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Abstract

Semaltic datakasecacing is a self-maraging ap-
proach to dynamic materidization of “semantic’
slices of back-enddatabaseson seners at the edge
of the netwak. It can be usal to enharce the per
formane of distributedWebservess, informationinte-
gration applications, and Web applications offloaded
to edee serves. Sud sematic cachesoftenrely on
updat propagation protocolsto maintan corsistercy
with the badk-enddatebasesystemHowever, thescal-
ability of sud update propagation protocolscontinues
to be a major challenge. In this paper, we focus on
the scalability of updae propagation from badk-end
datalasesto the edge sener cadhes. In particular, we
proposea publish-sibscribe like schemefor aggregat-
ing cachesulscriptionsat thebad-endsiteto enhance
thescahbility of thefiltering steprequredto routeup-
datesto the target caches. Our proposal exploits the
templaterich nature of Webapplicationsand promises
significantly bette scalability. In this paper, we de-
scribeour approach, discussthetradedfs thatarisein
its implemenation, and estimae its scalahlity com-
paredto naiveupdate propagation schemes.

*Theauthorperformedhiswork while attheIBM T. J.Watson
ResearctCenter

1 Intr oduction

The performanceand scalalility of Web applica-
tions continuesto be a critical requrementfor con-
tentproviders. Traditionally, staticcaching of HTML
pageson edge seners hasbeenusedto help meetthis
requrement. However, with a growing fraction of
the content becoming dynamic and requring acass
to the back-end datalase,static cachirg is by-passed
asall thedynamically geneatedpages aremarkedun-
cachdle by thesener.

Dynamic datais typically sened using a 3-tiered
web sening archiectue consbting of a web sener,
an application sener and a database;datais stored
in the datébaseandis accessedon-demandby the ap-
plication sener comporentsandformated anddeliv-
eredto the client by the web sener. In more recent
archiectures, the edgesener (which includesclient-
side proxies, senerside reverse proxies, or cactes
within a content distribution network(CDN) [2]) acts
asan application sener proxy by offloading applica-
tion compments(e.g.,JSPsservids, EJBeansjo the
edge[12, 7]. Datalaseaccessedy thes edgeapplica-
tion compaents however, arestill retrieved from the
backendsener over thewide areanetwork.

To accderate edge applicatiors by eliminating
wide-area network tranders, we have recenly pro-
posedand implemened DBProxy, a datalasecache
thatdynamically andadapively storesstrucureddata
attheedge[4]. Thecachein this scerario is a perss-
tentedgecachecontaning alarge numbe of changing



and overlaping “materidized views” storedin com-
montables.

The scalallity of sucha schemedependson how
efficiently we canmaintan conssteny with the badk-
enddatalasewithoutundueprocessingatthebackend
or network bardwidth overheals. Consistacy in se-
manticcacteshasbeentraditiondly achieedthrough
two appraches Thefirstis timeaut-ba®d. Datain the
cacheis expired after a spedfied timeou periad, re-
gardles of whetherit hasbeenupdaedatthebackend
or not. The secand appraachis update-baedconsk-
teng/ whichrelieson propagatingtherelevant changed
datato the cacteswhereit is locally applied.

Timeout-tasedcongstercy suffers from the disad-
vantag of increasedlatercy and network messge
overheals asthe cacke needgo validate the datawith
theback-end or fetchany modifieddata. Update-lased
conskteny propagatesall the new datato the cadce
when ary chang happens, but suffers from seriaus
scalalility limitations both as the numberof cactes
grow, andasthe size of anindividual cache in terms
of the numberof cacheal views, increases The scal-
ability problem arises from the backendoverheal of
“figuring out”, whenarow changes,which of thetar
getcadesit mustbeforwardedto.

One apprach that was usedinitially in DBProxy
wasto propagateall changsat the badk-endandap-
ply themto thelocal cache.Thisincreaseghenetwork
bandwidh overheadandincreaseshesizeof thelocal
cache In this pape, we propcse templatebase fil-
tering that efficiently aggreyatescachesubsciptions
atthe backendby exploiting the similarity of “views”
in edgequerycaches Similar aggreyationshave been
propcsedfor event matchirg (aganst client subsrip-
tions)in publish sulscribesygems.

We discus the spedfics of our appgroach desribe
how we hande dynamic changsin cachesubgrip-
tion, and highlight the challengesand trade-offs that
arisein this space.

The restof the paper is organizedasfollows. We
review the desgn of our prototypedynamic edgedata
cachein Section2, anddescrbeits congsteng/ main-
tenarce framework in Sectian 3. We review nawe fil-
teringschanesin Sectiond4 anddescibe our appoach
in Section5. We discussrelated work in Section6 and
summarizehe pape in Section?.
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Figure 1. DBProxy key compaents. The query
evaluatorinterceptsqueies and parsesthem. The
cacheindex is invoked to identify previously cachel
queries that opeated on the same table(s) and
columns. A quely matchirg modde establishes
whether the new querys results are contaned in
the union of the dataretrieved by previously cachel
queries.A local databasés usedto storethe cachel
data.

2 Semanticcachingover the Web
2.1 DBProxy overview

We desgnedandimplemeried an edgedaia cacte,
called DBProxy [4], as a JDBC driver which trans-
parerily interceps the SQL calls issued by applica-
tion comporents(e.g.,senlets) executal on the edge
and determires if they can be satidied from the lo-
cal cache (shownin Figurel). To make DBProxy as
self-maraging as possble, while leveraging the per
formane capailiti esof maturedatalasemanagenent
systems, we choseto desigh DBProxy to be: (i) per
sisten, sothatresuts arecachel acressinstartiations
andcrastesof the edge sener; (i) DBMS-baseduti-
lizing a standalonedatdasefor storage to eliminate
redurdany using commontables and to allow for
the efficient execuion of complex local queries; (iii)
dynamically popuated populating the cachebased
on the application quey stream without the needfor
pre-cefinedadminidrator views; and(iv) dynamically
pruned, adjustng the setof cached queries basedon
available spaceandrelative benefitsof cacledqueries.

2.2 Common Local Store

Datain aDBProxyedgecaches stored persisterily
in alocal stard-alone database The contents of the



edgecache aredescibed by a cacheindex containing
the list of queries. To achiewe spaceefficiencgy, data
is storedin common-siscematableswheneer possible
suchtha multiple quey resuls shae the samephysi-
calstorgge. Queriesoverthesamebasetalbe arestored
in asinde, usuwally partidly populated, cachel copy of
thebasetableattheorigin sener. Joinquerieswith the
same'joi n condtion” andoverthesamebasetablelist
are also storedin the samelocal table. This scheme
not only achieres spaceefficiency but also simplifies
the taskof conssteng/ mainterance,asdiscussedbe-
low. Whena quel is “worth caching”, alocal resut
tableis createl (if it doesnot alread/ exist) with as
mary columnsasseleced by the query The column
type and metad#a information areretrieved from the
back-endsener andcacledin a local catalagy cache
For example, Figure 2 showsan examplelocal table
cachel at the edge. The locd ‘item’ tableis creaed
just befare insering the threerows retrieved by quey
Q1 with the primary key column (i_id) and the two
columnsrequesedby thequery(i_cog andi_srp). All
gueriss arerewrittento retrieve the primarykey sothat
identical rowsin the cactedtableareidertified. Later,
andto inset the three rows retrieved by @, the ta-
bleis alteredif neessaryto addarny newv columnsnot
already creatal. Next, new rows fetched by @ arein-
serted(i_id = 450,620)andexisting rows (i_id = 340)
areupdatd. Note alsothat since Q, did not select the
i_cod column,a NULL value is insated for that col-
umn.

Cachedqueriesin DBProxy are organizedaccod-
ing to a multi-level index of schemas, tables and
clauses for efficient matchirg.

3 ConsistencyManagement

Read-mly quelies receved by DBProxy are satis-
fied from thelocal cache whenerer possble. Updates
are always pasedto the bak-end datebasediredly,
bypasing the cacte. The effects of upddes trickle
backto the edgecache,throuch a pushor a pull ap-
proad.

While mary Web applicatiors cantolerate slightly
staledatain the edgecache they are nevertheles in-
teresedin rea®nabk condsteng guarantees For ex-
ample,apgdications usudly requre thatthey obseve
the effectsof their own upddeson animmediatesub-

Cached item table:

ENED
|

340E| 16%| 13% Z
450_[NULL| 18
620, [NULL| 20

Inserted by consistency protocol
[o90a] 45 a] 0 ]

Retrieved by Q
SELECT cost, msrp FROM item
WHERE cost BETWEEN 14 AND 16
Retrieved by Q
SELECT msrp FROM item
WHERE msrp BETWEEN 13 AND 2

Figure 2. Local storage Thelocalitemtableentries
afterthe queriesQ1 andQ; areinsertedin the cache.
The first threerows are fetchedby Q1 andthe last
threearefetchedby Q.. SinceQ> did not fetch the
i_cod column NULL valuesareinserted. The bot-

tom two rows werenotaddedo thetableasa partof

queryresultinsertion but by the updatepropagatio

protocd whichreflectsUDIs performedonthe origin

table.

sequat query Sincea query following anupdde can
hit locally in a stalecache, updatesnot yet reflected
in the cacle would seemto have beenlost, resuting

in strang application behavior Specificdly we as-
sumethatthreeconrsistercy properties hold. First, the
cacheguarateeslag consktencywith resgect to the
origin. This meanghatthe values of the tuplesin the
local cacte equalthose at the backend at an earler
time, althoughthe cachemayhave lesstuples Second
DBProxy exhibits monobnic stat transitions, i.e, it

doesnotallow anapplicationto seearelatively current
datalasestate thenseea previous statecorreponding
to a point earlierin time. Finally, DBProxy suppats

immediatevisibility of local updateswherethe result
of alaterreadby anapplicationwill showtheeffect of

thelocal updae it hadcommitiedearlier.

To achiee theseproperties DBProxy relieson pro-
tocols that force the cache to pull upddes from the
sener on certain events, and also may dedde to by-
passhecactein others Thedetaik of theconssteny
protocols and criteria are not the focus of this paper
but are morefully descrbedin [3]. Suffice it to say
here,thatregardlessof the particular criteria, changed
datamustbe efficiently propagatedrom the bak-end
datalaseto theedge cacles.In this section, we discuss
two altemative appoaches to update propagation,and
descibe a sener-sidefiltering archtecture which can
be usedto propagatechangsin badk-endtablesonly



to the cacha thatrequre them.
3.1 Update propagation approaces

To maintainconsisterty, DBProxy relieson a data
propayator which capuresall UDIs (upddes,delees,
insers)to thetablesattheorigin andforwardsthemto
theedge cachaeither in theirentirety or after filtering.
Zero-filtering propagaion. This apprach, which
we initially implemeried in DBProxy, propayatesall
changesto the edgecactes, regardless of whethe or
not they matchcachel predicates. This places no fil-
tering load on the sener. Data charges are propa-
gatedto the edgestaggedby their transaction identi-
fiersandappledto theedgecadein transactioncom-
mit order Sincecacheal datais maintanedaspartally
popuktedcopesof backendtables, chargescommit-
ted to the basetablesat the origin canbe appied “as
is” to the cachedversions, without the nedl to re-
executethe queries. Futurequeies that will execue
over the cache will retrieve from these newly propa-
gatedchangesary matchirg tuples This solution pre-
sumesslowly charging datawith few updaeswhichis
typica of somewebervironmens.

Server-side filtering. The probem with propajation
basedtonssteny with zerofiltering is thatall changs
to the backend are propagatedregardless of whether
they arerequired by the cacheor not. This not only
wastesnetwork bandvidth but alsoincreasesthe size
of the locd cadthe datalase. Periodicgarbae collec-
tion is requiredto cleanthe unacesseduples. An al-
ternatve appioachis to filter the tuplesthatchargein
the backenddatalaseandforwardto eachcacte only
the“relevant” ones.Thisfiltering stepcanplace,how-
ever, high load on the backendsite asthe numbe of
cache andthe numbe of views per cacle increase.
Therestof the papemwill descibefiltering in morede-
tail, andsuggetanapprachto malke it morescaldle.

4 Basicfiltering

Notation. Beforewe discussthe details of filtering,
wefirst defineafew notaiond cornventiorsto simplify
therestof the discussion For eachqueryin the cache
we have a subsciption at the backend. We expres a
subsciption Sasa 3-tupe S= (T,A,P), whereT is
the table nameg) accessedby the quey. In caseof a

join, T may contan two or moretables. A is the set
of attributesor columnsprojectedby the quey, andP
is the seach predcate. P is assunmedto bein AND-
OR normal form. When expresedin its AND-OR
normalform, we dende by G theit" conjunctin that
expression. Eachconjunct contadns severd predicate
terms(e.g.,cod < 15) ANDed togeher Thesepred-
icatetermsare atomic conditions, suchasequdity or
ineguality predcatesover columns.

Let N be the numberof edgecache. For caclei,
thesetof sulscriptionsaredendedby S, andthenum-
berof subsciptionsarethereforeequa to |S|. The jth
subsciption of cactei is, therefore,§; = (Tij, Aij, Bj).
Overview of Filtering. In this scheme, caches “sub-
scribe” to a numbe of “logical” updde streams. In
particular, eachcacheal view or query correspords to
onesubgription. A filtering seneratthebackendsite
managse sub<riptionsfor the edgecache. Subscip-
tionsaredynamic,thatis they chang asnew views are
addedor evicted.

The filtering sener, therebre, has to test each
newvly chargedtuple (or row in atable) agairstall the
Yi—1.n|S| subgriptions. Thisresutsin alinear seach
overhea asthe numberof caclesN increasesandas
the numberof subsciptions|S| percacte increase.

Preciely, for eachtuple  let usassume thatto!d is
the old value andt®" is the valueafter achange(i.e.,
aUuDI). In caseof anewly insatedtuplet©!d is NULL,
similarly, whena tuple is deleed {7 is NULL. As-
sumingthereis a singe cache& query dended by §;
with predicateR;, thenthefiltering algorithm decices
to route tuplety to thetamet cacte if either of the fol-
lowing two condtions hold:

o ™R,
o IR AND t® ¢ B

In the first casethe tupleis inseted or updaedin the
cache In the secom casethetupleis eithe deletel or
updaed. The psaudo-deof thefiltering algarithm is
showvn below.

filter (TUPLE Told, TUPLE Tnew, CACHE i)
begi n
for every SUBSCRI PTION Sij
for every CONJUNCT Cin Sij {
i f( C matches(Tnew) )
return TUPLE MATCH;

from CACHE i

{



else if ( C matches(Told) )
return TUPLE_MATCH;

}

}
return TUPLE _NO MATCH,

end

The filtering procedureabove is invoked once for
eachcachefor eachtuple updded by atransactian in
the backendsener. For eachsubsciption §; =C; V
CoV...VCy, thetupleis testedagainsieachof theG'’s,
andis forwardedto the edgecacheif it matchesary
of them. Note thateat of theG’'s is expressedasa
buncdh of atomicattribute tests(of theform attr {=, <
,.-.} val) ANDedtogeher

The compleity of the matchng function grows
with the size or compleity of the subsciption. If
the average numberof conjuncts per subsciption is
m and the numberof termsper conjunctis t, and if
the average cade sizeis S, thenassuming that there
areN cades,thetotd complexity canbe expressedas
O(N x Sx mxt). To simplify the analysis, whenes-
timating filtering cost,we will assume, for the restof
thediscussion thateachsubsciption hasa singlecon-
junct with t terms,in which the filtering compleity
canbesummarizdasO(N x Sx t).

5 Template-basediltering

In orde to improve thescahbility of thebasc filter-
ing appraachwe proposetemplae-basedfiltering that
exploits the similarity amongthe subsciptions corre-
spondng to the cachel queiies. Suchsimilarities exist
becawe queries are geneated by appications which
often define paranetrizedquey templaeswhich are
instartiatedinto actud queriesat run-time by binding
thevariableparametes.

Templates. In Java-basd Web applicatiors, two
qguery progranming styles are obsaved: i) explic-
itly dedaredtemplaeswherequeiesarepre-ceclared
as prepared staementsand where paranetersare set
through explicit calls, or ii) undedared templaes
wherequeies arecompaedby the string concatera-
tion of afixed partandavariale part. Suchtemplats
are often seenin the servla programsrunning at the
Web sener which process the inputs from the front-
endinterfacecongsting of web-pagforms. If thetem-
plateis not explicitly declaed,our cacling driver has

to infer implicitly thatsomesubmittel queies follow
the sametemplde.

When referring to a group of similar query pred-
icatesinstantiaed by the sametemplate we call the
partof the predcatethat changsacrassthe groupas
the variant part, to distinguish it from the fixed part.
For therestof this discussion we will focusonasingle
conjunctin thequerys predicateexpression Consiter
thetwo predicateexpresions

P = (cost< 15Amsrp < 8 A numreviews= 5)
P, = (cost< 15Amsrp < 8 Anumreviews= 10)

A comparisn of thesetwo predicateexpressiors sug-
geststhat they arelikely two instantiaions of a tem-
plate B of the form: R = (cog < 15Amsmp < 8A
numreviews =?) In this example, the predcates R
andP, conainasinde conjunct(cost < 15 A msmp <
8 Anumreviews="7?). Within the conjunct, (cost <
15Amsrp < 8) isthefixedpartand(numreviews="?)
isthevariart part Theatomictest(cog < 15) is called
apredicateterm.
Templatesin real applications. We looked at the
numberof template used in two e-commere berch-
marks, TPC-W which emulatesan on-line bookstore
and ECD-W, which is muchmore complex andemu-
latesa cusbmizabk on-line shoping mall. The num-
berof templatsin theserealisic full-fledged Java ap-
plicationswere18 and81, resgectively. Furthemore,
the percentag of queriesgenentedby the top-5tem-
plates where79% an68%respe&tively.

We detet temphltesondine by comparngthestruc-
ture of seach predicatesin a quay stream.Our tem-
platedetection algarithmsaredescrbedin [5].

5.1 Template-basd filtering: Singlecachecase

The mainintuition behind our apprachis thatthe
fixed part of the predcate shauld be testal only once
for all thequerysubsciptionsgengatedfrom thesame
templae. This is similar to the motivation behind
eventmatchng schanesin publish-subscibe systams.
However, becaise of the prevalenceof templaesin
Web applicatiors, we suggestusing specidized data
strudures,to aggrayatethe parametelinstantiaions of
the variart part of the predicate This allows for fast
matchirg of a new tuple agairst the collection of the
variart parts. We call thes indexed aggegate data
strudures,Merged AggregatedPredicate (MAPS).



In the above example,assume that mary subrip-
tionsarerecdvedwhich areall geneaatedby the same
template In that case,the MAP can be a hashta-
ble aggreyatingthevariart integertermsthatappeain
the numreviews =7 test Thefiltering testcanthere-
fore be redwced to testng the numreviews attribute
of the tuple againstexistence in the hashtable. The
testsagairstthecod andmstrp attributeswould beper
formedonly once The compleity of testing a tuple
againsta hashtable MAP is congant. If we dende
by K the numbe of templates, which is usually much
smaller than the numberof subsciptions, K << S
the total complexity is O(K), which is independent of
cachesize unlike the cog of naie filtering, O(Sx t).
Of cours, not all MAPs arehas tables,andtherefore
thecompleity of looking upaMAP is notalways con-
stant,but is at worstlogarithmic in cachesize,aswe
showv below
Example MAPs. We descibe through a few ex-
amples, the various possible MAPs. Conside the
following temphlte: B = (cost<? A msmp < 8A
numreviews=5)

In this case the subsciptions can be agge-
gatedinto a single value correspondng to the max-
imum upper bourd paramegr receved for the cost
attribute (e.g., for cost < 10, cod < 20, cost
< 50, we only store the value 50). Consicr,
altermatively, a slightly more complex expression:
R = (cod BETWEEN ? AND ?Amsmp < 8 A
numreviews=5)

Our apprach in this caseis to memge suc-
cessve instantiations of a BETWEEN pred-
cate into an interval set, where all overlapging
intervals are memged together For example
the intervals cos BETWEEN 10 AND 20 |,
cos BETWEEN 15 AND 25 will be memged
and representel as [10,25. Furthe, the intervals
are sotted to enabe efficient binaly searting. Thus
intervals [10, 20], [45, 60], [25, 35] will be sorted
to be [10, 20], [25, 35], [45, 60]. If a new interval
say[15, 30] is addal that overlaps with the previous
intervalsthey arememged togeherandthelist becanes
[10, 35], [45, 60]. More formally, the sortedinterval
array SA = ([x, X1}, .., [Xm, Xm]) has the following
non-overlappng propety:

X <X <Xy foreveryi=1,....m—1.

A more complex MAP arises when the predicate
contans parametes correspording to tessthatinvolve
morethanasingle attribute.For exampke:

R = (cog <?Amsrp <?Anumreviews=5)

In this the case the aggrejation of variousinstantia-
tions of thetemphteis not straghtforward. Note that
we canasso@tea MAP with eachparamegr (thecog
and the msrp upper bourds). However, a tuple can
“hit” in both MAPs, while not matchirg ary sulscrip-
tion (becauseit matche the cod testcorrespondng to
one sulscripion, andthe msrp testcorrepondng to
anotter).

More geneally, consier the casewherethe vari-
ant part of the conjunct contans more than one vari-
antpredicateterm. We derpte the variable part of the
conjunct, Cj, asC;. Note thatthe columnsreferred to
in ij could be different. For a conjunct with predi-
catetermsconditioning over the samecolumn,we can
sometimesorvertéj toasinge BETWEEN predicate
(e.g.,in case of acombindion of < and>). However,
in the geneal case,éj can have predcate termsthat
referto sereral different columns, for example C,- =
(colh < ?)A(cob = ?) A(cols BETWEEN ?and ?).
The MAP assaiatedwith C; is alist of regionsin ak-
dimensonal spae. In this particular example, there-
gionis upper-boudedby asinde valuealongthefirst
dimenson (coly), correponds to a single value along
the secom dimenson (cob), andis upperandlower
bourded alongthe third dimenson (cok). In this 3-
dimensonal space, the region is descibed by a rect-
anguar plane boundedonthreesidesandextending to
infinity along the fourth side.

A single instartiation of the variant conjunct,éj,
cantherdore bethought to correspondto a region, or
rectamgle in k-dimensonal spa@. The dimengonality
of theregion spae is upper-boudedby the numberof
columrs thatappea in C;. We asseiatea MAP with
(fj which maintansthesetof rectarglescorreponding
to thevariant conjunctsof all cachel queries. Overlap-
ping or adjecentrectanglesare megedif possible. In
generl, a MAP cortains a setof overlagping andor
disjoint rectangles.

Testingif atuple matchetheaggreyationof several
subsciptions redu@sto inspectirg the correponding
MAP to verify whetherthe “point” correspondng to
the tuple is contaned in ary of the k-dimensonal



rectargles aggegatedin the MAP. To allow quick
searchof such compaite MAPs, one apprach is
to organize the rectangles correspording to cacled
gueriss usingamemory-esidentmulti-dimensioral in-
dex suchas an R-tree[10]. The rectamgles are or-
ganizedhierachically using their minimum bourding
rectargles (MBR). Testinga tuple agairst the agge-
gatedsubgriptionstrandatesinto searcling the multi-
dimensbnalindex to find outif thereexists atleastone
rectarmgle atthe leaf level which containsthetuple.

Note that in the TPC-W apgdication trace,we ob-
sene that lessthan 5% of the templates have more
thanonevariable paramegrin aconunct. So,in prac-
tice,theneedfor R-treesandmulti-dimensonal MAPs
shout belimited.

Complexity analysis. Testinga tuple agains a sub-
scripion is logarithmic in the numberof aggegated
subsciptions. Assumethere are K templaesin the
cache with eachtemplde having a single conjunct.
Thus,thereare S/K subsciptions from the cache as-
sociakd with a given templag, and the compleity
is O(K x log(S/K)) compaed to the O(Sx t) of the
nawve apprach.

Subscription management.Whenqueiesareadded
to or removed from the cache the subgriptions and
the correspording MAPs ned to be updded in the
filtering sener. However, becawse MAPs represent
aggreyationsof a setof values updatng themis not
straichtforward whena value in the aggrejatedsetis
removed.

A few alternativescanbedistinguishedhere Oneis
to perform sulscripion deletion by entire templae. A
cachecanrot unsubscrite by removing an individual
query (i.e., a templae instantiaion). Instead,cactes
are allowed only to unsulscribe by dropping all the
queriesin apatticulartemplte.

Theothe alterrative is to allow query-basel unsib-
scripions. For this, the MAPs must be modified to
suppot individual query removals. For has tables
removing a value can be implementedrelatively eas-
ily. However, if the MAP is a min-maxaggtegationor
a sortal interval list, updding the MAP after remov-
ing an elementis not straichtforward. The problem is
recompting a max over a setof values whena ran-
dom elementis removed reqgures maintaining all the
elementsn the set. The sameobsewation appies for
themeiged interval list. Therebre,unde this schane,

we needto maintan all the individual elemens that
have beenaggreyatedinto the MAP. This setis notac-
cessd during tuple tests,but is usedto “recompute”
the MAP when an elemen is removed. Note that
MAPS canbelazily updaedwhenunsubsciptionsoc-
cur becase serding more datato the cachethannec-
essay increasedoadbut doesnot compromie conss-
tengy.

5.2 Template-basd filtering: Multiple caches

In this secton, we considerthe casewheremultiple
cache subgribe to update streans at the backend.
Oneoption is to usethe single-cacte templae-basd
matchirg algorithm for eachcache This appoachre-
sultsin O(N x K x log(S/K)) filtering compleity for
N caches. In this case gefficiency is gainedonly in ag-
gregating queiiesfrom asingle cache

We investigatewhetherthis simple algarithm can
beimprovedif thetemplates aresharecamongcaches.
This arisesin practice becaise often multiple “in-
stan@s” of thesameWebapication canbeexecuting
on mary edgeseners. In this case the subsciptions
coming from the various cacteswill alsobe similar,
having beengereratedby the sameset of temphtes.
Suppos thattwo cache have idertical templags:

Ti:prAp2ApyandT,: prAp2A py, Wherep; are
predicateterms.

Whentestirg atuple agairsttheseéwo templatesub-
scriptions, we needto testthetupleagainsg p A po for
both cache. Then,we needto testthe tuple against
theaggegatiors of thevariart patts. Suppsethevari-
antpart p, is asimple equaity quey p,: attr ==2.
Suppos that cachel hascacted attr values 7,12,15
andcache2 hascachedattr values12,15,16. Under
the simple scheme the valuesfor eachcachewould
bestoredin separée hashtables. During thematching
process, the filter sener would considereachcacte’s
MAP sepaately. The filter sener would look up the
value of tupl e. attr in eachcaches MAP hash-
table Alternatvely, the values correspondng to the
MAPs of various cache canbe memged into a single
unified MAP, whichis capale of remembeng which
cachés) eachvalue is as®ciated with. This can be
achieed asfollows. First, consicer inequality tess.
Without loss of geneality, assumehe variant partis
of theform attr <="?. While in the sinde cachecas,



thefilter sener maintainsa singlemaximumvaluefor
all subsciptionsthatweregereratedoy the sametem-
plate, in the multi-cachecase,the filter sener main-
tainsasortedlist of themaximumqueay parametefor
eachcache.Thetuplematche queriesfor every cache
whosemaximum query paramete is greate than or
equalto the value of the tuple’s attribute. Merging
MAPs of multiple cacteswill, however, require main-
taining a more complicated data strudure as quay
subsciptionsareaddedanddeletal.

In the cas of interval tess, we needto modify the
MAP to maintain information abaut the cachés) to
which eachinterval (in the sortedinterval list) corre-
spond.

Complexity analyss. Assumingcache sharetem-
plates then the compl«ity can be further redued
from O(N x K x log(S/K)) to O(K x log(NS/K)).

6 Relatedwork

Earlier work on datalase cachirg investigaed
prediate-tased schemes and views to answer
queries [18, 15, 8, 13, 9]. Recentpapes have
examined passve and active cachhg schemes for
web apdicationsand XML data[16, 6, 11]. Luo and
Naughta desceibedanactive caching techriqguebasd
on templaes (forms) [16]. Consigencg protocols for
predicate caches have bea invedigatedin [13], but
the focus was on limited-size client-sever datébase
systems and not on scahble dedoymens over the
Weh

Relatedto the prodem of updae filtering is quey
contanment— the problem of decidng whether a
guery is cortained in the union of a set of views
or cached queries. A wealth of previous work ex-
ists in the areaof query contdanment and equva-
lence[17, 14, 5]. Previouswork in theareaof materid-
izedview routing (i.e.,answerig queriesby rewriting
using materalized views) also descrbes techngues
for matchng andcontainmert.

Most relatedto our work is the event matchingap-
proad of publish-sbscribe systems[1]. Gryphm
usesa paralel searchtree (PST)to aggreyate client
subsciptions descibed as conjunctive predcate ex-
pressons. The differencein our appoachis thatin-
steadof using a generéized PST we use speialized
indexed datastructures (MAPS) to aggegatethe vari-

antpartsof subsciption expressionshasedon the par
ticular operator that appearsin the variart part This
exploits the alundanceof templats in Web applica-
tions, andenalles compadc representaions of the data
struduresusedto aggegatesubsciptionsandaccekr-
atefiltering.

7 Conclusions

Semanticdatalasecachig is a selfmanagng ap-
proad to dynamic materalization of “semaric” slices
of backenddatalaseson edge seners. It canbe used
to entancetheperformanceof distributed Webseners,
informationintegrationapplicatiors, Websenice plat-
forms, and Web applicatiors offloadedto edgeeof-
network seners The scdability of sematic cachng,
however, reliesheavily on protocolsthatmaintaincon-
sisterty betweenthe back-end datalaseand the dis-
tributed cachesln this pape, we focusthe probem of
“scaling” theupdatepropagatio protocolsin suchen-
vironments.In partcular, we proposetemplae-basd
filtering thatefficiently aggregatescache subsciptions
atthe backendby exploiting the similarity of “views”
in edgequey caches. We discussthe specificsof our
apprach, desribe hov we hande dynamicchangs
in cache subsciption, andhighlight the challengesand
tradeoffs thatarisein this space
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