re-execute until
everything workseverything works

•• The error is often called a The error is often called a ““bugbug””
•• Fixing it is called Fixing it is called debuggingdebugging

Compiler (cc)
Program
text file

program.c  

Executable
(a.out)

Text Editor
(emacs)

compiled

ERROR!
Identify bug, fix

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 3939

Variables: The RulesVariables: The Rules
1.1. You must declare and initialize a variable beforeYou must declare and initialize a variable before

using it on the using it on the righthandrighthand side ( side (rhsrhs) of a rule.) of a rule.
2.2. Only the variable to the left of the = changesOnly the variable to the left of the = changes
3.3. There can be one and only one variable on theThere can be one and only one variable on the

lefthand lefthand side (lhs).side (lhs).
4.4. You cannot put data into a variable that does notYou cannot put data into a variable that does not

match the variablematch the variable’’s type.s type.
5.5. You can only have one variable with any givenYou can only have one variable with any given

name in a particular block.name in a particular block.
6.6. You must declare all variables before any otherYou must declare all variables before any other

statements.statements.
June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 4040

This is NOT Math ClassThis is NOT Math Class

•• Assignment statements are NOT mathAssignment statements are NOT math
equations!equations!
count = count + 1;count = count + 1;

•• These are commands!These are commands!
x = 2;x = 2;
y = x;y = x;
x = x + 3;x = x + 3;
WhatWhat’’s the value of y?s the value of y?

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 4141

Two Types of DivisionTwo Types of Division
•• Double DivisionDouble Division

 3.0 / 6.03.0 / 6.0
 6.0 / 3.06.0 / 3.0
 x/1.5x/1.5
At least one number must have a decimalAt least one number must have a decimal

•• Integer DivisionInteger Division
 3/63/6
 6/36/3
 x/y, if both x and y arex/y, if both x and y are ints ints
 Both numbers are integersBoth numbers are integers

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 4242

Division Practice (NOT Math class)Division Practice (NOT Math class)

•• intint x = 6/4; x = 6/4;
•• intint y = 4/6; y = 4/6;
•• double z = 4/6;double z = 4/6;
•• double a = 6/4;double a = 6/4;
•• double b = 6/12.0;double b = 6/12.0;
•• intint c = 6.0/12; c = 6.0/12;



8

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 4343

Modulo OperatorModulo Operator

•• Modular Arithmetic: Remainder from divisionModular Arithmetic: Remainder from division
•• Works with integers onlyWorks with integers only
•• Operator is % (NOT PERCENT!)Operator is % (NOT PERCENT!)
•• 6 % 4 is read 6 % 4 is read ““six mod foursix mod four””
•• 3 % 6 =3 % 6 =
•• 7 % 2 =7 % 2 =
•• 7 % 14 =7 % 14 =
•• 14 % 7 =14 % 7 =

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 4444

BrainstormBrainstorm
•• What useful thing does % 10 do?What useful thing does % 10 do?

 3 % 10 =3 % 10 =
 51 % 10 =51 % 10 =
 40 % 10 =40 % 10 =
 678 % 10 =678 % 10 =

•• What useful thing does /10 do (integer division?)What useful thing does /10 do (integer division?)
 3/10 =3/10 =
 51/10 =51/10 =
 40/10=40/10=
 678/10 =678/10 =

•• What useful thing does % 2 do?What useful thing does % 2 do?

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 4545

Trick #1: CastingTrick #1: Casting

•• To change a variableTo change a variable’’s type, you can casts type, you can cast
from one type to anotherfrom one type to another
intint x = 4; x = 4;
double y = 10/(double)x;double y = 10/(double)x;

•• intint x = 5.5; x = 5.5;
•• intint y = ( y = (intint)5.5;)5.5;

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 4646

Trick #2: ArithmeticTrick #2: Arithmetic Shorthands Shorthands

•• Increment OperatorIncrement Operator
 x =x + 1;x =x + 1;
 x++;x++;

•• Decrement OperatorDecrement Operator
 x = x x = x –– 1; 1;
 x--;x--;

•• And others:And others:
 x += 2;x += 2;
 amount *= 1.05;amount *= 1.05;

June 6, 2005June 6, 2005 Sara Sprenkle - CISC105Sara Sprenkle - CISC105 4747

PracticePractice

•• Average three numbersAverage three numbers
•• Celsius to FahrenheitCelsius to Fahrenheit

 F = (9/5)C + 32F = (9/5)C + 32


