
Software Configuration Management as a Mechanism for
Multidimensional Separation of Concerns

Mark C. Chu-Carroll
IBM T. J. Watson Research Center

30 Saw Mill River Road
Hawthorne, NY 10532, USA
mcc@watson.ibm.com

Sara Sprenkle
Department of Computer Science
Levine Science Research Center

Duke University
Durham, NC, USA

sprenkle@cs.duke.edu

February 25, 2000

1 Introduction

Real software rarely conforms to one single view of the
program structure; instead, software is sufficiently com-
plex that the structure of the program is best understood
as a collection of orthogonal divisions of the program into
components. However, most software tools only recog-
nize the decomposition of the program into source files,
forcing the programmer to adopt one primary program de-
composition which is well-suited to some tasks and poorly
suited to others.

Software tools can overcome this weakness by allow-
ing programmers to transform their view of the program
to a structure which is more appropriate for the task they
need to perform. We propose that a software configura-
tion management (SCM) system, which stores the source
code for the project, can perform this task. By providing
the SCM system with the capability to generate orthogo-
nal program organizations through compositions of pro-
gram fragments, the SCM system can support orthogonal
decompositions of the program without performing any
automatic alteration of the source code.

To illustrate the importance of using different decom-
positions, consider the compiler, a classic example of a
project with multiple orthogonal decompositions. The
compiler’s two more obvious decompositions—one struc-
tural, one functional—are illustrated architecturally in fig-
ure 2 A.

The structural decomposition is the interpreter design
pattern, in which the system is decomposed into compo-
nents (classes), where each component defines all the be-
haviors of one structural unit of the program. This decom-
position is based on an inheritance hierarchy, which is in
turn based on the syntactic structure of the language.

A functional view sees the compiler as a chain of com-
ponents connected by data flowing between the compo-
nents. The functional decomposition is based on this
view: the parser generates an abstract syntax tree (AST)
from the source code. The analyzer performs a pass over
the AST, decorating nodes with semantic information.
The intermediate code generator creates a stream of in-
termediate code instructions during its pass over the dec-
orated AST. The optimizer operates on the intermediate
code stream and generates a new optimized stream. Fi-
nally, the code generator translates the optimized interme-
diate code into executable binary code. In the functional
decomposition, each of these components is provided by
a component of the system.

Given conventional tools, these two decompositions are
mutually exclusive. The code can be written in the in-
terpreter pattern, but then the functional decomposition
is not available. When faced with a programming task
well-suited to the functional decomposition (for instance,
replacing the type analyzer with a better type inference al-
gorithm), the programmer needs to view and manipulate
code scattered through dozens of different files. The over-
all operation of the functional components is obscured,
and changes to a program’s functionality become signifi-
cantly more difficult.

Adopting the functional decomposition rather than
the structural decomposition makes replacing functional
components easier but produces its own set of problems.
For instance, in the functional decomposition, adding a
new syntactic structure to the language requires changing
all of the components of each functional decomposition,
whereas it only requires adding a single new component
to the structural decomposition.

The solution to this problem is to build new tools that

1

allow programs to be organized in multiple dimensions:
that is, to categorize the code in multiple ways, each of
which produces a distinct decomposition of the program.
Each of these dimensional decompositions represents a
view of the program according to some organizational
principle.

We believe that there are three primary approaches that
tools can take to provide this kind of functionality:

1. The transformational approach, in which an auto-
mated tool transforms code from a canonical pro-
gram organization into some other organization;

2. The compositional approach, in which the distinct
concerns that make up a system are implemented
separately, and are then composed into a complete
system according to some composition rules;

3. The query-based repository approach, in which the
code is not transformed or composed, but withdrawn
from a repository in organizations which correspond
to different program decompositions.

We believe that tools that are based on program trans-
formation and composition, while powerful, introduce
complexity to the programming process, and are likely
to introduce confusion and errors. Rather than trans-
forming the program, we believe that providing tools that
simply re-organize the code, without making any seman-
tic changes of any kind can provide the necessary sup-
port, without introducing the complexity of composition
or transformation. Since most programming projects use
a software configuration management system as a central
repository for storing their code, we believe that the ap-
propriate way to implement this functionality is be inte-
grating it into the SCM system.

We are building such an SCM system called Coven,
which provides support for multidimensional program or-
ganization. Coven is tightly integrated with a program-
ming environment to provide strong support for it novel
features. In the rest of this paper, we will present the rele-
vant features of Coven as an illustration of how such fea-
tures can be provided by an integrated SCM system.

2 Using SCM for Multidimensional
Separation of Concerns

Our approach to the multiple decomposition problem is
to avoid program transformation. We propose a simpler
solution that uses queries to extract program fragments of
a particular dimension of concerns from a program repos-
itory to gain the advantages of multidimensional separa-
tion. Since most software developers use an SCM system
to store their source code, we have focused on integrating
the query support with an advanced configuration man-
agement system.

import java.io.*;
import java.util.*;

public class Foo extends Bar implements IBar, IBaz {

 protected int _index;

 protected String _name;

 public static void main(String args[]) {

package test;

...
 }

}

Figure 1: Decomposition of Java source into versioned
program fragments

2.1 The Coven Repository

The Coven repository is a change package-based version
store with four key features:

1. Versioning is performed on the smallest indepen-
dent fragments of program source in the source lan-
guage. For example, in Java, fragments are individ-
ual method/field declarations. The division of a stan-
dard Java source file into fragments is illustrated in
figure 1. Within the repository, fragments are stored
as text with the ability to rapidly parse that text into a
simple AST. We call this fragment-based versioning.

2. Fragments in the repository have a list of associated
properties that allow the user of the repository to as-
sociate metadata with the fragments. Programmers
can then associate fragments with user-provided in-
formation. For instance, a programmer could mark a
fragment as being an element of a particular named
component of the system.

3. Fragments are retrieved from the repository using
queries that ogenerate virtual source files (VSFs).
Virtual source files encapsulate slices through the
full set of fragments that embody some modulariza-
tion of the program.

4. Change packages are provided in terms of change
sets that create consistent project versions. While de-
tails of project consistency and what it means in our
system are beyond the scope of this paper, project
consistency is a mechanism that ensures that change
sets are integrated into the repository in a manner that
ensures that a fully consistent system, identical to the

2

Example 1: Extracting all fragments that either
implement analyzeType, or that implementations
of analyze type depend on.
(all fragment (from compiler)

(where
(impls fragment ’analyzeType)
(exists (otherfragment

(impls otherfragment ’analyzeType))
(depends otherfragment fragment))))

Example 2: Extracting a source file for a class
(all frag (from compiler)

(format java-source-file)
(where

(inClass frag ’ArithmeticExpression)))

Figure 3: Example queries to generate virtual source or-
ganizations.

state of a previous complete system, can always be
properly reproduced.

The combination of these four features are the basis of
Coven’s flexibility and adaptability. Fragment-based ver-
sioning decomposes programs into smaller elements, and,
with the query-based retrieval mechanism, these smaller
elements can by assembled in arbitrary ways to form
source organizations that correspond to different dimen-
sional decompositions of the program.

For example, returning to the compiler project, the
two primary dimensions that we discussed (structural and
functional) can each be represented by a different virtual
source organization. In figure 2, we illustrate these two
decompositions in subfigures a and b, and in subfigure
c, we show the source slices that correspond to the two
decompositions. The structural decomposition is shown
as the vertical slices, which generate the standard class-
based structural organization of a compiler written in an
object-oriented language. The functional decomposition
is depicted by the horizontal slices that extract the meth-
ods and fields that are elements of each of the functional
components.

2.2 The Coven Query Language

To take advantage of the fragment-based versioning pro-
vided by Coven, programmers need a flexible interface
they can use to build new project configurations Coven’s
query language gives programmers the ability to cus-
tomize source code organizations by specifying how to
select and assemble components into a virtual program
organization. In the rest of this section, we will describe
the subset of the query language that allows programmers
to generate new virtual source organizations.

Using the query language, programmers can create a
collection of queries, each of which generates one virtual

(collection
(source "typeAnalyzer" (all ...))
(source "codeGenerator" (all ...)))

Figure 4: Collecting queries to form a virtual source orga-
nization

source file. A query specifies a project from which frag-
ments should be drawn and a condition that a fragment
must satisfy to be included in the VSF. Individual queries
are joined together into collections to specify a complete
virtual program organization.

The query language itself is implemented in an ex-
tensible fashion, consisting of a collection of language-
independent standard clauses and an extension mecha-
nism that allows programmers to add new clauses to the
language. Possible new clauses could be project, lan-
guage, or domain-specific.

We illustrate a few simple queries in figure 3 and how
they can be assembled to form virtual source organiza-
tions in figure 4. Example 1 draws fragments from the
project compiler. Each fragment must either imple-
ment the method analyzeType or be required by an-
other fragment that implements analyzeType. That
condition is specified by two query clauses—one for each
of the two possibilities—joined by an implicit logical or.

Example 2 is a query that will extract a VSF containing
the fragments that make up a particular Java class. The
format clause means that the resulting VSF should be
formatted as a Java class file. In general, the format
clause extracts program source from the repository in for-
mats that are usable by other, non-Coven specific tools.
In particular, this query can extract a VSF that could be
compiled by a standard Java compiler. The set of formats
that can be generated by a query using the format clause
is extensible.

Coven’s dynamic query and composition support can
also be used to manage different versions or configura-
tions of a project that support different feature sets. Since
queries dynamically generate the source code that is com-
piled, they can specify the set of features or versions that
should be included in a particular source file.

2.3 Manitoba: The Coven User Interface

The use of an SCM system like Coven introduces added
complexity to the task of the programmer. The program-
mer gains expressiveness and organizational flexibility at
the cost of dealing with queries, consistency, and the loss
of intrinsic context. To hide the added complexity, a
programming environment can make the manipulation of
multiple program organizations more tractable.

We have built a programming environment called Man-

3

Expression

ArithmeticExpression FuncallExpression ConditionalExpression

A. Structural Decomposition

Source Code Parse AST
Analyze
Type

AST
Type-Decorated

Code
Generate Code Stream

B. Functional Decomposition

}

 void generateCode(CodeStream cs);

 void analyzeTypes(...)

class FuncallExpression {

}

 void generateCode(CodeStream cs);

 void analyzeTypes(...)

class ArithmeticExpression {

}

 void generateCode(CodeStream cs);

 void analyzeTypes(...)

class ConditionalExpression {

C. Source slices corresponding to virtual source organizations for different decompositions

Figure 2: Two decompositions and the corresponding organizational slices

itoba, which allows the easy integration of external tools
into a flexible linked-pane style programming environ-
ment. The environment provides tools that simplify the
generation of new queries, as well as a variety of facilities
that make it fast and easy to use standard queries.

For instance, consider a scenario where a program-
mer is working on our compiler. The programmer needs
to make a change to the type analyzer in the functional
decomposition and edits the type analyzer component.
While working on the ArithmeticExpression type
analyzer method, she realizes that she does not know
some properties of the analyzer’s compilation context.
She clicks the right mouse button for a menu. Select-
ing the menu option open class view opens a new
window with the ArithmeticExpression class pre-
sented in context.

3 Related Work

The idea of multiple program views based on rearrang-
ing source organizations has been explored. The Gwydion
project from CMU[4] built a hypercode programming en-
vironment called Sheets. Like Coven, the Sheets sys-
tem subdivides code into program fragments and allows
fragments to be dynamically assembled into new virtual
source files, which they call sheets. They provide a mech-
anism for creating hyperlinks between sheets that provides
a capability similar to our artifact associations. The Sheets
environment used a query language to generate sheets
viewed by their UI. However, the Sheets system did not
integrate SCM with this dynamic view support. Further,
this view system was based on their use of a repository
which could only be accessed from within their system.

The Subject Oriented Programming/Hyperspaces[1, 2]
project at IBM has also explored alternative program or-
ganizations. Their focus has been on generating new pro-
gram organizations by performing program source trans-
formation. This kind of program reorganization is a
heavyweight process geared towards the needs of software
maintenance and is expected to be used very rarely.

IBM’s VisualAge Smalltalk includes a fragment-based
program repository called ENVY[3]. ENVY does not
provide any facility for allowing programmers to generate
queries to extract code from this repository. It provides a
standard collection of “views” that can be extracted from
the repository, corresponding to a single, canonical file-
based decomposition of the program.

4 Conclusions

We presented an alternative mechanism for allowing mul-
tidimensional separation of concerns. Instead of using a
tool that performs source code transformation or compo-
sition, we use a flexible configuration management sys-
tem in conjunction with an integrated programming en-
vironment to provide functionality similar to transforma-
tional tools. Our system is based on the use of fragment-
based versioning and flexible views built from collections
of fragments to allow programmers to dynamically gener-
ate new organizations of the program that correspond to
some dimension of concern.

References

[1] OSSHER, H., AND HARRISON, W. Combination of inheri-
tance heirarchies. In OOPSLA (1992), pp. 25–40.

4

[2] OSSHER, H., KAPLAN, M., HARRISON, W., KATZ, A. E.,
AND KRUSKAL, V. Subject-oriented composition rules. In
OOPSLA (1995), pp. 235–250.

[3] OTI. ENVY/Developer: The collaborative component
development environment for IBM visualage and object-
share, inc. visualworks. Webpage: available online at:
“http://www.oti.com/briefs/ed/edbrief5i.htm”.

[4] STOCKTON, R., AND KRAMER, N. The sheets hypercode
editor. Tech. Rep. 0820, CMU Department of Computer
Science, 1997.

5

