THE SPECTRAL SEQUENCE OF A SPLIT
EXTENSION AND THE COHOMOLOGY OF AN
EXTRASPECIAL GROUP OF ORDER p* AND
EXPONENT p

STEPHEN F. SIEGEL

ABSTRACT. Let (E,,d,) be the LHS spectral sequence associated
to a split extension 1 - H — G — G/H — 1 of finite groups with
coefficients in a field k. We prove a version of a theorem of Charlap
and Vasquez which gives an explicit formula for dy. We then apply
this to the case where p is an odd prime, k£ has characteristic p,
G is extraspecial of order p? and exponent p, and H is elementary
abelian of order p?. We calculate the terms of the spectral sequence
in this case and prove E3 = E, (and if p =3, Ey = Eo).

1. INTRODUCTION

The Lyndon-Hochschild-Serre spectral sequence associates to any
group extension

l—H—G—0Q—1 (1)

and field k£ a sequence (E,,d,) (r > 0) of differential bigraded k-algebras
such that F,; = H(E,,d,). One has Fy =2 H*(Q, H*(H,k)), and the
sequence converges to the graded object associated to a certain filtra-
tion of H*(G, k) (Hochschild-Serre [7]). The most common case con-
sidered in the literature is where (1) is a central extension, for then @
acts trivially on H*(H, k) and the universal coefficient theorem implies
E, =2 H*(Q,k) ® H*(H, k). But if the extension is not central then
() does not necessarily act trivially, and even E5 can be quite com-
plicated. Nevertheless, the non-central case is often quite interesting
and can sometimes offer computational advantage. In particular if the
extension is split and H is abelian then the few examples which have
been calculated tend to suggest that the spectral sequence in this case
converges quite rapidly. But in general, very little is known about the
spectral sequence of a split extension.

The mod-2 cohomology rings of the extraspecial 2-groups were cal-
culated long ago by Quillen [14], but the corresponding problem for p

Date: January 17, 1995.



2 STEPHEN F. SIEGEL

odd remains largely unsolved. Here we analyze the mod-p LHS spectral
sequence arising from the extraspecial group of order p* and exponent
p presented as a split extension (p an odd prime). The integral co-
homology of this group was calculated by Lewis [11], and the mod-p
cohomology ring, which is quite complicated, was calculated by Leary
[8, 9, 10]. Benson and Carlson [3] have also produced an algebraic ver-
sion of Leary’s proof. However, both proofs involve spectral sequences
which converge at approximately the F,, page. In contrast, we show
here that for the split extension, E5 = Ey, (and if p = 3, Ey = E).

The key to our calculation is a theorem of Charlap and Vasquez [4, 5]
which allows one to calculate dy in a variety of settings. We state a
slightly refined version of their theorem which can be easily applied to
our case, and give a simplified proof. We next determine the F, term
for the split extension described above, and calculate the differentials ds
using the Charlap-Vasquez theorem. Finally, we prove that F3 = F
(and if p = 3, Ey = E4) by considering automorphisms of the group
extension.

2. A THEOREM OF CHARLAP AND VASQUEZ

Let p be a prime and k a field of characteristic p. Assume (1) is a
split extension of finite groups, and fix a splitting once and for all, so
that we may identify () with a subgroup of G, and G = H(Q. Let M
be a kG-module (all modules are assumed to be finitely generated left
modules) such that M is semisimple as a kH-module. We construct
the LHS spectral sequence as follows. Let X — k be a kG-projective
resolution, Y — k the kQ-bar resolution. Let

EO = HOH]]CQ(}/, HOIHkH(X, M))

and define differentials d' : Ej* — Ej™"° and d" : Ey° — E;* by
d(f)=fodand d"(f)(y) = (=1)"f(y) o 9, and let {(E,,d,) | r > 0}
be the spectral sequence arising from the double complex (Ejy, d”, d').

Let P — k be the minimal kH-projective resolution. Recall that
the image of the differential on P is contained in radyy(P), so since
radgy (M) = 0, we may identify H*(H, M) with Homgy (P, M), and
then identify

E1 = Hoka(Y, HOHlkH(P, M))

How does @ act on Homy g (P, M) under these identifications? Even
though () does not necessarily act on P in a manner consistent with
the action of H, it does “act up to homotopy”. To make this precise,
for each o € @, the Comparison Theorem (cf. Theorem 2.4.2 and the
remark following it in Benson [2]) guarantees the existence of a kH-
chain map A(o) : P — P? which commutes with the augmentation.



THE COHOMOLOGY OF AN EXTRASPECIAL GROUP 3

Here, P” = P as k-complexes but has H-action h.x = cho 'z (h €
H,z € P). Tt is not to difficult to see that the action of @ is given by

o F =coFoA(c ), o€, FeHomgy(P,M),

where, by a slight abuse of notation, we let ¢ also denote the automor-
phism induced by o on M.

For o,7 € @, the uniqueness part of the Comparison Theorem
implies that A(o7) is chain homotopic to A(o)A(7), i.e. there exists
U(o,7) € Homyy (P, P°7), such that

oU(o,7)+ U(o,7)0 = A(oT) — A(0) A(1). (2)

The pair (A,U) is called a Q-system for the extension (1). Charlap
and Vasquez’s theorem reduces the problem of calculating dy to the
calculation of a (Q-system. To see how this is done, first define a set of
maps Dy : E7* — EJ™% ! by

Dy(f)[o1] -+ |ovia] = 01090 flos] - |or42] 0 Uoy o7 H).

Theorem 1. (Charlap-Vasquez) Suppose ( € Ey* (r > 0,s > 1) is
represented by the Q-cocycle f € E7". Then do(C) is represented by
(=1)"Da(f).

Proof. We first show that Ds(f) is a Q-cocycle (i.e., is in the kernel of
dy). Indeed, since f is a Q-cocycle,

Do(f) o d([on|- - |oyis]) = 010903 0 floul - -+ |opis] o oyt 0yt or ),

(3)
where for p,o,7 € Q,
d(p,o,7) =Ul(p,0)A(T) — U(p,o1) + Ul(po,7) — A(p)U (0, 7).

Using (2), one checks that ¢(p,0,7) : P — P?7[—1] is a chain map (if
C' is a complex then C[n] denotes the complex with C[n); = C;_, and
with differentials given by multiplyling the differentials in C' by (—1)".)
The Comparison Theorem then implies that it is chain homotopic to
zero; hence its image is contained in rad,y(P*°") = radggy (P), and (3)
is zero, as required.

An equally straightforward argument shows that the element of
defined by Do(f) is independent of the choice of Q-system (A, U). We
can therefore prove the theorem using any ()-system we want.

Since P is the minimal resolution, there exist kH-chain maps¢: P —
X and 7 : X — P, commuting with the augmentations, such that 7. =
1. Let W = Ker(r), so X = +(P)®W. W is a kH-projective resolution
of 0, hence is kH-contractible. Take any contracting homotopy of W
and extend it to a map s € Homgy (X, X); by setting s(z) = 0 for

r+2,s—1
E2
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z € 1(P). Then 0s +s0 = 1 —ur and st = s = 0. Now define
A(o) =mor and U(o,7) = woste (0,7 € Q). Since

oU (o, 7)4+U(0,7)0 = mo(0s+s0)T1 = mo(1—wm)Te = A(oT)—A(0) A(T),
(A,U) is a Q-system.
We now calculate d(C). Clearly, C is represented on Ey* by the map

" o] |oy] = flog| e lop] o

(but note: this defines 2™ on a kQ-basis of Y;; it is not necessarily the
case that z™°(y) = f(y) o m for all y € Y,). Hence

d'(@")[o1]++lor] = o010 floa] - +-|or] omor!
+H(=flowoa| - -lopa] + - & flou] - -[oy]) o .

Notice that in general, if F': X — M is a coboundary, then F o1 =0,
hence

F=Fo(l—uwr)=Fo(0s+s0)=(Fs)o0.
It follows that if we define z"+1*~1 € E;tH* " by

o] = (S )] o] o s

= (=1)o10 floa] -+ |orsa] ooy 's
(using s = 0), then d'(2"*) + d"(2"t1*~1) = 0. By definition, dy(¢) is
represented on Ey by z = d'(z" 171 and

2oi| - lorse] = (1) 0102 0 flo| -+ |orsa] ooy tsor 4 (o) 0.

Using the fact that st = 0, we see that the image of z in E} is the map

[o1] ++ |orsa] = (1) 0109 0 flos| -+ - |op12] © 7T0'2_1501_1L,

completing the proof. O

3. THE CYCLIC CASE

It is unfortunate that Theorem 1 is formulated using the bar reso-
lution Y, since any kQ-projective resolution can be used to construct
the LHS spectral sequence. However, at least in a special case, we can
find a similar expression for dy using the minimal resolution in place of
Y.

As before, let p be a prime and £ a field of characteristic p, but now
let

1l—H —G=HxB—B—1

be a split extension of finite groups with B = (b | ¥ = 1). Let Z — k be
the minimal kB-resolution; say Z,, = kBe,, (n > 0), d(e,) = N(b)e, 1
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(if n > 0 is even), where N(b) = >""_ v’, and (e,) = (b — 1)e,—1 (if n
is odd). It follows that for any kB-module V',

sockp(V) ifr=20
H"(B,V) 2 < sock . (V) /radgp(V) if r is odd (4)
socgp(V)/rad?5' (V) if r > 0 is even.

For the general definitions of “soc” and “rad” see Alperin [1]. In this
case, socrg(V) is just VB, the set of invariant elements of V under
the action of B, sock, (V) is the kernel of N(b) on V', radp(V) is the
image of b — 1, and rad? ;' (V') is the image of N(b).

Let M be a kG-module on which H acts trivially, X — k a kG-
resolution, P — k the minimal kH-resolution, and {(E,, d,)} the spec-
tral sequence of the double complex Ey = Homyp(Z, Homyy (X, M)).

Corollary 2. Let a: P — P be a kH-chain map commuting with
the augmentation, and v € Homgy (P, P); a map satisfying Ov + v0 =
1 —af. Suppose ( € Ey* (r > 0, s > 1) is represented by f €
Homyy (Ps, M). Then dy(C) is represented by (—1)" f o v.

Proof. Define, for 0 <i,7 <p—1,

0 ifti+7<p
vatI7P otherwise.

AM™Y) = of, UMb, b7) = {

It follows that (A, U) is a B-system.

We next construct explicit comparisons between the minimal reso-
lution Z and the bar resolution Y. Define a kB-chain map 6 :Y — Z
by setting, for n > 0 and 0 < 4y,... ,i9,01 < p—1,

P i €, ifini 1 +ig; >pforalll <j<n
0[b1|bz||b2n] — { J J

0 otherwise

i1—1

Z bZ62n+1 if i2j + 7:2j+1 Z P for all 1 S j S (75)
i=0

0 otherwise

Ol b)) =

(the empty sum is understood to be 0). Define a kB-chain map ¢ :
Z =Y by é(eg) =[], #(e1) = [b], and for n > 1,

¢ean) = > [l [ o]

0<i1,n. in<p—1

¢leani1) = > [l [olo™ o).

0<i1,n. in<p—1
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One can check that both (5) and (6) actually define chain maps.
Assume n > 0 and r = 2n (the case where r is odd is handled
similarly). By (5), ¢ is represented via the bar resolution by

B o] {

so by Theorem 1, dy(() is represented by

[oifigiq+ig >ploralll1 <j<n
0 otherwise,

b1t o foU(b™2,07") ifig; g +ig; >plorall2<j<n
0 otherwise.

v o] o] {
And
p—1 p—1
Y(Pleans2)) = D AP B - [P7HB =D b o fol (b7, b7) = fou,
=0 =0

completing the proof. O

Of course if the map « (or v) is defined only on degrees 0 through n
(for some n > 0), then it can always be extended to a map on all of P.
Hence to calculate dy on E* for s < n, one really only needs to know
« and v on degrees 0, ... ,n.

4. THE CALCULATION OF Es

Let p be an odd prime, k a field of characteristic p, and
G = (a,b,c|c=]la,b], a® = =[a,c] =[b,c] =1),

where [g,h] = g 'h tgh. G is the (unique, up to isomorphism) ex-
traspecial group of order p® and exponent p. Let H = (a,c) and
B = (b). We consider the LHS spectral sequence (E,,d,) arising from
the split extension 1 - H - G — B — 1.

Our first task is to analyze E, = H*(B, H*(H,k)). Our approach
is to determine the kB-module structure of H*(H, k). Recall that by
Jordan canonical form, there are, up to isomorphism, p indecomposable
kB-modules (cf. [1]). We denote these by J; (1 <i < p), where J; has
dimension 1.

Define oy, 81 € H*(H, k) 2 Hom(H, k) by a;(a’c?) = i, and §;(a'c’) =
j. Let ap = () and By = 0(0;), where 0, as always, denotes the
appropriate Bockstein homomorphism. Then H*(H, k) is the graded-
commutative ring' k[ay, 81, as, 3»], and the action of B on H*(H, k) is
given by b(o;) = a; and b(f5;) = i + i (1 = 1,2).

LAll graded rings presented with generators and relations will be assumed to
be graded-commutative, i.e. xy = (—1)de8®) degW)y for all homogeneous elements

x,y.
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The product on E, can be calculated using the identifications of
(4) in the following way: if x € H®(H,k) represents x € Ey° and
¢ € H¥(H, k) represents y € Egl’s’, then (—1)"*zy € E;””“"”s' is
represented by

xC if r or r' is even
> BV (C) if rand ¢ are odd. (7)
0<i<j<p
Now let W be the graded k-submodule of H*(H,k) spanned by
{abB5|1>0,0 <j<p}. WisakB-submodule of H*(H, k), and mul-
tiplication by g : W™ — W"*2 is an injective kB-homomorphism for
n > 0 and an isomorphism for n > 2(p — 1). Furthermore, W2~ J
(i < p—1) and rad,g(W) is spanned by {a435 | i > 1,0 < j < p} (cf.
[1, pp. 14-16]).

Set N = klay, 3] ® W, and a9, = [['=, (B2 + iay). Tt is easy to see
that x5, is B-invariant and that k[ae, f2] = k[zg,] @ W. It follows that
H*(H, k) = klon, Bi] ® k[og, B2] = k[zap] ® N.

Moreover, since k[xg,] is a trivial kB-module,
soCkp(H"(H, k)) = klr] @ socip(N), 20, (8)

and (8) holds with “soc” replaced by “rad” as well. In particular, the

identifications given in (4) yield isomorphisms of graded k-modules
k[z2p] @ sockp(N) ifr=0

Ey* 22 { Elwgy] @ sock 5 (N) /radgs(N) if 7 is odd (9)

k[22,) @ sockp(N) /radh H(N) if r > 0 is even.

It remains to analyze the structure of N. The referee has pointed out

that the structure of soc,p(/N) was determined by Minh [12, Theorem

2.4] (though the generating set given there is not minimal) and Mui [13,

Theorem 5.6]; we compute this structure directly, using representation
theory.

Proposition 3. (i) sockp(N) = k[z1, T2, y2, T3]/ (Y3, T1Y2, Yol3, T1 T3+

$2y2);
where £1 = oy, To = Qg, Yo = @131, and x3 = 132 — [ros.
(i) radrp(N') = kay, and for 1 <i <p,

{036,711 <) <i}U{anfrodf,77H 1<) <}
is a basis for radgg(N?), and
{mad7 | 1< < U{Bodfy ™ 12 < <ibU{mpy+ioafy™}

is a basis for radg(N**1).
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(iii) For each s > 0, the following chart gives the kB-module struc-
ture of N*, a basis for soch,'(N®)/radip(N°®), and a basis for
socgp(N®) /radl,' (N®):

N® socP 1 /rad soc/radP 1
s>2p—1 Jp, @ Jp 0 0
s§=2p=2 || Jp 1D Jp 018155 ET
s=2 =3 || o ®Jy| [aaf ] [ )

s=21+1 * Jz D Ji+2 [alﬂé]? [ﬂlﬂ%] Jflflfé, 51.72271‘1‘3
§=21"" Ji® Jipr | leabiBy '], (6] | @b, bty
s=1 Ja [51] Zy
s=0 J1 1

“1<i<p—-3 1<i<p-—2

Proof. For 1 <i <p, Jb,&J; = J; 1® Jiy (cf. [1, p. 50]) and J, ® J, =
Jp @ Jp, since J, is projective. This, together with the known structure
of W, gives the kB-module structure of V.

Next, we prove (i). One checks that x1, xa, ys, and x3 are fixed by
b, satisty the relations, and that the subring they generate is contained
in N. On the other hand, the graded-commutative ring S described
abstractly by these generators and relations satisfies S' = kx;, and,
fore>1,

S% = kxé@kxé_l'yg
S#HL = kayal @ kol las.

(10)

By the known structure of N, S has the same dimension as socyz (V)
in each degree. Hence S =2 socy (), and we have established (i).

The expression for radyz (V) in even degress follows from the basis
for radgp(W), since B fixes «;3;. To obtain the expression for odd
degrees, one computes (b — 1)V explicitly; the last term comes from
(b— 1)1,

To fill in the chart for s = 2p — 3, observe that N(b)ay 55> = 0
and z,08 2 = —N(b)B % For s = 2p — 2, N(b)ay 5165 % = 0 and
ah™' = —N(b)B5~". The proof of the rest of (iii) is routine. O

Now define v, € H'(B, k) = E,;” by 1(b) = i, and let v, = §(71).
Let

2= (BB € By, s =Bl e By, 1<j<p-2
set wy, = —212,—1 (3 <n < 2p—2) and woy_; = Ya29,—3. Notice that

wy; is represented by ;85 and w4y by a1 55"

Corollary 4. (i) Multiplication by w9, : Ey° — Ey*"™ is an iso-
morphism forr > 1,5 > 0.
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(ii) Multiplication by v, : Ey® — E3™>° is surjective for all r,s > 0
and s an isomorphism if r > 1 or s < 2p — 4.

(i) By & klzay) ® k[x1, T2, Y2, T3, ]/ (Y3, T1Y2, Y2T3, 2123 + Toys)

(iv) We have the following bases for Ey*:

1 21 2t +1

S

0 .
EY° 1]y | ab, a5 ys | wyad, 2l tag l<i<p-1)
s 011(2<s<2p—4|2p—-3|2p—2|2p—1
E21’s 71| %2 Zs i1, Weyl Wop 2 | Wap 1 0
s 2p—3 2p—2 |2p—1
By | varh s [ yerh Py | 0
(v) Ey is generated by x1, 1, T2, Y2, V2, T3, Top, 22, 23, - - -, Z2p—3-

Proof. As in (9), we may write Ey™ & klxg,| ® C, for a graded kB-
module C. By Proposition 3(iii), if » > 1 then C' is concentrated in
degrees 0 through 2p — 1, proving (i). Now for any kB-module V,
multiplication by vo : H"(B,V) — H""?(B, V) is just the natural map
under the identifications in (4). This is a surjection for » > 0 and an
isomorphism for r > 1. If r = 0 and s < 2p — 4 then Proposition 3(iii)
shows that rad? ;' (H*(H, k)) = 0, hence the natural map is an isomor-
phism in this case too, proving (ii). Statements (iii) and (iv) follow
directly from Proposition 3 and (9). Now (v) is clear since one can get
a basis for E5° for any r, s by starting with one of the bases in (iv) and
multiplying by appropriate powers of 9, and 7,,, according to (i) and
(ii). O

5. DIFFERENTIALS

We now determine all the differentials in the spectral sequence. The
data is presented diagrammatically in Figure 1; the integer to the upper
right of each point there indicates k-dimension.

Theorem 5. (i) xy, 71, T2, Yo, 22, V2, T3, 23, Tap all live to Es. In par-
ticular, if p = 3 then Ey = FE.
(ii) If p > 3 then in addition

do(22i42) = 172Weip1 = —i%17Y229, 1<i<p-3,
do(22i41) = 172wo, = —IX17Y2%2i 1, 2<1<p-—2.

Proof. Let ' — k be the minimal k(a)-resolution, where Q! = k{a)e!,
and )" — k the minimal k(c)-resolution, with Q" = k(c)el'. Let

n

P=@Q ®Q" so P— k is the minimal kH-resolution. For n,k € Z,
set ef =€, . ®elif 0 <k <nand 0 otherwise. Hence ej, e}, ... e}

is a kH-basis for P, (n > 0). Also, write €} for the image of e}
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u A2 2 2 2 2 4 1 2 0 2 0

13 4 2\2@\2@ 4 1 2 0 2 0

2 42 D=2 D2 402 2 a1 2 4
1 301 1 1 1 1 3.1 1 1 1 1
0 weB L1111 se3 A1 1 11
9 2 0 0 0 0 0 2 0 0 0 0 0
g 2 1 1 1 1 1 24l 1 1 1 1
. 2 1 1 1 1 1 24l 1 1 11
6 2,2 2 2 2 2 250 2 1 2 1

5 w2 2 2 2 02 0 2 0
9 gv/g 2 4 2 gv/g 2 2 2 1 2 1
1 ol 2.l 1 1 1 1 ol oz 1 11 1 1
0 ! ! 721 ! ! ! ! ! 721 ! ! !

FIGURE 1. F, and E3 = E, for extraspecial 53, expo-
nent 5.

in P,/radyy(P,) = H,(H,k). It is not hard to see that the duality
between H*(H, k) and H.(H, k) is given by

i1 QJ1 42 QI2\* __ st1t+j1+2i2+2j2 .. S
(o' Bt o’ B5%)" = €)1 1, ; 0<iu,51 <1, 0< 19,00
(11)
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Define p,x € kH by p = ZO<]<z<pa ¢, and k = Y P ia’. Define
maps o € Homyy (P, P’ ") and v € HomkH(P, P); by

k .
21 _ 21 2 21 _ ) 21+1
Qey; = E <] (e — P€2k+1): Ue€y; = —(+ 1)“62y+27
k>j
21 _ 21 21 _ - 2141
Q€511 = E ( . CCk 415 Véyip1 = —(Jj + 1)62]+37
k>j
k
2i+1 o 2i+1 2i+1 2i+1 _ 22+
ey, = g <] (cesp ™ +ega), vey; = —(j+1)e; @2
k>3
k
21+1 _ 21—1—1 21+1 _ - 2142
X€y541 = E , <] €ok+1> Veyjy1 = —(j+ ]‘)K/62]+37
k>j

for 0 < j <i < p (of course the sums are finite since e, = 0 for m > n).
It is straightforward, though a bit tedious, to check that « is a chain
map, and that dv + v0 = 1 — o, (The reader who checks this will
find the following relations in kH useful: p(c —1) = N(a) — ¢N(ac),
pla —1) = N(ac) — N(c), and k(1 —a) = N(a).) Hence we can apply
Corollary 2.

We first calculate dy on 29;10 = [316%] (1 < i < p—3). According to
(11), the map f : Py;.y — k, defined by f(e**!) =1ifn =2i+1 and 0
otherwise, corresponds to 3,3%. Using (12) we see that fouv: Py — k
sends €2 to —i if n = 2i—1 and 0 otherwise. Hence — f ov corresponds
to i(e2 |)* =iay 3,35 ", which represents ivpws; .

Similarly, 29,41 (1 < 7 < p — 2) is represented by f = (&3%)*, and
—f oV = 2(6%2 %) = ialﬂé_l. If ¢ Z 2 this shows dg(ZgH_l) == 7:’)/2w2i.
If i = 1, Proposition 3(ii) says a; € radyg(H'(H,k)), so da(23) = 0.
Finally yo = [ 1] is represented by f = (e%)*, and fov = 0, so
da(y2) = 0.

Now for a split extension, all differentials into the horizontal edge
vanish (cf. [6, Proposition 7.3.2]), so 1, Y2, 22, and z3 live to E,. There-
fore §(z1) = x5 and

6(y2) = 6(a1 1) = 0(an) 1 — a1d(B1) = By — a1 B = —
live to E as well. Since
T2p = H 0" (B2) = resguNu-c(52),
o€G/H

where Np_,¢ denotes the Evens norm map (cf. Theorem 6.1.1 of [6]),
Tgp lives to Fo,. Of course we could have used the Charlap-Vasquez the-
orem for these cases as well, but then we would not get the additional
information about the vanishing of the higher differentials. O
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Corollary 6. If p > 3 then:
(i) Multiplication by wop : E° — Ey*T is an isomorphism for r >
1,s > 0.
(i) Multiplication by v, : EY® — E5>° is surjective for r,s > 0, and
s an isomorphism forr > 2,5 > 0.
(iii) Forr even, E3* = Ey*. Forr = 1,3 we have the following k-bases
for E3° (0<s<2p—1):

S 011 2 3 4 5 |6<5s<2p—2|2p—1
Ey® || 2 | 25,7102 | w123 | 20m3 [ 2325 W1 0
5 0 1 2 |13<s<2p—5|2p—4<s<2p—-2|2p—1
E3* | miye | v2 [ 1o 0 Y2Ws+1 0
(iv) Ej is generated by x1, 1, T2, Y2, 22, Y2, T3, 23, Tap, ANd Wy, ... , Wap_1.

Proof. To see that multiplication by ~, is surjective, argue in Ey as
follows: suppose r,5 > 0, y € Fy > and dy(y) = 0. By Corollary 4(ii),
there exists © € E3° such that 1,z = y. Hence yody(x) = 0. Since
vy o BTN 5 ERTYSTH i injective, dy(x) = 0, i.e., o represents an
element of F3. To get injectivity on Ej, suppose x € Ey° (r > 2),
dy(x) = 0, and 2 = dy(w), for some w € Ey**'. Then w = v, for
some v € EQ*Q’SH. Hence v,x = 72dy(v), and since v : Fy* — E§+2’5
is injective, = dy(v), i.e., x represents 0 in Ej, and we have proved
(ii). The proof of (i) is entirely similar.

It follows from Theorem 5 that Eé’s = kwyy for 3 < s < 2p— 2.
But wy = —x123 and

zx3 = [(i][ar By — Prag] = —[a1B10a] = —ws.

For s = 5, 2313 = [Bo][a1fe — Bras] = [a1ff7 — BiawBs]. The cosets
are in M /radgp(M), where M = H°(H, k). But according to Propo-
sition 3(ii), a1 + 2810 lies in radyz(M), hence 29z3 = %[alﬁg] =

%wg, and this is non-zero since p > 3. Now the rest of (iii) is obvious,
and (iv) follows from (i), (ii), and (iii). O

Theorem 7. If p > 3 then E3 = E. Hence for p > 3, the Poincaré
series for H*(G, k) is

(0 = L4t+262 42683 + 2

N [

Proof. We need to show that wr,...,wqy_1 live to E,. Let m be a
generator of (Z/pZ)*. Hence mP™! = 1 but m* # 1 for 1 < i <

p — 2. We may also consider m to be in k through the embedding
Z/p — k. Define automorphisms ¢ and ¢ of G by ¢(a’t’c¥) = a'b™ ¢™*
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and Y(a'b/c*) = a™bc™* . Since these automorphisms preserve H,
they induce automorphisms of H*(H, k) and E, (n > 2), and one can
easily check that these induced automorphisms simply multiply each
generator by the scalar given in the following chart:

ac Be|lx Ye w2 Y2 T3 22i 241 | W2i W2i41
dl1 m|1 m 1 m m mtt mtmt omttt

vim m|im 1 m m?> m® mt omt|mt mtt!

Now let n > 3 and assume d,, = 0 for 3 < r < n; we show d, = 0.
We first consider the case where n =25 +1is odd (j > 1).

Consider d,,(wy;) € E2UT20D71 (4 <y < p—1). If i — j > 2 then
employing the basis for E3 given in Corollary 6, we have

dn(Wai) = M a7 T Mo T, (13)
for unique Ay, Ay € k. Applying ¢ to (13) yields
MI=m7 ) =0=X1-m"777?.

Since 1 <i—j—1<p—2 m~7t £1; hence \;, =0. Ifi —j > 2
then \y = 0 as well. If i — j = 2, we apply ¢ to (13) and obtain
Ao(1 —m'™2) = 0. Since 2 < i—2 < p—3, we have A\, = 0. If
i—j =1 then d,(wy) = M3z, for a unique A € k. Applying ¢ yields
A1 —mi 1) =0, forcing A = 0.

Now consider d,,(wsy1) € E20T270) (3 < i < p—1). Since all
differentials into the horizontal edge vanish, we can assume 1 — 5 > 1,
so that

d (11)22+1) _)\1,YJ+1 i— ]+)\ ,Y]+1 e 1y2, (14)

for some Aj, Ay € k. Applying ¢ yields Ay (1 —m/t) =0 = \y(1 —m?).
Since 1 < j<i—1<p—2, we have \y = 0. If j < p— 2 then
A =0aswell. If j =i—1=p—2 then we apply ¢ to (14) and obtain

We now consider the case where n = 2j is even (j > 2). Since
Bt —0for i > 1and 3 < s < 2p— 5, the only possible nONZero
differentials in this case are those that map into E or By’ 1. In the
former case, we must consider d,,(wa(j11)) = A2 € E2j+12, in the
latter, d,(wyjy1) = Mz € E3 T In either case, applying ¢ yields
A(l —m) =0, hence A = 0, completlng the inductive step.

To get pG(t), let L be the subring of E generated by all of the
generators other than xg,. One then has L™ = 0 for » > 1,5 > 2p,
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L™ = E% for s <2p—1, and Ey = k[z,] ® L. It follows that
n+1l n=01

4 =2

D dimg(L") = .

rreon n+3 3<n<2p-—-1
2p+2 n > 2p,

50 1 —t times the Poincaré series for L is 14+t +2t>+ 263+ 327 1. O

6. REMARKS

(1) One could probably go on from this point to deduce the full ring
structure of H*(G, k), much as in [8], but it is not clear that this yields
any new information or insight into the calculation. However, it is
reassuring to note that the Poincaré series, as well as the number and
the degrees of the generators, agree with the results in [8]!

(2) It would be interesting to know if there is a different way to calcu-
late ds in this spectral sequence. We know of no way other than the
Charlap-Vasquez technique outlined here.

(3) It is natural to ask if the Charlap-Vasquez formula can be gener-
alized to a formula for the higher differentials d, (r > 2). Indeed, this
can be done (cf. [15]), and will be the subject of a future paper.
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