CISC 105
Summer 2005

Instructor: Sara Sprenkle
sprenkle@cis.udel.edu
TA: Gang Situ
situ@cis.udel.edu
June 6, 2005

What to Expect from this Class

First programming course

Lots to learn!
Problem solving
Programming environment (UNIX)
Programming language (C)

A Cowboy’s Wisdom:
Good judgement comes from experience
Experiences comes from bad judgement
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Class Details

Monday lectures
Quiz at beginning of each class
See web page for example code, lecture slides
Thursday labs (basement of Smith Hall)
Mandatory attendance
Lab due following week (8 labs)
Participation
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Class Details

2 Exams
Midterm: June 28
Final: August 12
2 Projects
Demos with Gang and me
Course Project Manager
https://atlas.cis.udel.edu:8443/scheduler/group.html
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Survey Says...

More about you!
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Problem Solving 101

Computational Problem: Some problem that
can be solved by logic
Algorithm: A well-defined recipe for solving a
problem that

Has a finite number of steps

Completes in a finite amount of time
Program: An algorithm written in a computer
language (Also called code)
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More on Algorithms

Algorithms often have a defined type of
input and output.

Correct algorithms give the intended output
for a set of input.

Example: Multiply by 10
I/0 for a correct algorithm:

5,50
X, 10x I s
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Making a Peanut Butter & Jelly
Sandwich

How do you make a peanut butter and jelly
sandwich?

Write down the steps so that someone else
can follow your instructions

Make no assumptions about the person’s
knowledge of PB&J sandwiches
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Discussion of PB&J

Be unambiguous, descriptive
Must be clear for the computer to understand
“Do what I meant! Not what I said!”
Naming
Identify things we're using
Reusing similar techniques
Do the same thing with a little twist
Looping
For repeating the same action
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Programming Languages

Programming language:
Specific rules for what is and isn't allowed
Must be exact

Computer carries out commands as they are
given

Syntax: the symbols given

Semantics: what it means

Example: III*IV=3x4 =12
Programming languages are unambiguous
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A common programming language
Flexible, fast, useful language

Used by scientists, engineers, systems
programmers
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Example C Program

#include<stdio.h>

int main() {
int answer;

printf(“Hello, class.\n");
answer = 2 + 2;
printf("24+-2=%d\n", answer);
return 0;
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The Programming Process

Programmer types a into a text
editor (Emacs).
A (a program itself) turns the

program into binary code.
executes the commands.

Text Editor
(emacs)

Program
text file
program.c

Executable

Compiler (cc) ﬁ (a.out)
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UNIX operating system

Operating system
Manages the computer’s resources, e.g., CPU,
memory, disk space
Examples: UNIX, Windows XP, Windows 2000,
Mac X, Linux, etc.
UNIX
Command-line interface (not a GUI)
Type commands into terminal window
Example commands:
cp filel.c filelcopy.c (copy a file)
mkdir cisc105 (make a directory)
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Lab00: Let's Try It!

/*
* Sara Sprenkle 06/06/05
* first.c
* In-class example of a simple C program
*/
#include<stdio.h>
int main() {
printf(“Hello, class.\n");
return 0;
)
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The Programming Process

Text Editor
(emacs)

Program
text file
program.c

. | Executable
Compiler (cc) / (a.out)

In a terminal:
» emacs &

» CC program.c
> .[a.out
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The Program

/*
* Sara Sprenkle 06/06/05
* first.c
* In-class example of a simple C program
*/
#include<stdio.h>

dss.\n");

e e e e e
A, #%ﬁ i
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The Program

/*

* Sara Sprenkle 06/06/05

* first.c

* In-class example of a simple C program
*/

#include<stdio.h>

Called the body
of main
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The Program

s R
# |nclude<std|o h> Comments: describe the

int main() { program in English
printf(“Hello, class.\n");
return 0;

)
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The Program

/*

* Sara Sprenkle 06/06/05

* first.c

* In-class example of a simple C program
'3

#i/nclude<stdio.h>

int main() {

return 0
} 0 or more statements make up the body of main
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The Program

/*

* Sara Sprenkle 06/06/05

* first.c

* In-class example of a simple C program

*/
EREEHERE T headerfle
int mam() { - contains the definition
of the function printf

3

printf(“Hello, class.\n");
return 0;

}
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Introduction to Variables

Variables have names, called identifiers
A variable name (identifier) can be any one
word that:

Consists of letters, numbers, or _

Cannot start with a number

Cannot be a C keyword (like int or main)
Remember that C is case-sensitive:

change isn't the same as Change
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Types

Variable types are the kind of thing the variable can
hold

Types:
int
integers, e.g., -214, -2, 0, 2, 100, etc.
float
decimal numbers, e.g., .001, 1.234, 1000.1, 0.00
double
more accurate decimal numbers (more places)
char

letters (‘a’, ‘', 'K), numbers (*0’,'5’,'9"), **', ‘&, etc
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What is the value’s type?

Value Type

'q
3.14

-15.6432

12
\?I

’
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How big (or small or precise) can we
get?

We cannot represent all values

Problem: Computer has a finite capacity

The computer only has so much memory that it
can devote to one value.

Eventually, reach a cutoff
Limits size of value
Limits precision of value

[ofofolojof3].[1]4]1]s]s]2]6]s]

In reality, computers represent data in binary, using only Os and 1s

PI has more decimals,
but we're out of space!
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Declarations

A declaration is a C statement that sets up a
variable.

Declares the type and identifier for the
variable

Like most statements, it must end in a ;
int x;

double my_num;

char option;
You can only declare a variable once!
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Assignments

Variables can be given any value that
matches their type.

The C statement that gives a variable its
value is called an assignment statement.
After a variable is given a value, the variable
is said to be initialized.

These aren’t equations! Read “=" as “gets”
X =4

my_num = 3.4;

option ='q’;
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Literals

Pieces of data that are not variables are
called literals.

Ex:

4

3.2

'q

’
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Arithmetic

You can use the assignment operator (=)
and math operators (*,/,+,-) to do
arithmetic.

Remember your order of operations!
(PEMDAS)

The thing on the left gets changed.

- * .
X = 4+3*10; The right-hand sides are
y = 3.0/2.0; expressions, just like in
Z = X+y; math.
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Quick Steps

You can combine a variable declaration and
assignment:

intx =0;

double my_num = 3.4;

int num2 = (34/56)*3/2-6;
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Printing Output

input Executable output
(optional) 7 (a.out) > p

printf(“Hello, class\n");
%/—/

string literal

printf("Your answer is %d.\n", answer);
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Printing Output

Format specifiers
int -> %d
double -> %lf
float -> %f
char -> %c
Examples
double pi = 3.14159;
printf(“The value of pi is %lf.\n", pi);
printf(“The circumference of a circle of radius
%d is %If.\n"”, num, num*num*pi);
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Printf

Function in stdio.h

For every format specifier in the string literal,
you must have one parameter after the
quotes

printf("%c %d", ¢, count);
printf("%c,%d", c, d);
printf("%If\n”, result);
printf("%d * %d = %d\n”, ... );
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Examples

Example 1

int a;

char b;

printf(?, a, b);

Example 2

int numerator, denominator;

double answer;

printf(?, numerator, denominator, answer);
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Printing Output

Escape Sequences
newline character (carriage return) -> \n
tab -> \t
quote -> \"
forward slash -> \\
Examples:
printf("%d * %d \t = \t %d\n”, 3, 4, 3*4);
printf("To print a \\, you must use \"\\\\\"\n");
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Examples

Print To print a tab, you must use ‘\t’.

Print | said, "How are you?”

Given char carriage_return = \n’;
Print the character
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ERROR!

Sometimes the program doesn’t work
Types of programming errors:
Compiler error
No semicolon
Intv;
Logic error
answer = 2+3;
“The anser is "
Runtime error
answer = 2/0;
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And then what?

Fix the program, recompile, re-execute until
everything works

The error is often called a “bug”

Fixing it is called debugging

Text Editor ERROR!
(emacs) Identify bug, fix

Compiler (cc) ﬁ/ﬁ?le
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Program
text file
program.c

Variables: The Rules

You must declare and initialize a variable before
using it on the righthand side (rhs) of a rule.
Only the variable to the left of the = changes
There can be one and only one variable on the
lefthand side (lhs).

You cannot put data into a variable that does not
match the variable’s type.

You can only have one variable with any given
name in a particular block.

You must declare all variables before any other
statements.
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This is NOT Math Class

Assignment statements are NOT math
equations!

count = count + 1;

These are commands!

X =2;
Yy=X;
X=X+ 3;

What's the value of y?
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Two Types of Division

Double Division

3.0/6.0

6.0/3.0

x/1.5

At least one number must have a decimal
Integer Division

3/6

6/3

x/y, if both x and y are ints

Both numbers are integers

June 6, 2005 Sara Sprenkle - CISC105 4

Division Practice (NOT Math class)

int x = 6/4;

inty = 4/6;
double z = 4/6;
double a = 6/4;
double b = 6/12.0;
intc = 6.0/12;
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Modulo Operator

Modular Arithmetic: Remainder from division
Works with integers only

Operator is % (NOT PERCENT!)

6 % 4 is read “six mod four”

3%6=

7% 2=

7% 14 =

14% 7 =
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Brainstorm

What useful thing does % 10 do?
3% 10 =
51 % 10 =
40 % 10 =
678 % 10 =
What useful thing does /10 do (integer division?)
3/10 =
51/10 =
40/10=
678/10 =
What useful thing does % 2 do?
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Trick #1: Casting

To change a variable’s type, you can cast
from one type to another

intx = 4;

double y = 10/(double)x;

int x = 5.5;

int y = (int)5.5;
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Trick #2: Arithmetic Shorthands

Increment Operator
X=x+1;
X++;

Decrement Operator
X=x-1;
X--;

And others:
X+=2;
amount *= 1.05;
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Practice

Average three numbers
Celsius to Fahrenheit
F = (9/5)C + 32
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