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Abstract. We are concerned with the verification of certain properties,
such as freedom from deadlock, for parallel programs that are written
using the Message Passing Interface (MPI). It is known that for MPI
programs containing no “wildcard receives” (and restricted to a certain
subset of MPI) freedom from deadlock can be established by considering
only synchronous executions. We generalize this by presenting a model
checking algorithm that deals with wildcard receives by moving back
and forth between a synchronous and a buffering mode as the search
of the state space progresses. This approach is similar to that taken by
partial order reduction (POR) methods, but can dramatically reduce the
number of states explored even when the standard POR techniques do
not apply.

1 Introduction

It is well-known that finite-state verification techniques, such as model checking,
suffer from the state explosion problem: the fact that the number of states of a
concurrent system may — and often does — grow exponentially with the size of the
system. Many different approaches have been studied to counteract this difficulty.
These include partial order reduction (POR) methods, data abstraction, program
slicing, and state compression techniques, to name only a few.

For the most part, these approaches have been formulated in very general
frameworks. Their generality is both a strength and a weakness: the methods
can be broadly applied, but may miss opportunities for reduction in specific situ-
ations. This observation has led to interest in more domain-specific approaches.
The idea is to leverage knowledge of the restrictions imposed by a particular
programming domain, or of common idioms used in the domain, in order to
gain greater reductions than the generic algorithms allow. An example of this
approach for concurrent Java programs is given in [2], where analysis that iden-
tifies common locking patterns, among other things, is exploited to dramatically
improve the generic POR algorithms.
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This paper is concerned with the domain of parallel programs that employ the
Message Passing Interface (MPI). The MPI Standard [9,10] specifies the syntax
and semantics for a large library of message passing functions with bindings in
C, C++, and Fortran. For many reasons — portability, performance, the broad
scope of the library, and the wide availability of quality implementations — MPI
has become the de facto standard for high-performance parallel computing. In
addition, we focus on a particular class of properties of MPI programs, which we
call halting properties: claims on the state of a program whenever execution halts,
whether due to deadlock, or to normal termination. Freedom from deadlock is
an example of a halting property; another would be an assertion on the values
of variables when a program terminates.

Some explanation of the most essential MPI functions is required for what
follows. The basic MPI function for sending a message to another process is
MPI_SEND. To use it, one must specify the destination process and a message
tag, in addition to other information. The corresponding function for receiving a
message is MPI_RECV. In contrast to MPI_SEND, an MPI_RECV statement may
specify its source process, or it may use the wildcard value MPI_ANY_SOURCE,
indicating that this statement will accept a message from any source. Similarly,
it may specify the tag of the message it wishes to receive, or it may use the
wildcard value MPI_ANY_TAG. A receive operation that uses either or both
wildcards is called a wildcard receive. The use of wildcards and tags allows for
great flexibility in how messages are selected for reception.

Previous work has established that if a program (restricted to a certain subset
of MPI) contains no wildcard receives, then a suitable model M of that program
can be constructed with the following property: M is deadlock-free if, and only if,
no synchronous execution of M can deadlock [12, Theorem 7.4]. This is exactly
the kind of result we are after, as the need to represent all possible states of
message channels is often a significant source of state explosion. Unfortunately,
wildcard receives are common in actual MPI programs, and the theorem may
fail if the hypothesis on wildcard receives is removed [12, Sec. 7.3].

The approach of this paper generalizes the earlier result in three ways. First,
it shows that the hypothesis forbidding wildcard receives may be relaxed to allow
the use of MPI_ANY_TAG, with no ill effects. Second, the range of properties is
expanded to include all halting properties. But most importantly, it provides a
model checking algorithm that deals with MPI_ANY_SOURCE by moving back
and forth between a synchronous and a buffering mode as the search of the state
space progresses. This approach is similar to that taken by POR methods, but
can dramatically reduce the number of states explored even when the standard
POR techniques do not apply.

The discussion proceeds as follows. Section 2 establishes the precise defini-
tion of a model of an MPI program, and of the execution semantics of such
a model. The definition of a halting property and the statement of the main
theorem are given in Sec. 3. Section 4 deals with consequences of the main theo-
rem. These include a bounded model checking algorithm for halting properties;
the consequences for programs that do not use MPI_ANY_SOURCE are also ex-
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plored. Section 5 discusses the relationship with the standard POR techniques.
Results of an empirical investigation are presented in Sec. 6, and conclusions
are drawn in Sec. 7. Proofs of the theorems, a description of the program and
model for each example, complete MPI/C source code for the examples, and all
experimental results can be downloaded from http://laser.cs.umass.edu/
“siegel/projects.

2 DModels of MPI Programs

For the purposes of this paper, an MPI program consists of a fixed number
of concurrent processes, each executing its own code, with no shared variables,
that communicate only through the MPI functions. The precise notion of a model
of such a program is defined below. While there are many issues that arise in
creating models from code, these are beyond the scope of this paper, and the
reader is referred to [12] for a discussion of this subject and some examples.
It is argued there that this notion of model suffices to represent MPI_SEND,
MPI_RECV, MPI_SENDRECV (which concurrently executes one send and one
receive operation), as well as the 16 collective functions, such as MPI_BCAST,
MPI_ALLREDUCE, etc. The definition of receiving states here is slightly more
general, in order to accommodate a new way to deal with tags, explained below.

2.1 Definition of a Model of an MPI Program

An MPI context is a T-tuple
C = (Proc, Chan, sender, receiver, msg, loc, com).

The first two components are finite sets, representing the set of processes, and
the set of communication channels, respectively. The next two components are
functions from Chan to Proc; they define the sending and receiving process for
each channel. The function msg assigns, to each ¢ € Chan, a nonempty set
msg(c); this is the set of messages that can be sent over channel c¢. The final two
components are functions of Proc. For p € Proc, loc(p) is a finite set representing
the set of local events for p, while com(p) is defined to be the set of communication
events for p, namely, the set of send and receive symbols

{clz,d?y | ¢,d € Chan,z € msg(c),y € msg(d),sender(c) = p = receiver(d)}.

Finally, for all p,q € Proc, we assume loc(p) N com(q) = 0, and p # ¢ =
loc(p) Nloc(q) = 0.
Let p € Proc. An MPI state machine for p under C is a 6-tuple

M, = (States,, Transy, src, des, label, start,,)

where States, and Trans, are sets, src and des are functions from Trans, to
Statesy, label is a function from Trans, to loc(p) U com(p), and start, € States,.
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We do not use the subscript p for the functions src, des, and label, because the
process p will always be clear from the context. Finally, we require that every
state u must fall into one of 5 categories, which are determined by the transitions
departing from w. First, we define the following:

R(u) ={(d,y) | d € Chan,y € msg(d), 3t € Trans,: src(t) = u A label(t) = d?y}
Q(u) = {d € Chan | 3y € msg(d): (d,y) € R(u)}
Rq(u) = {y € msg(d) | (d,y) € R(u)} (d € Q(u)),

Now the 5 possibilities for u are as follows:

1. u is a final state: there are no transitions departing from u,

2. w is a local-event state: there is at least one transition departing from u, and
the transitions departing from u are labeled by local events for p,

3. u is a sending state: there is precisely one transition departing from v and
it is labeled by a send event for p,

4. u is a receiving state: there is at least one transition departing from u, and
the transitions departing from u are labeled by distinct receive events for p,
or

5. u is a send-receive state (see Fig. 1): R(u) # 0, and there is a ¢ € Chan with
sender(c) = p, an ¢ € msg(c), a state v, and states v(d,y) and v'(d,y) for
all (d,y) € R(u), such that the following all hold:

(a) the set of transitions departing from u consists of one transition to u’
whose label is clz, and, for each (d,y) € R(u), one transition labeled d?y
to v(d,y),

(b) for each (d,y) € R(u), there is precisely one transition departing from
v(d,y), it is labeled clz, and it terminates in v'(d,y), and

(c) foreach (d,y) € R(u), there is a transition from u’ to v'(d, y), it is labeled
d?y, and these make up all the transitions departing from u/'.

The point of the send-receive state is to model the MPI_SENDRECV function,
which executes one send and one receive operation concurrently. This is modeled
by allowing the send and receive to happen in either order.

Finally, a model M of an MPI program is a pair (C, M), where C is a context
and M is a function that assigns, to each p € Proc, an MPI state machine M,
for p under C, such that States, N States, = () = Trans, N Trans, for p # ¢.

Given an MPI program, one may construct a model using one channel ¢, 4,
with sender(cp 4) = p and receiver(c, 4) = ¢, for each (p,q) € Proc x Proc. To
translate a receive statement r it suffices to specify the sets Q(u) and Rg(u) for

u

@]
d?2
v(d,1) O v(d, 2)O

cll

O O O
v'(d, 1) v'(d, 2) v'(e, a)
Fig. 1. A send-receive state u with Q(u) = {d, e}, Ry(u) = {1, 2}, Re(u) = {a}.
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the receiving state u corresponding to r. If r occurs in process ¢ and specifies its
source p, then we let Q(u) = {cp q}. If r instead uses MPI_ANY_SOURCE then
we let Q(u) = {cp,q | p € Proc}. We may assume that the tags have been encoded
in the messages, so that to each message x is associated an integer tag(x). Now
if r specifies a tag t, we let

Ra(u) = {z € msg(d) | tag(z) = t} (de Qu)).

If instead r uses MPI_ANY_TAG, we take R4(u) = msg(d). We will see below
that the execution semantics in effect allow a receive operation to choose non-
deterministically among the receiving channels Q(u), but, for a given d € Q(u),
it must pick out the oldest message in d with a matching tag. This corresponds
exactly to the requirements of the MPI Standard [9, Sec. 3.5].

2.2 Execution Semantics of a Model of an MPI Program

Let N ={0,1,...} and N*° = NU{oo}. A sequence S = (21, za,...) of elements
of a set X may be either infinite or finite. We write |S| for the length of S. If A
is a subset of a set B, and S is a sequence of elements of B, then the projection
of S onto A is the sequence that results by deleting from S all elements that
are not in A. If S is any sequence and n € N, then S™ denotes the sequence
obtained by truncating S after the n'® element.

Let M be a model of an MPI program. A global state o of M is a pair of
functions (u, ), where u assigns, to each p € Proc, a state u, € States,, and «
assigns to each ¢ € Chan a finite sequence a. of elements of msg(c). The sequence
represents the pending messages for c: messages that have been sent but not yet
received. We define Pending,.(0) = a. and state,(o) = u,. The initial state of M
is the global state for which u, = start, for all p, and a, is empty for all c.

Suppose 0 = (u,«) and ¢’ = (u/,a’) are global states of M, p € Proc,
t € Transy, and that src(t) = uy, des(t) = uj,, uy = uy, for ¢ # p, and one of the
following holds:

1. label(t) € loc(p) and o = ¢/,

2. there exist ¢ € Chan and z € msg(c) such that label(t) = clz, o is obtained
by appending x to the end of a., and o) = oy for d # ¢, or

3. there exist d € Chan and y € msg(d) such that label(t) = d?y, y is the first
element of the projection of g onto Rq(uyp), ¢ is obtained by deleting the
first occurrence of y from «g, and o, = a, for ¢ # d.

Then we call the triple 7 = (o,0’,t) a simple global transition of M, and we
define label(7) = label(t).

Suppose now that o, ¢/, and ¢” are global states, t1,ts are transitions, ¢ €
Chan, = € msg(c), p = receiver(c), and that the following all hold:

/

1. label(t1) = clz and label(ts) = ¢z,
2. Pending.(0) contains no element of R.(state,(0)), and
3. (0,0',t1) and (¢’,0”,t2) are simple global transitions.
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In this case we will refer to the 4-tuple 7 = (o, 0", t1,t2) as a synchronous global
transition, as it corresponds to a synchronous MPI communication: a message
that is transferred directly from the sender to the receiver in one atomic step.
We do not want to think of 7 as “passing through” the intermediate state o',
but rather as leading directly from o to ¢”. In particular, since Pending.(c) =
Pending,.(c”), 7 leaves all of the channels unchanged. We define label(7) to be
the symbol c!?x.

The state graph of M is the ordered pair G = (S,7 ), where S is the set of all
global states, and 7 is the set of all (simple and synchronous) global transitions.
Let src,des: T — S be the projections onto the first and second coordinates,
respectively. These give G the structure of a directed graph.

An event « is any element of {label(7) | 7 € T}. We say that « is enabled at
the global state o if there exists 7 € T with src(7) = ¢ and label(7) = .

Given a path T = (711, 72,...) in G, we define the atomic length of T to be
||IT|| = 3, €(7:), where (1) = 1 if 7 is simple and €(7) = 2 if 7 is synchronous.
This is sometimes a more natural measure of length than |T'|. A trace of M is
any path in G originating in the initial state. Finally, If T" originates in the global
state o and ¢ € Chan, we define

maxlen.(T) = max{|Pending.(c)|, |Pending, (des(7;))|}.

3 The Main Theorem

The main theorem concerns halting properties so we first explain what these
are. In general, a concurrent program is considered to be in a halted state if
every process has become permanently blocked. A receive statement in an MPI
program blocks, as one would expect, as long as there is no pending message
that matches the parameters of that statement. However, the circumstances
under which a sending statement blocks are more subtle. Typically, one would
assume that each channel ¢ has some fixed size v(c) € N, and declare that a send
on ¢ blocks whenever the length of ¢ equals v(c). The MPI Standard, however,
imposes no such bounds, but instead declares that a send may block at any time,
unless the receiving process is at a state from which it can receive the message
synchronously [9, Sec. 3.4]. We thus make the following definition for a model
M:

Definition 1. A global state o of M is potentially halted if no receive, local, or
synchronous event is enabled at o.

We use the word “potentially” because a program in such a state may or may
not halt, depending on the particular choices made by the MPI implementation.

For any predicate f on the global states of M, and any subgraph H of G that
contains the initial state oo, let II(H, f) denote the statement for all states o
reachable in H from oo, f(c). Let phalt be the predicate defined by phalt(o) <
o is potentially halted.
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Definition 2. A halting predicate is a state predicate f of the form phalt = ¢,
where ¢ is any state predicate. A halting property is a statement of the form
II(H, f), where f is a halting predicate.

An example of a halting property is given by taking g = false, the predicate that
holds at no state. For this q, IT = II(G, f) states that M never halts. One could
also take g = term, the predicate that is true when all processes are at final
states. Then II states that whenever M halts, all processes have terminated,
i.e., M is deadlock-free. More generally, one could take ¢ to be the predicate
termy that holds when all processes in a certain subset X are at final states.
One could also let ¢ be the conjunction of termy with another predicate — for
example, a predicate that holds when variables in the processes in X', whose
values are encoded in the local states, have particular values. In this case IT
would say that whenever the program halts, all processes in X have terminated
and the variables have the specified values.

To motivate what follows, consider a model [12, Fig. 5] of three processes
with state machines as follows:

c?1 O
/ >© NO c!l o ell C NO e?l o dll C

Suppose we try to verify freedom from deadlock for this model by considering
only synchronous executions. Then we only explore the sequence (c!71, e!?1,d!71),
which terminates normally, and miss the deadlocking sequence (c!1,e!?1,d!?1).
We can try to explain why we missed the deadlock in the following way. At the
initial state, process p = receiver(c) is at a wildcard receive u with Q(u) = {¢, d}.
At this state, ¢ is ready to receive a message (synchronously) but d is not. By
pursuing only synchronous communication, we never get to see the state in which
p is at v and a receive on d is enabled.

The solution is to consider all enabled events (not just synchronous ones)
whenever a process p is at a wildcard receive u, unless u has become “urgent.”
By this we mean that for each ¢ € Q(u), either a (synchronous or buffered)
receive on c is enabled or we know that a receive on ¢ can never become enabled.
Note that once a receive on ¢ becomes enabled, it will remain enabled until p
executes a transition, since p is the only process which may remove a message
from c. Since no receive event can be enabled at a potentially halted state o, the
only way we can arrive at o is if p eventually executes. Now if u is urgent, no new
events in p can become enabled, and so one of the currently enabled events in
p must occur if the system is to arrive at o. Since those events are independent
of events in other processes, we might as well explore the paths that result
from scheduling each of those enabled events immediately. (If two events are
independent then neither can disable the other and the effect of applying one
and then the other does not depend on the order in which they are applied.)
Local event states are similar, but they are always urgent since the local events
are always enabled. The following definitions attempt to make all of this precise:

Definition 3. Let o be a global state of M, p € Proc, and u = state, (o). We
say p is at an urgent state in o if either u is a local event state, or all of the
following hold:
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1. u is a receiving or send-receive state,
2. for all d € Q(u), at least one of the following holds:

(a) there is an event of the form d?y or d!?y enabled at o, or
(b) statesender(a) () is a final state,

and
3. there is at least one d € Q(u) for which 2(a) holds.

We define Urgent(o) to be the set of all p € Proc such that p is at an urgent
state in . Finally, we say that o is urgent if Urgent(o) # 0.

Definition 4. A global transition 7 is urgent for process p if 7 has the form
(0,0',t) or (o,0',t',t), where p € Urgent(c), t € Trans,, and label(t) is either a
local event or a receive.

Condition 2(b) of Definition 3 can be relaxed somewhat: all that is really required
is that sender(d) be in a state from which it can never reach a send on d. However,
the version that we have stated has the advantage that it is very easy to check.
Also, note that the third condition guarantees there is at least one enabled event
at an urgent state.

We now fix a total order on Proc. The reason for this will become clear: we
do not have to consider all urgent transitions departing from an urgent state,
but only those for a single process, and so we will just choose the least one.

Definition 5. Let 7 denote the set of all global transitions 7 for which either
src(7) is not urgent, or 7 is urgent for the minimal element of Urgent(src(7)). Let

Gg=(817).
Now we can state the main theorem:

Theorem 1. Given any path S in G from a global state og to a potentially
halted global state o, there exists a path T from oo to o in G such that [T =
S]], |T| < |S|, and maxlen.(T) < maxlen.(S) for all ¢ € Chan. In particular
II(G, f) < II(G, f) for any halting predicate f.

In light of the discussion above, it should come as no surprise that the proof
of Theorem 1 relies on many of the restrictions imposed by our domain and
property. For example, the fact that each channel has an exclusive receiving pro-
cess was used to show that once a receive event becomes enabled, it must remain
enabled until that process executes. The knowledge that the property could be
violated only if no receive were enabled was also used. The fact that a sending
state has exactly one outgoing transition also comes into play: if the sending state
had outgoing transitions on two different channels then a synchronous event that
was enabled on one channel could become disabled if the sending process were
to send on the other channel. These arguments withstand the introduction of
send-receive states only because the specific structure of those states guarantees
that the send event is independent of the receive events. Remove any of these
domain-specific restrictions, and Theorem 1 may fail.
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4 Consequences of the Main Theorem

4.1 The Urgent Algorithm

In general, the number of reachable states in G or G may be very large (or even
infinite). So it is common practice to place upper bounds on the channel sizes,
or the search depth, in order to reach a conclusive result on at least a bounded
region of the state space. For these reasons we define the following concepts. Let
v : Chan — N* and m € N*°. Let 7, ,,, be the set of all global transitions that
occur in traces T that satisfy (i) ||T|| < m, and (ii) for all global states o through
which T passes, and all ¢ € Chan, |Pending,(0)| < v(c). We let G, = (S, 70 m)-
Let ’]:ﬁm be the set of all 7 € 7, ,,, such that 7 € 7T and

if label(7) = ¢!?x for some ¢,z then o is urgent or |Pending (o) = v(c), (1)

where o = src(r). Condition (1) is not strictly necessary, but it may provide
some additional reduction. The idea is that when o is not urgent, it would be
redundant to consider synchronous transitions since we are already pursuing all
buffered sends and receives. An exception is made if a channel is full since then a
buffered send would not be enabled. Let g;m = (S, ’Z;"m) We have the following
consequence of Theorem 1:

Corollary 1. Given any path in G, ., from a global state og to a potentially
halted global state o, there exists a path in g&m from oy to o. In particular,

oG m, f)e H(gﬁvm, f) for any halting predicate f.

If States,, Trans,, and v(c) are finite for all p € Proc and ¢ € Chan, then
T,.m and Z,b,m are finite as well. It follows from Corollary 1 that we can ver-
ify a halting property in this case by performing a depth-first search of gh,m.
Specifically, algorithm Urgent of Fig. 2 will find all reachable states in G, ,,, for
which f does not hold. We assume Proc = {p1,...,pn} and p1 < -+ < pny. The
search is initiated by setting the global variable R to the empty set and calling
search(og,0), where o is the initial state. Function urgent_transitions(o,p) re-
turns the set of all 7 € T such that src(7) = ¢ and 7 is urgent for p. Function
standard_transitions(o,v) returns the set of all 7 € T that satisfy (i) src(7) = o,
(ii) |Pending,(des(7))| < v(c) for all ¢, and (iii) label(7) = ¢!?z = |Pending (0)| =
v(c). There is no need to specify v for urgent_transitions since an urgent transi-
tion can never increase the length of a channel.

Ezample. In a model of a client-server system with n clients (n > 1), Proc =
{0,1,...,n} with the natural order, Chan = {¢1,ds,...,cn,dyn}, msg(c) = {1}
for all ¢ € Chan, and sender(c;) = i = receiver(d;), receiver(c;) = 0 = sender(d;)
for 1 <4 < n. For n = 2, the state machines for processes 0 (the server), 1, and
2, are respectively:

Cl?l Cg?l Cl!l 02!1

dy!1 da!l di71 da?1
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1 function selected_transitions(o)  /* returns {7 € T, | src(7) = o'} */
2 for i =1to N do

3 if p; € Urgent(o) then return urgent_transitions(o, p;) end if
4 end for;

5 return standard_transitions(o,v)

6 end function;

7 procedure search(o, 1)

8 if [ > m then return end if;

9 R:= RU{o};
10 if not f(o) then report_violation() end if;
11 for all T € selected_transitions(o) do
12 if des(7) € R then search(des(7),l + €(7)) end if
13 end for all
14 end procedure

Fig. 2. The Urgent Algorithm: depth-first search of g;m.

Let us see how the Urgent algorithm applies to this system for any v and
m = oo. We start with the initial state: this state is urgent for process 0, so we
explore the states resulting from the global transitions labeled ¢;!?1 for all 7. For
any such ¢, the resulting state has process 0 in local state ¢, process ¢ in local
state 1, and all other processes and channels unchanged. This state is urgent
for 4, and so we explore the single transition d;!71. This returns us to the initial
state, which is already in R. Hence the algorithm explores a total of n+ 1 global
states, and 2n transitions. Notice also that, in this case, the search does not
explore any buffered communication, even though process 0 contains a wildcard
receive.

4.2 Source-Specific Models and Synchronous Traces

We say that M is source-specific if for every receiving and send-receive state
uw in M, |Q(u)] = 1; this corresponds to an MPI program which never uses
MPI_ANY_SOURCE (though it may use MPI_ANY_TAG). We say that a path in
G is synchronous if it consists solely of local and synchronous transitions.

Let M be any model and o a global state of M. If ¢ is urgent, then clearly
o cannot be potentially halted. Now if M is source-specific, the converse is also
true. For if there is some ¢ € Chan and = € msg(c) for which c¢?z or c!?z is
enabled at o, then p = receiver(c) € Urgent(o), since Q(state,(0)) = {c}.

Now suppose M is source-specific and T is a trace terminating in a poten-
tially halted state 0. By Theorem 1, there exists a trace T = (71,...,7,) in G
terminating in o, with n < |T'| and ||T|| = ||T||. Let o4 = des(ry) for 1 <k <n
and let o¢ be the initial state. Let ¢ be the least integer for which o; is potentially
halted. For 0 < j < 4, o is not potentially halted, which as we have seen means
that o is urgent. This implies that 7,41 is a local event, synchronous, or receive
transition. But 7;4; cannot be a receive: if it were, there would have to be a
preceding send. In other words, T is synchronous. We have proved:
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Corollary 2. Let M be a source-specific model of an MPI program and T a
trace terminating in a potentially halted state o. Then there exist i € N and a
trace T in G that terminates in o such that |T| < |T|, [|T|| = ||T||, and T* i
synchronous and terminates in a potentially halted state.

This leads to the following, which generalizes [12, Theorem 7.4]. Note that 0 is
used to denote the function on Chan which is identically 0. Note also that all of
the examples of halting predicates given in Sec. 3 satisfy the condition on gq.

Corollary 3. Suppose M is a source-specific model of an MPI program, and
q is a state predicate satisfying q(c) = q(o’) for any simple global transition
(0,0',t). Let f denote the predicate phalt = ¢, v: Chan — N and m € N°°.
Then I(Gym, [) < (G, f)-

5 Related Work

The literature on partial order reduction techniques is too large to summarize
here, but [1,4,11] and the references cited cover much of the ground. Persistent
set techniques [4,5] form a family of POR methods that deal specifically with
freedom from deadlock. Those techniques associate, to each global state o en-
countered in the search, a subset T, of the set of all transitions enabled at o,
in such a way that the following condition holds: on any path in the full state
graph departing from o, no transition dependent on a transition on T, can occur
without a transition in T, occurring first. (The word transition in this context
corresponds to a set of our global transitions.) The reduced search explores only
the transitions in T}, and so benefits whenever T is a proper subset. If it is also
the case that T, is empty only when there are no enabled transitions at o, then
we may conclude that the reduced search will explore all reachable deadlocked
states [4, Thm. 4.3].

It should be emphasized, however, that here “deadlocked state” is used in the
usual sense, to mean a state with no outgoing transitions. In our MPI context we
call such states absolutely halted. An absolutely halted state is certainly poten-
tially halted, but the converse is not always the case, and, in fact, the persistent
set POR algorithms may miss potentially halted states. Consider, for example,
the standard state graph (i.e., without the added synchronous transitions) aris-
ing from a model of an MPI program. For simplicity, let us assume the model
has no send-receive states. Now for any global state o, we could declare o to
be urgent if some process p were at either (i) a receiving state in which every
receiving channel had at least one pending matching message, (ii) a local-event
state, or (iii) a sending state. We could then let T}, consist of the enabled events
for the least urgent process (or all enabled events if no process is urgent), and
this would satisfy the conditions of the previous paragraph. Consider a model
with Proc = {0, 1}, in the natural order, a local event X in process 1, and with
state machines as follows:

A d'1 c?l

50 cll o drl C -0 @
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The model contains a potentially halted state o1, obtained from the initial state
oo by executing A\. However, process 0 would be urgent at ¢, so we would have
Ty, = {c!1}. Hence the reduced search would not explore o1, and in fact would
complete without encountering any potentially halted states.

We could attempt to correct this problem by simply not allowing the sending
states to be urgent, and it can in fact be shown that this would lead to an
algorithm that explored all potentially halted states. However, the algorithm
would miss many of the opportunities for reduction. Consider, for example, a
client server system with n clients. The system would not be in an urgent state
until every client had sent at least one request. In particular, the reduced search
would explore all possible states of the n request channels for which at least one
channel is empty.

Our approach solves this problem by adding the synchronous transitions
to the state graph and defining the T, to take advantage of those transitions
under the appropriate circumstances. This solution cannot, strictly speaking, be
characterized as a persistent set approach, since our T, do not necessarily satisfy
the persistent set condition. Consider, for example, a client-server system with
one client. At the initial state o, our T, consists of the single transition labeled
c!?1. But the path c!1,¢?1 is also possible from o, and both ¢!l and ¢?1 are
dependent on c!?1.

Other POR techniques preserve more complex temporal properties. The am-
ple set framework [1, Chap. 10] is an example of these. Here, the T, must satisfy
several conditions in addition to those described above for persistent sets. If all
the conditions are met, then the reduced state graph is guaranteed to be stutter-
equivalent to the full state graph, and hence can be used to verify any LTL_ x
property [1, Cor. 2 and Thm. 12].

Returning to the MPI context, any halting property can be expressed as an
LTL_x property of the form O(phalt = ¢), and therefore, in theory, is amenable
to the ample set approach. Now, however, another problem arises. In the ample
set framework, a transition is inwvisible if it can never change the truth value of
a predicate (such as phalt) used in the LTL formula. The invisibility condition
requires that whenever T, is a proper subset of the set of all transitions enabled
at o, every transition in T, is invisible. Since any local event, receive, or syn-
chronous transition might change phalt from false to true, these transitions are
not necessarily invisible, and therefore an ample set algorithm would not include
them in a T}, (unless the T, consisted of all enabled transitions). This eliminates
most, if not all, of the opportunities for reduction.

As it turns out, the ample set invisibility condition is unnecessarily strict, and
all that is really required is that a transition never change phalt from true to false,
which is certainly the case for local event, receive, and synchronous transitions,
since they are not even enabled at potentially halted states. (Notice that send
transitions can change phalt from true to false, which explains why it really
would be a mistake to treat them as invisible.) Another condition, concerning
cycles in the reduced graph, can also be safely ignored in our context. After
these modifications, however, the ample set approach essentially reduces to the
persistent set approach, discussed above.



Efficient Verification of Halting Properties for MPI Programs 425

Another deadlock-preserving reduction method is the sleep set technique [3,
4]. Sleep sets can be used in conjunction with the persistent set approach to
further reduce the numbers of states and transitions explored. The idea is to
associate to each state a dynamically changing set of transitions that can be
safely ignored even if they appear in the persistent set for that state. It is possible
that this method could be adapted to work with our urgent algorithm, an idea
we hope to explore in future work.

6 Experimental Results

Eight scalable C/MPI programs were used for our empirical investigation. They
range from standard toy concurrency examples to more complex programs from a
well-known book on MPI [6]. For each, we constructed by hand an abstract model
appropriate for verifying freedom from deadlock. These models were encoded as
certain Java classes that can be read by the MPI-Optimized Verifier (MOVER),
a Java tool developed for this project. Given the model and an object describing
a halting property, MOVER can either (A1) execute a generic depth-first search
of the state space to verify the property or report any violations, (A2) execute
the Urgent algorithm to do the same, or (A3) produce a Promela model that can
be used by the model checker SPIN [7] to do the same.

The processes and channels in the Promela model correspond exactly to
those in the MPI model. There are no variables in the Promela, other than
the channels. The local states of a process are encoded by labeled positions
in the code. States with multiple departing transitions are encoded using the
Promela selection construct (if...fi). A never claim is inserted corresponding
to the LTL formula <>! (univenabled || terminated), where univenabled is
defined to hold whenever a synchronous, local, or receive event is enabled (the
definition refers to the lengths of the channels and the positions of the local
processes), and terminated is defined to hold when all terminating processes
are at final states. SPIN uses a POR algorithm that is similar to the ample set
technique [8]. It might seem appropriate to use SPIN’s xr and xs declarations,
which declare a process to have exclusive read or write access to a channel and
provide information to help the POR algorithm. However, this is not allowed,
as the never claim makes reference to all the channels, and in fact an attempt
to use those declarations causes SPIN to flag the error. This is SPIN’s way of
recognizing that the communication events may not be invisible with respect to
the property.

(A different way to use SPIN to verify freedom from deadlock for MPI pro-
grams is described in [13]. In that approach, every send is immediately followed
by a non-deterministic choice between blocking until the channel becomes empty
and proceeding without blocking. Freedom from deadlock can then be checked in
the usual way with SPIN, i.e., without a never claim. While we have not carried
out an extensive comparison, it appears that the state-explosion is much worse
for that approach than for the approach presented here, due to all the new states
introduced by the non-deterministic choices.)
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We applied all three approaches to each of the examples, increasing system
size n until n = 200 or we ran out of memory. In each case we recorded the
numbers of states and transitions explored, and the time and memory used. We
used the Java2 SDK 1.4.2 with options -Xmx1900M and SPIN 4.2.0, with options
-DCOLLAPSE -DMEMLIM=2800 -DSAFETY; the maximum search depth also had to
be increased in some cases. The experiments were run on a Linux box with a
2.2 GHz Xeon processor and 4 GB of memory. In the one case where a deadlock
was found, the searches were stopped after finding the first counterexample.

Figures 3 and 4 show the number of states explored. We first observe that
the numbers for A; and A3 are exactly equal in all cases where both searches
completed. Since A; explores all reachable states, this means that SPIN’s POR
algorithm (on, by default) made no difference in the number of states explored.
This is not surprising, since there are no invisible events for the algorithm to
exploit. For the one case where a violation exists, SPIN did find the violation
much sooner than either MOVER algorithm (Fig. 3(d)). This appears to be just
a fluke related to process ordering: we ran the same problem but reversed the
order in which the processes were declared (for both tools), and the results were
almost exactly reversed.

For the Client-Server, Producer-Consumer, and the two exchange examples,
the performance of A, was the most impressive, reducing the complexity class
from one that is apparently exponential to one that is linear. For Monte Carlo
and Master-Slave, both functions appear to be exponential, but the exponent for
the Ay function is lower (significantly so for Master-Slave), allowing it to scale
further. In one case (Fig. 3(c)), the use of Ay makes almost no difference, but
there the number of reachable states was quadratic to begin with so there was
not much room for improvement. The Master Producer-Consumer proved the
most difficult: there seemed to be a small constant reduction but no approach
could scale beyond n = 4.

For Producer-Consumer, we give on one graph (Fig. 4, left) the results for
various values of v. This graph demonstrates the impact of channel size on state
explosion for systems that can buffer many messages. For v = 0, however, the
number of reachable states for the system of size n is just n+ 1, and Ao searches
that number of states for any value of v, since the system contains no wildcard
receives. We also give the time for the Master-Slave example; typical of these
examples, the pattern is similar to that for the number of states.

In summary, the Urgent algorithm often dramatically reduced the number
of states explored. It can never increase that number, as long as the search is
carried to completion, nor did it appear to have a significant impact on the time
required to complete the search. In contrast, the POR algorithm implemented
in SPIN had no effect on the number of states explored.

7 Conclusions and Future Work

We have presented a POR-like optimization to the standard model checking
algorithm for verifying halting properties of MPI programs. The algorithm seeks
to control state explosion by limiting the number of transitions explored that
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Fig. 3. Graphs of y = log;,(f(n)), where f(n) is the number of states explored for the
system of size n, with channel size bound v.
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Fig. 4. Producer-Consumer states for v € {0, 1,...,4} (log,, of number of states, left),
and Master-Slave time (log,, of number of seconds, right).

involve buffering messages. The technique also interacts well with the imposition
of bounds on both the search depth and the sizes of the communication channels.

Earlier work showed that it suffices to consider only synchronous communi-
cation when verifying freedom from deadlock for certain MPI programs with no
wildcard receives. We have shown how that result follows easily from the theo-
rem that justifies our optimization. Moreover, we have shown that the restriction
that forbids wildcard receives may be relaxed to allow the use of MPI_ANY_TAG.

We have demonstrated the effectiveness of our algorithm on several scalable
examples, including some with wildcard receives. However, a better validation
of effectiveness would utilize more “realistic” examples. There is no guarantee
that scaling our simple examples presents the same kind of challenge to the
Urgent algorithm that an actual production-level MPI code would. Due to the
difficulty of creating models by hand, this task would benefit from an automated
MPI model extractor. We intend to develop such a tool, and use it to verify not
only freedom from deadlock, but also other halting properties. For example, we
would like to model the arithmetic computations performed by an MPI program
symbolically, and check that at termination the program has arrived at the
correct arithmetic result.

Finally, the study of domain-specific approaches may also shed light on the
general framework. It would be interesting to see if the ample set framework,
for example, could be extended to incorporate the idea of switching between a
synchronous and a buffering mode, generalizing our MPI-specific approach.
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