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Abstract

Semantic databasecaching is a self-managing ap-
proach to dynamic materialization of “semantic”
slices of back-enddatabaseson servers at the edge
of the network. It can be used to enhance the per-
formanceof distributedWebservers, informationinte-
gration applications,and Web applications offloaded
to edge servers. Such semantic cachesoften rely on
update propagation protocolsto maintain consistency
with theback-enddatabasesystem.However, thescal-
ability of such updatepropagation protocolscontinues
to be a major challenge. In this paper, we focus on
the scalability of update propagation from back-end
databasesto theedge server caches. In particular, we
proposea publish-subscribelike schemefor aggregat-
ing cachesubscriptionsat theback-endsiteto enhance
thescalability of thefiltering steprequiredto routeup-
datesto the target caches. Our proposal exploits the
template-rich natureof Webapplicationsandpromises
significantly better scalability. In this paper, we de-
scribeour approach, discussthetradeoffs thatarisein
its implementation, and estimate its scalability com-
paredto naiveupdatepropagation schemes.

�
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1 Intr oduction

The performanceand scalability of Web applica-
tions continues to be a critical requirement for con-
tent providers. Traditionally, staticcaching of HTML
pageson edge servers hasbeenusedto helpmeetthis
requirement. However, with a growing fraction of
the content becoming dynamic and requiring access
to the back-enddatabase,static caching is by-passed
asall thedynamically generatedpagesaremarkedun-
cachable by theserver.

Dynamic data is typically served using a 3-tiered
web serving architecture consisting of a web server,
an application server and a database;data is stored
in thedatabaseandis accessedon-demandby the ap-
plication server componentsandformatted anddeliv-
eredto the client by the web server. In more recent
architectures, the edgeserver (which includesclient-
side proxies, server-side reverse proxies, or caches
within a content distribution network(CDN) [2]) acts
asan applicationserver proxy by offloading applica-
tion components(e.g.,JSPs,servlets, EJBeans)to the
edge[12, 7]. Databaseaccessesby theseedgeapplica-
tion components, however, arestill retrieved from the
back-endserver over thewide areanetwork.

To accelerate edge applications by eliminating
wide-area network transfers, we have recently pro-
posedand implemented DBProxy, a databasecache
thatdynamically andadaptively storesstructureddata
at theedge[4]. Thecachein this scenario is a persis-
tentedgecachecontaining a largenumber of changing



andoverlapping “materialized views” storedin com-
montables.

The scalability of sucha schemedependson how
efficiently wecanmaintain consistency with theback-
enddatabasewithoutundueprocessingattheback-end
or network bandwidth overheads. Consistency in se-
manticcacheshasbeentraditionally achievedthrough
two approaches. Thefirst is timeout-based.Datain the
cacheis expired after a specified timeout period, re-
gardlessof whetherit hasbeenupdatedattheback-end
or not. The second approach is update-basedconsis-
tency whichreliesonpropagatingtherelevant changed
datato thecacheswhereit is locally applied.

Timeout-basedconsistency suffers from the disad-
vantage of increasedlatency and network message
overheadsasthecache needsto validate thedatawith
theback-endor fetchany modifieddata. Update-based
consistency propagatesall the new datato the cache
when any change happens, but suffers from serious
scalability limitations both as the numberof caches
grow, andasthe sizeof an individual cache, in terms
of the numberof cached views, increases. The scal-
ability problem arises from the back-endoverhead of
“figuring out”, whena row changes,which of the tar-
getcachesit mustbeforwardedto.

One approach that was usedinitially in DBProxy
wasto propagateall changesat the back-endandap-
ply themto thelocalcache.This increasesthenetwork
bandwidth overheadandincreasesthesizeof thelocal
cache. In this paper, we propose template-based fil-
tering that efficiently aggregatescachesubscriptions
at theback-endby exploiting thesimilarity of “views”
in edgequerycaches. Similar aggregationshave been
proposedfor event matching (against client subscrip-
tions) in publish subscribesystems.

We discuss the specifics of our approach, describe
how we handle dynamic changes in cachesubscrip-
tion, and highlight the challengesand trade-offs that
arisein this space.

The restof the paper is organizedas follows. We
review thedesign of our prototypedynamicedgedata
cachein Section2, anddescribeits consistency main-
tenance framework in Section 3. We review naive fil-
teringschemesin Section4 anddescribe ourapproach
in Section5. Wediscussrelated work in Section6 and
summarizethepaper in Section7.
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Figure 1. DBProxy key components. The query
evaluator interceptsqueries and parsesthem. The
cacheindex is invoked to identify previously cached
queries that operated on the same table(s) and
columns. A query matching module establishes
whether the new query’s results are contained in
the unionof the dataretrieved by previously cached
queries.A local databaseis usedto storethecached
data.

2 Semanticcachingover the Web

2.1 DBProxy overview

We designedandimplementedanedgedata cache,
called DBProxy [4], as a JDBC driver which trans-
parently intercepts the SQL calls issued by applica-
tion components(e.g.,servlets) executed on the edge
and determines if they can be satisfied from the lo-
cal cache (shownin Figure1). To make DBProxy as
self-managing as possible, while leveraging the per-
formancecapabiliti esof maturedatabasemanagement
systems, we choseto design DBProxy to be: (i) per-
sistent, so that results arecached acrossinstantiations
andcrashesof theedge server; (ii) DBMS-based,uti-
lizing a stand-alonedatabasefor storage to eliminate
redundancy using common tables and to allow for
the efficient execution of complex local queries; (iii)
dynamically populated, populating the cachebased
on the application query stream without the needfor
pre-definedadministratorviews; and(iv) dynamically
pruned, adjusting the set of cached queries basedon
availablespaceandrelativebenefitsof cachedqueries.

2.2 CommonLocal Store

Datain aDBProxyedgecacheis stored persistently
in a local stand-alone database. The contents of the



edgecache aredescribed by a cacheindex containing
the list of queries. To achieve spaceefficiency, data
is storedin common-schematableswhenever possible
suchthat multiple query results share thesamephysi-
calstorage.Queriesoverthesamebasetable arestored
in asingle, usually partially populated, cached copy of
thebasetableat theorigin server. Joinquerieswith the
same“joi n condition” andover thesamebasetablelist
arealso storedin the samelocal table. This scheme
not only achievesspaceefficiency but alsosimplifies
the taskof consistency maintenance,asdiscussedbe-
low. Whena query is “worth caching”, a local result
table is created (if it doesnot already exist) with as
many columnsasselected by the query. The column
type andmetadata information areretrieved from the
back-endserver andcached in a local catalog cache.
For example,Figure 2 showsan examplelocal table
cached at the edge. The local ‘item’ table is created
just before inserting the threerows retrievedby query
Q1 with the primary key column (i id) and the two
columnsrequestedby thequery(i cost andi srp). All
queriesarerewritten to retrievetheprimarykey sothat
identical rows in thecachedtableareidentified. Later,
and to insert the three rows retrieved by Q2, the ta-
ble is altered if necessaryto addany new columnsnot
already created. Next, new rows fetchedby Q2 arein-
serted(i id � 450� 620)andexisting rows(i id � 340)
areupdated. Notealsothatsince Q2 did not select the
i cost column, a NULL value is inserted for that col-
umn.

Cachedqueries in DBProxy areorganizedaccord-
ing to a multi-level index of schemas, tables and
clauses for efficient matching.

3 ConsistencyManagement

Read-only queries received by DBProxy aresatis-
fied from thelocal cache, whenever possible. Updates
are always passedto the back-end databasedirectly,
bypassing the cache. The effects of updates trickle
back to the edgecache,through a pushor a pull ap-
proach.

While many Web applications cantolerateslightly
staledatain the edgecache, they arenevertheless in-
terestedin reasonable consistency guarantees. For ex-
ample,applications usually require that they observe
theeffectsof their own updateson an immediatesub-
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SELECT cost, msrp FROM item
WHERE cost BETWEEN 14 AND 16

WHERE msrp BETWEEN 13 AND 20
SELECT msrp FROM item
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Figure 2. Localstorage.Thelocal itemtableentries
afterthequeriesQ1 andQ2 areinsertedin thecache.
The first threerows are fetchedby Q1 and the last
threearefetchedby Q2. SinceQ2 did not fetch the
i cost column, NULL valuesare inserted. The bot-
tom two rows werenotaddedto thetableasa partof
queryresultinsertion, but by theupdatepropagation
protocol which reflectsUDIs performedontheorigin
table.

sequent query. Sincea query foll owing anupdate can
hit locally in a stalecache, updatesnot yet reflected
in the cache would seemto have beenlost, resulting
in strange application behavior. Specifically we as-
sumethat threeconsistency properties hold. First, the
cacheguaranteeslag consistencywith respect to the
origin. This meansthat thevalues of the tuplesin the
local cache equal those at the back-end at an earlier
time,althoughthecachemayhavelesstuples. Second,
DBProxy exhibits monotonic state transitions, i.e, it
doesnotallow anapplicationto seearelatively current
databasestate, thenseea previousstatecorresponding
to a point earlier in time. Finally, DBProxy supports
immediatevisibility of local updateswherethe result
of a laterreadby anapplicationwill showtheeffect of
thelocal update it hadcommittedearlier.

To achievetheseproperties, DBProxy reliesonpro-
tocols that force the cache to pull updates from the
server on certain events, andalso may decide to by-
passthecachein others. Thedetailsof theconsistency
protocols andcriteria arenot the focusof this paper,
but aremorefully described in [3]. Suffice it to say,
here,that regardlessof theparticularcriteria, changed
datamustbeefficiently propagatedfrom theback-end
databaseto theedgecaches.In thissection,wediscuss
two alternative approaches to updatepropagation,and
describe a server-sidefiltering architecture which can
be usedto propagatechangesin back-endtablesonly



to thecaches thatrequire them.

3.1 Updatepropagation approaches

To maintainconsistency, DBProxy relieson a data
propagator, which capturesall UDIs (updates,deletes,
inserts) to thetablesat theorigin andforwardsthemto
theedgecacheseither in theirentirety or after filtering.
Zero-filtering propagation. This approach, which
we initially implemented in DBProxy, propagatesall
changesto the edgecaches, regardlessof whether or
not they matchcached predicates.This places no fil-
tering load on the server. Data changes are propa-
gatedto the edgestaggedby their transaction identi-
fiersandapplied to theedgecachein transactioncom-
mit order. Sincecached datais maintainedaspartially
populatedcopiesof back-endtables,changescommit-
ted to the basetablesat the origin canbe applied “as
is” to the cachedversions, without the need to re-
executethe queries. Futurequeries that will execute
over the cache will retrieve from thesenewly propa-
gatedchangesany matching tuples. This solution pre-
sumesslowly changingdatawith few updateswhich is
typical of somewebenvironments.
Server-side filtering . The problem with propagation
basedconsistency with zerofiltering is thatall changes
to the back-endarepropagatedregardlessof whether
they are required by the cacheor not. This not only
wastesnetwork bandwidth but alsoincreasesthe size
of the local cache database. Periodicgarbage collec-
tion is requiredto cleantheunaccessedtuples. An al-
ternative approachis to filter the tuplesthatchange in
theback-enddatabaseandforwardto eachcache only
the“relevant” ones.Thisfiltering stepcanplace,how-
ever, high load on the back-endsite asthe number of
caches and the number of views per cache increase.
Therestof thepaperwill describefiltering in morede-
tail, andsuggestanapproachto make it morescalable.

4 Basicfiltering

Notation. Beforewediscussthedetailsof filtering,
wefirst defineafew notational conventionsto simplify
therestof thediscussion. For eachqueryin thecache
we have a subscription at theback-end. We express a
subscription S as a 3-tuple S � -

T � A � P. , whereT is
the tablename(s) accessedby the query. In caseof a

join, T may contain two or moretables. A is the set
of attributesor columnsprojectedby thequery, andP
is the search predicate. P is assumedto be in AND-
OR normal form. When expressed in its AND-OR
normalform, we denote by Ci the ith conjunct in that
expression. Eachconjunct contains several predicate
terms(e.g.,cost / 15) ANDed together. Thesepred-
icatetermsareatomicconditions, suchasequality or
inequality predicatesover columns.

Let N be the numberof edgecaches. For cache i,
thesetof subscriptionsaredenotedby Si , andthenum-
berof subscriptionsarethereforeequal to 0Si 0 . The jth

subscription of cache i is, therefore,Si j � -
Ti j � Ai j � Pi j . .

Overview of Filtering . In this scheme,caches “sub-
scribe” to a number of “logi cal” update streams. In
particular, eachcached view or querycorresponds to
onesubscription. A filtering serverat theback-endsite
manages subscriptionsfor theedgecaches. Subscrip-
tionsaredynamic,thatis they changeasnew viewsare
addedor evicted.

The filtering server, therefore, has to test each
newly changedtuple(or row in a table) against all the
∑i 1 1 2 2N 0Si 0 subscriptions.Thisresults in alinear search
overhead asthenumberof cachesN increases,andas
thenumberof subscriptions 0Si 0 percache increase.

Precisely, for eachtuple tk let usassumethat told
k is

theold value andtnew
k is thevalueafter a change(i.e.,

aUDI). In caseof anewly insertedtupletold
k is NULL,

similarly, whena tuple is deleted tnew
k is NULL. As-

sumingthereis a single cached query denoted by Si j

with predicatePi j , thenthefiltering algorithm decides
to route tuple tk to the target cache if either of the fol-
lowing two conditions hold:

3 tnew
k 4 Pi j

3 told
k 4 Pi j AND tnew

k 54 Pi j

In the first casethe tuple is inserted or updated in the
cache. In thesecond casethetuple is either deleted or
updated.Thepseudo-codeof thefiltering algorithm is
shown below.

filter (TUPLE Told, TUPLE Tnew, CACHE i)
begin

for every SUBSCRIPTION Sij from CACHE i {
for every CONJUNCT C in Sij {
if( C.matches(Tnew) )

return TUPLE_MATCH;



else if ( C.matches(Told) )
return TUPLE_MATCH;

}
}
return TUPLE_NO_MATCH;

end

The filtering procedureabove is invoked oncefor
eachcache,for eachtupleupdatedby a transaction in
theback-endserver. For eachsubscription Si j � C1 6
C2 6879797:6 Cm, thetuple is testedagainsteachof theCi ’s,
and is forwarded to the edgecacheif it matchesany
of them. Note that each of theCi ’s is expressedasa
bunch of atomicattribute tests(of theform attr ;<�8�=/
� 79797?> val) ANDed together.

The complexity of the matching function grows
with the size or complexity of the subscription. If
the average numberof conjuncts per subscription is
m and the numberof termsper conjunct is t, and if
the average cache size is S, thenassuming that there
areN caches,thetotal complexity canbeexpressedas
O
-
N @ S @ m @ t . . To simplify the analysis,whenes-

timating filtering cost,we will assume, for the restof
thediscussion, thateachsubscription hasasinglecon-
junct with t terms, in which the filtering complexity
canbesummarizedasO

-
N @ S @ t . .

5 Template-basedfiltering

In order to improvethescalability of thebasic filter-
ing approachwe proposetemplate-basedfiltering that
exploits the similarity amongthe subscriptions corre-
sponding to thecached queries.Suchsimilaritiesexist
because queries are generatedby applications which
often defineparametrizedquery templates which are
instantiatedinto actual queriesat run-time by binding
thevariableparameters.
Templates. In Java-based Web applications, two
query programming styles are observed: i) explic-
itly declaredtemplateswherequeriesarepre-declared
asprepared statementsandwhereparametersareset
through explicit calls, or ii) undeclared templates
wherequeriesarecomposedby the string concatena-
tion of a fixedpartanda variable part.Suchtemplates
areoften seenin the servlet programsrunning at the
Web server which process the inputs from the front-
endinterfaceconsistingof web-pageforms.If thetem-
plateis not explicitly declared,our caching driver has

to infer implicitly that somesubmitted queries follow
thesametemplate.

When referring to a group of similar query pred-
icatesinstantiated by the sametemplate, we call the
part of the predicatethat changesacrossthe groupas
the variant part, to distinguish it from the fixedpart.
For therestof thisdiscussion, wewill focusonasingle
conjunct in thequery’spredicateexpression. Consider
thetwo predicateexpressions:

P1 � -
cost / 15 A msrp / 8 A num reviews � 5.

P2 � -
cost / 15 A msrp / 8 A num reviews � 10.

A comparison of thesetwo predicateexpressions sug-
geststhat they are likely two instantiations of a tem-
plate Pt of the form: Pt � -

cost / 15 A msrp / 8 A
num reviews � ?. In this example, the predicates P1

andP2 containasingle conjunct
-
cost / 15 A msrp /

8 A num reviews � ?. . Within the conjunct,
-
cost /

15 A msrp / 8 . is thefixedpartand
-
num reviews � ?.

is thevariant part. Theatomictest
-
cost / 15. is called

a predicateterm.
Templates in real applications. We looked at the
numberof templates used in two e-commerce bench-
marks,TPC-W, which emulatesan on-line bookstore
andECD-W, which is muchmorecomplex andemu-
latesa customizable on-line shopping mall. Thenum-
berof templatesin theserealistic full-fledgedJava ap-
plications were18 and81, respectively. Furthermore,
thepercentage of queriesgeneratedby the top-5 tem-
plates where79%an68%respectively.

Wedetect templateson-line by comparingthestruc-
ture of search predicatesin a query stream.Our tem-
platedetection algorithmsaredescribedin [5].

5.1 Template-based filtering: Singlecachecase

The main intuition behind our approachis that the
fixed part of the predicateshould be tested only once
for all thequerysubscriptionsgeneratedfrom thesame
template. This is similar to the motivation behind
eventmatching schemesin publish-subscribesystems.
However, becauseof the prevalenceof templates in
Web applications, we suggestusing specialized data
structures,to aggregatetheparameterinstantiationsof
the variant part of the predicate. This allows for fast
matching of a new tuple against the collectionof the
variant parts. We call these indexed aggregatedata
structures,MergedAggregatedPredicates (MAPs).



In the above example,assume that many subscrip-
tionsarereceivedwhich areall generatedby thesame
template. In that case,the MAP can be a hashta-
bleaggregatingthevariant integertermsthatappear in
the num reviews � ? test. The filtering testcanthere-
fore be reduced to testing the num reviews attribute
of the tuple againstexistence in the hashtable. The
testsagainst thecost andmsrp attributeswouldbeper-
formedonly once. The complexity of testing a tuple
againsta hash-table MAP is constant. If we denote
by K thenumber of templates, which is usually much
smaller than the numberof subscriptions, K /B/ S,
the total complexity is O

-
K . , which is independentof

cachesize, unlike thecost of naive filtering, O
-
S @ t).

Of course,not all MAPsarehash tables,andtherefore
thecomplexity of looking upaMAP is notalwayscon-
stant,but is at worst logarithmic in cachesize,aswe
show below.
Example MAPs. We describe through a few ex-
amples, the various possible MAPs. Consider the
following template: Pt � -

cost / ? A msrp / 8 A
num reviews � 5.

In this case, the subscriptions can be aggre-
gatedinto a single value corresponding to the max-
imum upper bound parameter received for the cost
attribute (e.g., for cost / 10, cost / 20, cost
/ 50, we only store the value 50). Consider,
alternatively, a slightly more complex expression:
Pt � -

cost BETWEEN ? AND ? A msrp / 8 A
num reviews � 5.

Our approach in this case is to merge suc-
cessive instantiations of a BETWEEN predi-
cate into an interval set, where all overlapping
intervals are merged together. For example,
the intervals cost BETWEEN 10 AND 20 ,
cost BETWEEN 15 AND 25 will be merged
and represented as C 10� 25D . Further, the intervals
aresorted to enable efficient binary searching. Thus
intervals [10, 20], [45, 60], [25, 35] will be sorted
to be [10, 20], [25, 35], [45, 60]. If a new interval
say [15, 30] is added that overlaps with the previous
intervalsthey aremerged togetherandthelist becomes
[10, 35], [45, 60]. More formally, the sortedinterval
array SA � - C x1 � X1 DE� 79797 �FC xm � XmDG. has the following
non-overlapping property:

xi H Xi / xi I 1 for every i � 1 � 79797 � m J 1.

A more complex MAP arises when the predicate
containsparameterscorrespondingto teststhatinvolve
morethana single attribute.For example:

Pt � -
cost / ? A msrp / ? A num reviews � 5.

In this the case, the aggregation of various instantia-
tions of the templateis not straightforward. Note that
wecanassociateaMAP with eachparameter (thecost
and the msrp upper bounds). However, a tuple can
“hit” in both MAPs,while not matching any subscrip-
tion (becauseit matches thecost testcorresponding to
onesubscription, and the msrp test corresponding to
another).

More generally, consider the casewherethe vari-
ant part of the conjunct contains morethanonevari-
antpredicateterm. We denote thevariablepartof the
conjunct,Cj , asĈj . Note that thecolumnsreferred to
in Ĉj could be different. For a conjunct with predi-
catetermsconditioning over thesamecolumn,wecan
sometimesconvertĈj to asingle BETWEENpredicate
(e.g.,in case of a combination of H and K ). However,
in the general case,Ĉj canhave predicate termsthat
refer to several different columns,for example: Ĉj �-
col1 / ?.LA -

col2 � ?.LA -
col3 BETWEEN ? and ?. .

TheMAP associatedwith Ĉj is a list of regions in ak-
dimensional space. In this particular example, the re-
gion is upper-boundedby asingle valuealongthefirst
dimension (col1), corresponds to a single value along
the second dimension (col2), andis upperandlower-
boundedalong the third dimension (col3). In this 3-
dimensional space, the region is described by a rect-
angular planeboundedon threesidesandextending to
infinity along thefourth side.

A single instantiation of the variant conjunct,Ĉj ,
cantherefore be thought to correspondto a region, or
rectangle in k-dimensional space. Thedimensionality
of theregionspaceis upper-boundedby thenumberof
columns that appear in Ĉj . We associatea MAP with
Ĉj whichmaintainsthesetof rectanglescorresponding
to thevariant conjunctsof all cached queries. Overlap-
ping or adjacentrectanglesaremergedif possible. In
general, a MAP contains a set of overlapping and/or
disjoint rectangles.

Testingif a tuple matchestheaggregationof several
subscriptions reducesto inspecting the corresponding
MAP to verify whetherthe “point” corresponding to
the tuple is contained in any of the k-dimensional



rectangles aggregated in the MAP. To allow quick
searchof such composite MAPs, one approach is
to organize the rectangles corresponding to cached
queriesusingamemory-residentmulti-dimensional in-
dex such as an R-tree [10]. The rectangles are or-
ganizedhierarchically using their minimumbounding
rectangles (MBR). Testinga tuple against the aggre-
gatedsubscriptionstranslatesinto searching themulti-
dimensionalindex to find out if thereexistsat leastone
rectangle at theleaf level which containsthetuple.

Note that in the TPC-W application trace,we ob-
serve that less than 5% of the templates have more
thanonevariable parameter in aconjunct. So,in prac-
tice,theneedfor R-treesandmulti-dimensionalMAPs
should belimited.
Complexity analysis. Testinga tuple against a sub-
scription is logarithmic in the numberof aggregated
subscriptions. Assumethere are K templates in the
cache, with eachtemplate having a single conjunct.
Thus,thereareS5 K subscriptions from the cache as-
sociated with a given template, and the complexity
is O

-
K @ log

-
S5 K .M. compared to the O

-
S @ t . of the

naive approach.
Subscription management.Whenqueriesareadded
to or removed from the cache, the subscriptions and
the corresponding MAPs need to be updated in the
filtering server. However, because MAPs represent
aggregationsof a set of values, updating themis not
straightforward whena value in the aggregatedset is
removed.

A few alternativescanbedistinguishedhere. Oneis
to perform subscription deletion by entire template. A
cachecannot unsubscribe by removing an individual
query (i.e., a template instantiation). Instead,caches
are allowed only to unsubscribe by dropping all the
queries in a particular template.

Theother alternative is to allow query-based unsub-
scriptions. For this, the MAPs must be modified to
support individual query removals. For hash tables,
removing a valuecanbe implementedrelatively eas-
ily. However, if theMAP is a min-maxaggregationor
a sorted interval list, updating the MAP after remov-
ing anelementis not straightforward. Theproblem is
recomputing a max over a setof values, whena ran-
dom elementis removed requires maintaining all the
elementsin the set. Thesameobservation applies for
themerged interval list. Therefore,under this scheme,

we needto maintain all the individual elements that
have beenaggregatedinto theMAP. Thissetis not ac-
cessed during tuple tests,but is usedto “recompute”
the MAP when an element is removed. Note that
MAPScanbelazily updatedwhenunsubscriptionsoc-
cur becausesending moredatato the cachethannec-
essary increasesloadbut doesnot compromiseconsis-
tency.

5.2 Template-based filtering: Multiple caches

In this section, weconsiderthecasewheremultiple
caches subscribe to update streams at the back-end.
Oneoption is to usethe single-cache template-based
matching algorithm for eachcache. This approachre-
sultsin O

-
N @ K @ log

-
S5 K .M. filtering complexity for

N caches. In this case,efficiency is gainedonly in ag-
gregating queriesfrom a single cache.

We investigatewhetherthis simple algorithm can
beimprovedif thetemplatesaresharedamongcaches.
This arises in practice because often multiple “in-
stances”of thesameWebapplicationcanbeexecuting
on many edgeservers. In this case, the subscriptions
coming from the various caches will also be similar,
having beengeneratedby the sameset of templates.
Suppose thattwo caches have identical templates:

T1 : p1 A p2 A pv andT2 : p1 A p2 A pv, wherepi are
predicateterms.

Whentesting atupleagainstthesetwo templatesub-
scriptions,weneedto testthetupleagainst p1 A p2 for
both caches. Then,we needto test the tuple against
theaggregationsof thevariant parts. Supposethevari-
ant part pv is a simpleequality query pv : attr �N� ?.
Suppose that cache1 hascached attr values 7 � 12� 15
andcache2 hascachedattr values12� 15 � 16. Under
the simple scheme, the valuesfor eachcachewould
bestoredin separatehash-tables.During thematching
process,the filter server would considereachcache’s
MAP separately. The filter server would look up the
value of tuple.attr in eachcache’s MAP hash-
table. Alternatively, the values corresponding to the
MAPs of various caches canbe merged into a single
unifiedMAP, which is capable of remembering which
cache(s) eachvalue is associated with. This can be
achieved as follows. First, consider inequality tests.
Without lossof generality, assumethe variant part is
of the form attr /O� ?. While in thesingle cachecase,



thefilter server maintainsa singlemaximumvaluefor
all subscriptionsthatweregeneratedby thesametem-
plate, in the multi-cachecase,the filter server main-
tainsasortedlist of themaximumquery parameter for
eachcache.Thetuplematchesqueriesfor everycache
whosemaximumquery parameter is greater than or
equal to the value of the tuple’s attribute. Merging
MAPsof multiplecacheswill, however, requiremain-
taining a more complicated data structure as query
subscriptionsareaddedanddeleted.

In thecase of interval tests, we needto modify the
MAP to maintain information about the cache(s) to
which eachinterval (in the sortedinterval list) corre-
sponds.
Complexity analysis. Assumingcaches sharetem-
plates, then the complexity can be further reduced
from O

-
N @ K @ log

-
S5 K .M. to O

-
K @ log

-
NṠ5 K .M. .

6 Relatedwork

Earlier work on database caching investigated
predicate-based schemes and views to answer
queries [18, 15, 8, 13, 9]. Recent papers have
examined passive and active caching schemes for
webapplications andXML data[16, 6, 11]. Luo and
Naughton describedanactivecaching techniquebased
on templates(forms) [16]. Consistency protocols for
predicate cacheshave been investigated in [13], but
the focus was on limited-size client-server database
systems, and not on scalable deployments over the
Web.

Relatedto the problem of update filtering is query
containment— the problem of deciding whether a
query is contained in the union of a set of views
or cached queries. A wealth of previous work ex-
ists in the area of query containment and equiva-
lence[17, 14, 5]. Previouswork in theareaof material-
izedview routing (i.e.,answering queriesby rewriting
using materialized views) also describes techniques
for matching andcontainment.

Most relatedto our work is the event matchingap-
proach of publish-subscribe systems[1]. Gryphon
usesa parallel searchtree (PST) to aggregateclient
subscriptions described as conjunctive predicate ex-
pressions. The difference in our approachis that in-
steadof using a generalized PSTwe usespecialized
indexed datastructures (MAPs) to aggregatethevari-

antpartsof subscription expressionsbasedon thepar-
ticular operator that appears in the variant part. This
exploits the abundanceof templates in Web applica-
tions, andenablescompact representationsof thedata
structuresusedto aggregatesubscriptionsandacceler-
atefiltering.

7 Conclusions

Semanticdatabasecaching is a self-managing ap-
proach to dynamic materializationof “semantic” slices
of back-enddatabaseson edge servers. It canbeused
to enhancetheperformanceof distributed Webservers,
informationintegrationapplications,Webserviceplat-
forms, and Web applications offloaded to edge-of-
network servers. Thescalability of semantic caching,
however, reliesheavily onprotocolsthatmaintaincon-
sistency betweenthe back-end databaseand the dis-
tributedcaches. In this paper, we focustheproblemof
“scaling” theupdatepropagation protocolsin suchen-
vironments.In particular, we proposetemplate-based
filtering thatefficiently aggregatescachesubscriptions
at theback-endby exploiting thesimilarity of “views”
in edgequery caches. We discussthe specificsof our
approach, describe how we handle dynamicchanges
in cachesubscription,andhighlight thechallengesand
trade-offs thatarisein this space.
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