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Abstract. Partial Order Reduction (POR) techniques improve the basic mod-

el checking algorithm by reducing the numbers of states and transitions ex-
plored in verifying a property of the model. In the “ample set” POR framework

for the verification of an LTL−X formula φ, one associates to each state s a

subset Ts of the set of all transitions enabled at s. The approach requires that
whenever Ts is a proper subset, the transitions in Ts must be invisible, i.e.,

their execution can never change the truth values of the atomic propositions

occurring in φ. In this paper, we show that the invisibility restriction can be
relaxed: for propositions that only occur negatively in φ, it suffices that the

transitions in Ts merely never change the truth value from true to false, and

for those that occur only positively, from false to true. This opens up oppor-
tunities for reduction, in many commonly occurring scenarios, that would not

be allowed by the stricter invisibility criterion.

1. Introduction

Temporal logic model checking is a powerful tool for establishing the functional
correctness of complex concurrent systems. Yet the effectiveness of model checking
is often curtailed by the state explosion problem—the fact that the number of states
of a model tends to grow exponentially in the number of concurrent processes.
A variety of methods for mitigating state explosion have been proposed; among
these is a family of related methods known collectively as partial order reduction
techniques.

The basic idea behind partial order reduction is simple. An execution of a
concurrent system is usually represented as an interleaved sequence of transitions
from the concurrent processes. In many cases it is known a priori that the result
of executing two transitions from distinct processes is independent of the order
in which those transitions are applied. Consider, for example, a system with two
processes P1 and P2 that access a shared channel c modeled as a FIFO queue.
Suppose that only P1 sends using c (denoted c!x) and only P2 receives from c
(denoted c?y). Then in any system state s0 in which both a send and receive
operation are enabled, the same final state s3 will result regardless of the order in
which those two operations take place:

s0

s1 s2

s3

c?y c!x

c!x c?y
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This suggests that in searching the state space of this system, we only consider one
of the two possible paths.

Of course, whether such a reduction is safe depends on the property being
checked. Say, for example, we wish to verify that c is never empty; this can be ex-
pressed as the linear temporal logic (LTL) formula AG ¬empty(c), where empty(c)
is the proposition that holds precisely in those states in which c is empty. Suppose
that s0 is a state in which c contains one element and the send and receive oper-
ations are both enabled. In that case c will be empty in s1 and so the property
does not hold. However, if we were to choose to explore only the send transition
from s0, we would miss s1 and visit only s2 and s3—states where c is non-empty.
Our reduced search might therefore terminate without ever encountering a state in
which c is empty, and we might erroneously conclude that the property holds.

For this reason, traditional POR methods, such as the ample set framework
for verifying a next-time-free LTL formula Aφ, impose an invisibility condition. A
transition t is invisible if its execution in any state can never change the truth value
of any atomic proposition occurring in φ. The invisibility condition requires that
whenever the search is restricted to a proper subset of transitions departing from a
state then all the transitions in that subset must be invisible. In our example, the
only atomic proposition is empty(c). Since the send operation can change the value
of this proposition from true to false and the receive operation can change it from
false to true, neither operation is invisible, and so the search is required to explore
both paths departing from s0.

A well-known problem with this approach is that the effectiveness of the reduc-
tion technique drops off rapidly with the number of visible transitions. Several
methods have been proposed to mitigate this problem (see Sec. 5). This paper
contributes to those efforts by showing that the invisibility condition of the ample
set framework can be safely replaced with a weaker transparency condition.

The notion of transparency refines that of invisibility by distinguishing between
those atomic propositions that occur only positively in φ and those that occur only
negatively. Roughly speaking, a proposition p occurs positively if some appearance
of p in the syntax tree of φ occurs under an even number of negation operations.
(In an expression of the form p → q, p is considered to occur under one negation
operation as the expression is equivalent to (¬p)∨q). Similarly, p occurs negatively
if some appearance occurs under an odd number of negation operations. The tran-
sition t is transparent if for all p which occur positively in φ, t can never change
the truth value of p from false to true, and for all p which occur negatively in φ, t
can never change the value of p from true to false. Of course, some p may occur
both positively and negatively in φ, in which case the transparency requirement for
p reduces to the invisibility requirement for p.

In our example, the predicate empty(c) occurs only negatively in φ. Since the
receive operation can never change empty(c) from true to false, the transparency
condition permits a search in which only the receive transition departing from s0

is followed. Note that if s1 is a state in which c is empty then this reduced search
would indeed catch the violation. On the other hand, the send operation may
change empty(c) from true to false, and so a reduced search in which only the
send operation departing from s0 is followed would be rejected by the transparency
condition.
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A formal statement and proof of the transparency result are given below, but
it will help at this point to provide the main intuition behind the proof. The
correctness of the standard ample set approach comes down to showing that any
path through the structure resulting from the full search can be transformed to
a stutter-equivalent path through the structure resulting from the reduced search.
Since stutter-equivalent sequences satisfy the same next-time-free LTL path formu-
las, the path through the reduced structure satisfies φ iff the original path satisfies
φ. This is, however, stronger than what is required for correctness: we only need to
know that any path in the full structure which violates φ can be transformed into a
reduced path that violates φ. Only this weaker condition holds in the transparent
setting. For example, if φ has the form pUq, a path violating φ may be transformed
by stuttering and also by changing any number of values taken on by p and q from
true to false. It is not hard to see that such a transformed sequence must also
violate pUq.

The remainder of this paper is organized as follows. The formal framework and
statement of the main result are presented in Sec. 2. The proof of the main result is
then given in Sec. 3. Some applications and preliminary experiments applying the
transparent technique to the verification of message-passing programs are outlined
in Sec. 4. Related work is discussed in Sec. 5 and conclusions and future work are
discussed in Sec. 6.

2. The Main Theorem

We adopt the notation of [2, Chap. 10]. So we let AP be a set of atomic propo-
sitions, and M = (S, T, S0, L) a state transition system over AP . This means that
S is a finite set of states, S0 ⊆ S is the set of initial states, T is a finite set of tran-
sitions, i.e., if α ∈ T then α ⊆ S × S, and L : S → 2AP is a labeling function. We
assume that there are elements true, false ∈ AP with the property that true ∈ L(s)
and false 6∈ L(s) for all s ∈ S. For s ∈ S we let enabled(s) = {α ∈ T | ∃s′ ∈
S : (s, s′) ∈ α}. For α ∈ T we let enabled(α) = {s ∈ S | ∃s′ ∈ S : (s, s′) ∈ α}. We
also assume that the transitions are deterministic, that is, if s ∈ enabled(α) then
there is a unique s′ ∈ S for which (s, s′) ∈ α; we denote this state s′ by α(s).

Definition 2.1. Let p ∈ AP , α ∈ T . We say that α is 1-transparent to p if
p ∈ L(s) ⇒ p ∈ L(α(s)) for all s ∈ enabled(α). We say that α is 0-transparent to
p if p 6∈ L(s)⇒ p 6∈ L(α(s)) for all s ∈ enabled(α).

Hence if α is 1-transparent to p then it must preserve the truth of p: for any state
in which p holds and α is enabled, p must also hold after executing α. Similarly,
if α is 0-transparent to p then it must preserve falsehood of p. Notice that α is
invisible to p if, and only if, α is both 1- and 0-transparent to p.

Having defined the notions of transparency for atomic propositions, we now
extend these definitions to arbitrary LTL−X formulas. Recall that an LTL−X
formula is a state formula of the form Aφ, where φ is a path formula over AP such
that the operators used in φ all lie in the set {¬,→,∧,∨,G,F,U,W,R}.

Let Aφ be an LTL−X formula over AP . We will consider the syntax tree asso-
ciated to φ. To each node u in this tree is associated a subformula φu of φ. If u is
a leaf node then φu ∈ AP .

Now let ε ∈ {0, 1}. We will define, inductively, a number εu ∈ {0, 1} for each
node u in the syntax tree of φ. If u is the root node, let εu = ε. Now assume u is
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any node and we have defined εu. If u corresponds to any operation other than ¬
or →, then we let εv = εu for all children v of u. If u corresponds to ¬, then we let
εv = 1− εu for the sole child v of u. If u corresponds to →, then we let εv = 1− εu
and εw = εu, where v and w are respectively the left and right children of u. Now
we define the following:

Definition 2.2. We say that α is ε-transparent to φ if for all leaf nodes u in
the syntax tree of φ, α is εu-transparent to φu. For convenience, we write “α is
transparent to φ” to mean “α is 0-transparent to φ”, and simply “α is transparent”
if φ is understood.

Suppose α is ε-transparent to φ, and ψ is a subformula of φ. Thus there is some
node u in the syntax tree for φ, such that ψ = φu. It follows immediately from the
definition that α is εu-transparent to ψ: this is because the syntax tree for ψ is the
subtree of the syntax tree for φ with root node u.

The POR framework requires two additional structures: an independence rela-
tion, and a choice of ample sets.

Definition 2.3. An independence relation I ⊆ T × T is a symmetric, antire-
flexive relation on T such that, for any (α, β) ∈ I, and for all s ∈ S for which
α, β ∈ enabled(s), the following both hold: (i) α ∈ enabled(β(s)), and (ii) α(β(s)) =
β(α(s)). We say that α and β are independent if (α, β) ∈ I. We say α and β are
dependent if (α, β) 6∈ I.

A Kripke structure M = (S,R, S0, L) may be obtained from M by defining R
so that (s, s′) ∈ R iff (s, s′) ∈ α for some α ∈ T . A path in M is an ordered pair
π = 〈s, ζ〉, where s ∈ S and ζ = (α0, α1, . . .) is a (finite or infinite) sequence of
transitions, such that there exist s0, s1, . . . ∈ S satisfying s0 = s and (si, si+1) ∈ αi
for all i. It follows from the deterministic hypothesis that if the si exist, they are
unique, and so we define statei(π) = si.

Now suppose for each s ∈ S, we are given a set ample(s) ⊆ enabled(s). These
define the reduced Kripke structure M [ = (S,R[, S0, L), where (s, s′) ∈ R[ iff
there exists α ∈ ample(s) such that α(s) = s′. A path in M [ is a path in M
for which αi ∈ ample(si) for all i. We repeat here the four hypotheses on ample
sets from [2, Chap. 10], the only difference being we have replaced “invisible” with
“transparent to φ” in C2, where Aφ is the LTL−X formula we wish to verify. We
call the new condition C2φ to emphasize its dependence on φ (and not just on AP ).
The four conditions are then:

C0 For all s ∈ S, ample(s) = ∅ ⇔ enabled(s) = ∅.
C1 For all s ∈ S, along every path in M that starts at s, a transition that is

dependent on a transition in ample(s) cannot occur without a transition in
ample(s) occurring first.

C2φ For all s ∈ S, if ample(s) 6= enabled(s) then every α ∈ ample(s) is transpar-
ent to φ.

C3 There is no cycle in M [ containing a state at which some transition α is
enabled, but is never included in ample(s) for any state s in the cycle.

We can now state our main result:

Theorem 2.4. Let AP be a set of atomic propositions, M = (S, T, S0, L) a state
transition system over AP , Aφ an LTL−X formula over AP , and I an independence
relation for M. Suppose we are given, for each s ∈ S, a set ample(s) ⊆ enabled(s),
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such that C0, C1, C2φ, and C3 all hold. Let M be the Kripke structure correspond-
ing to M, and M [ the reduced Kripke structure. Then M |= Aφ⇔M [ |= Aφ.

3. Proof of the Main Theorem

In this section, we prove Theorem 2.4. Hence we assume we are given a state tran-
sition system M = (S, T, S0, L) over a set of atomic propositions AP , an LTL−X
formula Aφ over AP , an independence relation I for M, and ample sets ample(s)
(s ∈ S) satisfying C0, C1, C2φ, and C3. As before, we let M be the Kripke
structure corresponding to M, and M [ the reduced Kripke structure.

3.1. Preliminaries. Let N = {0, 1, . . . .} and N∞ = N ∪ {∞}. For any sequence
ζ we define |ζ| ∈ N∞ to be the length of ζ.

Let π = 〈s, ζ〉 be a path in M . Say ζ = (β0, β1, . . .). We define first(π) =
state0(π). For i ≥ 0, we let

Suffixi(π) = 〈statei(π), (βi, βi+1, . . .)〉.

The length of π, denoted |π|, is defined to be |ζ|. If |π| = n <∞, last(π) is defined
to be staten(π). If π is finite and σ is any path with first(σ) = last(π), then we
define π ∗ σ to be the concatenation of π with σ; it is a path starting from first(π).

We now define certain transformations on paths in M .

Definition 3.1. Let π = 〈s, (β0, β1, . . .)〉 be an infinite path in M , i ∈ N∞, α ∈ T ,
and suppose all of the following hold:

(a) α ∈ enabled(s),
(b) if i <∞ then α = βi,
(c) for all j < i, α is independent of βj, and
(d) if i > 0 then α is transparent.

Then we define

Γαi (π) =

{
〈α(s), (β0, . . . , βi−1, βi+1, . . .)〉 if i <∞
〈α(s), (β0, β1, . . .)〉 if i =∞.

Hence Γαi is a function from a certain subset of the set of all infinite paths in
M , to the set of infinite paths in M . The fact that Γαi (π) is a path follows easily
from the first three conditions of Definition 3.1, and Definition 2.3. Note also
that Definition 3.1 depends on φ—or more precisely, on the set of propositions that
appear positively in φ and the set of propositions that appear negatively in φ—since
part (d) refers to transparency. However, since the formula φ under consideration
is usually clear, we will not emphasize this.

Let j ≥ 0, ζ = (α0, . . . , αj−1) a sequence of length j of elements of T , and
ν = (i0, . . . , ij−1) a sequence of length j of non-negative integers. We will define
a function Γζν , which again is defined on a subset of infinite paths in M . If j = 0
(i.e., ν and ζ are empty sequences) we let Γζν(π) = π for all infinite paths π. For
j ≥ 1, we let

(1) Γζν = Γαj−1
ij−1
◦ · · · ◦ Γα0

i0
,

where here ◦ denotes function composition. Implicit in (1) is the fact that Γζν(π) is
defined iff Γα0

i0
(π) is defined and Γα1

i1
(Γα0
i0

(π)) is defined, and so on.



6 STEPHEN F. SIEGEL

0 1 2 3 4
n0 = 0

1

n1 = 2

3

4

n2 = n3 = n4 = 5
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Γ
α2
2

Γ
α0
0

Γγ∞

Γ
α3
1

Γ
α1
0

α0 α1 α2 α3

α0 α1 α3 α4

α1 α3 α4 α5

α1 α3 α4 α5

α1 α4 α5 α6

α4 α5 α6 α7

β0 = α2 α2 α2 = =

β1 = α0 = = = =

β2 = γ γ γ γ γ

β3 = α3 α3 = = =
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Figure 1. A transformation ρ  σ. The top row represents ρ;
the leftmost column represents σ.

Lemma 3.2. If Γζν(π) is defined then σ = 〈first(π), ζ〉 is a finite path in M and
last(σ) = first(Γζν(π)).

Proof. The proof proceeds by induction on |ζ|. For |ζ| = 0, σ is the path of length
0 starting at first(π), and so last(σ) = first(π) = first(Γζν(π)), as required.

Assume j ≥ 0 and the Lemma holds whenever |ζ| ≤ j. Suppose now that
ζ = (α0, . . . , αj), ν = (i0, . . . , ij), and Γζν(π) is defined. Let ζ ′ = (α0, . . . , αj−1) and
ν′ = (i0, . . . , ij−1). Since

Γζν(π) = Γαjij (Γζ
′

ν′(π))

is defined, π′ = Γζ
′

ν′(π) is defined. Hence by the inductive hypothesis, 〈s, ζ ′〉 is a
path, where s = first(π), and last(〈s, ζ ′〉) = first(π′). Now since Γαjij (π′) is defined,

αj ∈ enabled(first(π′)) = enabled(last(〈s, ζ ′〉)),
which means that 〈s, ζ〉 is a path. Moreover,

last(〈s, ζ〉) = αj(last(〈s, ζ ′〉)) = αj(first(π′))
= first(Γαjij (π′)) = first(Γζν(π)),

completing the inductive step. �

We now define a relation on infinite paths in M .

Definition 3.3. Let ρ = 〈s, (α0, α1, . . .)〉 and let σ = 〈s, (β0, β1, . . .)〉 be infinite
paths in M starting at the same state s. We write ρ σ if there exist i0, i1, . . . ∈
N∞ such that (i) ij = 0 for an infinite number of j, and (ii) for all j ≥ 0,
Γβ0,...,βj−1
i0,...,ij−1

(ρ) is defined.

By taking ij = 0 for all j, we see that  is reflexive, i.e., ρ ρ for any infinite
path in M .

An example illustrating the concepts introduced so far is given in Figure 1. In
the figure, each node represents a state. The rows are numbered starting with the
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top (row 0), and working down (rows 1, 2, . . .). The columns are numbered similarly
from left to right. Row 0 represents a path ρ = 〈s, (α0, α1, . . .)〉, while the leftmost
column represents a path σ = 〈s, (β0, β1, . . .)〉 for which ρ σ. The transformation
from ρ to σ is illustrated one step at a time. Hence, the path in row 1 represents
Γα2

2 (ρ), the path in row 2 represents Γα0
0 (Γα2

2 (ρ)), and so on. An edge denotes
either a transition from one state to another, or equality, i.e., that the source and
destination states are equal. From the figure, we can discern that α2, α3, and γ
must all be transparent transitions, that α2 is independent of α0 and α1, and so
on. The numbers n0, n1, . . . will be defined in Sec. 3.2.

Lemma 3.4. If ρ is an infinite path in M starting at a state s then there exists an
infinite path σ in M [ starting at s such that ρ σ.

Proof. First, we define elements βj ∈ T and ij ∈ N∞ for all j ≥ 0, by induction on
j. Along the way, we will show that for all j

πj = Γβ0,...,βj−1
i0,...,ij−1

(ρ) is defined, and(2)

〈s, (β0, . . . , βj−1)〉 is a path in M [.(3)

This will imply that σ = 〈s, (β0, β1, . . .)〉 is a path in M [ and it will only remain to
show that an infinite number of the ij are 0 to conclude that ρ σ.

The case j = 0 is vacuous, so suppose j ≥ 0 and that the βk and ik have been
defined for 0 ≤ k < j to satisfy (2) and (3). Write πj = 〈sj , (γj,0, γj,1, . . .)〉. If
γj,0 ∈ ample(sj) we may set ij = 0 and βj = γj,0. It is immediate that Γβjij (πj) is
defined, and thus, by Lemma 3.2, χ = 〈s, (β0, . . . , βj)〉 is a path. By the inductive
hypothesis, 〈s, (β0, . . . , βj−1)〉 is a path in M [, so since βj ∈ ample(sj), χ is a path
in M [.

So assume γj,0 6∈ ample(sj). Then γj,0 ∈ enabled(sj) \ ample(sj), and so by C2φ,
all of the transitions in ample(sj) are transparent.

Now either there is some k ≥ 1 such that γj,k ∈ ample(sj), or there is no such k.
If the first is the case, choose the least such k. Then by C1, γj,k is independent

of γj,l for all l < k, so we may take ij = k and βj = γj,k. Since all transitions in
ample(sj) are transparent, it is again the case that Γβjij (πj) is defined, and we may
reason exactly as before to see that 〈s, (β0, . . . , βj)〉 is a path in M [.

So suppose there is no such k. Then C1 implies that for all k ≥ 0, γj,k is
independent of every transition in ample(sj). By C0, ample(sj) is nonempty. So
we let ij =∞ and βj be any element of ample(sj), and this completes the inductive
step.

It remains to see that ij = 0 for an infinite number of j. Suppose that this is not
the case. Then there exists j ≥ 0 such that for all k ≥ j, ik > 0. Hence γk,0 = γj,0
for all k ≥ j. By construction, this implies

γj,0 ∈ enabled(sk) \ ample(sk) (k ≥ j).

Now sk = statek(σ) for all k, and, since S is finite, there must exist l > k ≥ j
such that sl = sk. Hence sk lies on a cycle in M [ in which γj,0 is enabled, but not
included in the ample set for any of the states of the cycle, contradicting C3. �
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Lemma 3.5. Suppose π is an infinite path in M , i ∈ N, j ∈ N∞, and Γαj (π) is
defined. Then

Suffixi(Γαj (π)) =

{
Γαj−i(Suffixi(π)) if j ≥ i
Suffixi+1(π) if j ≤ i.

Proof. This is an easy exercise in the definitions. Note that the two cases overlap
when i = j. This is correct since Γα0 (Suffixi(π)) = Suffixi+1(π). �

3.2. A Proposition. The purpose of this section is to prove the following:

Proposition 3.6. Suppose ρ = 〈s, (α0, α1, . . .)〉 and σ = 〈s, (β0, β1, . . .)〉 are in-
finite paths in M starting at the same state s. Suppose also ρ  σ. Then there
exist finite paths τ0, τ1, . . . in M , and non-negative integers n0, n1, . . . such that the
following hold for all d ≥ 0:

(a) d ≤ nd ≤ nd+1,
(b) τd consists entirely of transparent transitions,
(c) first(τd) = stated(ρ) and last(τd) = statend(σ),
(d) Suffixd(ρ) τd ∗ Suffixnd(σ), and
(e) βk is transparent whenever nd ≤ k < nd+1 − 1.

The remainder of this section will be devoted to a proof of Proposition 3.6.
By Definition 3.3, there are non-negative integers i0, i1, . . . such that (i) ik = 0

for an infinite number of k, and (ii) for all k ≥ 0, Γβ0,...,βk−1
i0,...,ik−1

(ρ) is defined.
Fix d ≥ 0. We will define non-negative integers md,k (k ≥ 0) by induction on k,

as follows:

md,0 = d(4)

md,k+1 =

{
md,k if ik ≥ md,k

md,k − 1 otherwise.
(5)

Hence (md,0,md,1, . . .) is a non-increasing sequence of integers starting at d. At
each step, the sequence either decreases by one or remains unchanged. If it reaches
0, it remains at 0 from that point forward, since every ik ≥ 0. We claim that in
fact the sequence must reach 0: this follows easily from the fact that there are an
infinite number of k for which ik = 0. We let nd be the least k for which md,k = 0.

In Figure 1, we may interpret the md,k as follows: consider the path that begins
at the state in column d of row 0, and that progresses by following the unique edge
that moves down one row at each step. Then md,k is the column number of the
state that results after taking k steps in this path. For example, taking d = 2, we
see that m2,0 = m2,1 = 2, m2,2 = m2,3 = m2,4 = 1, and m2,5 = 0. In particular,
n2 = 5.

The following gathers together some facts about the md,k which will be used
later on:

Lemma 3.7. The following hold for all d, k ≥ 0:
(a) md,k − 1 ≤ md,k+1 ≤ md,k,
(b) md,nd = 0,
(c) md,nd−1 > 0,
(d) md,k+1 = md,k ⇔ ik ≥ md,k,
(e) md,k ≥ d− k,



TRANSPARENT PARTIAL ORDER REDUCTION 9

(f) |{l | 0 ≤ l < nd, il ≥ md,l}| = nd − d,
(g) md,k = md+1,k ⇒ md,k+1 = md+1,k+1, and
(h) md,k ≤ md+1,k ≤ md,k + 1.

Proof. Statements (a)–(d) are immediate from the definitions. To prove (e), fix d,
and use induction on k: for k = 0, the statement holds since md,0 = d, and the
inductive step follows from (a).

To see (f), let A = {0, 1, . . . , nd − 1} and B = {l ∈ A | il < md,l}. Let

m̄d,l = md,l −md,l+1 (l ∈ A).

By (a), md,l ∈ {0, 1} for all l ∈ A. Moreover, m̄d,l = 1 ⇔ l ∈ B, by (d). By (b),
md,nd = 0, and hence

d = md,0 =
∑
l∈A

m̄d,l = |{l ∈ A | m̄d,l = 1}| = |B|.

So |A \B| = |A| − |B| = nd − d, proving (f).
Statement (g) holds since, by (5), the value of md,k+1 depends only on md,k and

ik.
We now turn to the proof of (h). We first claim that for all d, k ≥ 0,

(6) md,k ≤ md+1,k.

To show this, we fix d, and use induction on k. For k = 0, (6) reduces to the
statement d ≤ d+ 1, which clearly holds. Suppose now that (6) holds and we wish
to show it still holds when k is replaced by k + 1. There are two cases to consider:
either (i) md,k < md+1,k, or (ii) md,k = md+1,k. In the first case, we have

md,k+1 ≤ md,k ≤ md+1,k − 1 ≤ md+1,k+1,

as required. In the second case, we have md,k+1 = md+1,k+1, by (g), which com-
pletes the inductive step.

We will now show that for d, k ≥ 0,

(7) md+1,k −md,k ≤ 1,

which, in light of (6), will complete the proof of (h). Again, we fix d ≥ 0 and use
induction on k. For k = 0, (7) reduces to the statement d+1−d ≤ 1, which clearly
holds. Suppose now that (7) holds, and we wish to show that it holds with k + 1
in place of k. Then md+1,k −md,k must equal either 0 or 1. In the first case, we
have md+1,k = md,k, and so by (g), md+1,k+1−md,k+1 = 0, and the inductive step
holds.

So assume that md+1,k−md,k = 1. There are again two cases to consider: either
(i) md,k+1 = md,k or (ii) md,k+1 = md,k − 1. If (i) is the case, we have

md+1,k+1 −md,k+1 ≤ md+1,k −md,k = 1,

and the inductive step holds. If (ii) is the case, we must have ik < md,k, by (d).
Hence by (6), ik < md,k ≤ md+1,k, and again by (d), md+1,k+1 = md+1,k − 1.
Hence

md+1,k+1 −md,k = md+1,k − 1−md,k + 1 = md+1,k −md,k ≤ 1,

completing the inductive step and the proof of Lem. 3.7. �
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We now return to the proof of Proposition 3.6. According to Lemma 3.7(a), if
md+1,k = 0 then md,k ≤ md+1,k = 0. Hence nd ≤ nd+1. Moreover, Lemma 3.7(e)
implies md,d−1 ≥ 1, which shows that nd ≥ d, establishing Proposition 3.6(a).

Suppose nd ≤ k < nd+1 − 1. Then md,k = 0 but md+1,k 6= 0, which implies
md+1,k = 1 by Lemma 3.7(h). We also have md+1,k+1 = 1, since k + 1 < nd+1.
Hence md+1,k+1 = md+1,k, which, by Lemma 3.7(d), implies ik ≥ md+1,k = 1. By
Definition 3.1, this means that βk is transparent, proving Proposition 3.6(e).

Fix d ≥ 0. For each k ≥ 0, we will define a sequence ξd,k of transitions and
a sequence µd,k of non-negative integers. For k = 0, these are both the empty
sequence. Assuming they have been defined for k, we let

ξd,k+1 =

{
ξd,k ∗ (βk) if ik ≥ md,k

ξd,k otherwise
(8)

µd,k+1 =

{
µd,k ∗ (ik −md,k) if ik ≥ md,k

µd,k otherwise.
(9)

By Lemma 3.7(f), we have

(10) |ξd,nd | = |µd,nd | = nd − d.

Now if k < nd, then md,k > 0, so if ik ≥ md,k then ik > 0 and therefore βk is
transparent. Hence ξd,nd consists solely of transparent transitions.

On the other hand, if k ≥ nd then md,k = 0 and so ik ≥ md,k. It follows that

ξd,k = ξd,nd ∗ (βnd , βnd+1, . . . , βk−1) (k ≥ nd)(11)

µd,k = µd,nd ∗ (ind , ind+1, . . . , ik−1) (k ≥ nd)(12)

For any k ≥ 0, let ζk = (β0, . . . , βk−1) and let νk = (i0, . . . , ik−1). Recall that,
by assumption, Γζkνk(ρ) is defined for all k.

Lemma 3.8. For all k ≥ 0,

(13) Γξd,kµd,k
(Suffixd(ρ)) = Suffixmd,k(Γζkνk(ρ)).

Proof. Implicit in (13) is the claim that the left-hand side is defined. We prove (13)
by induction on k. For k = 0, (13) reduces to the equation Suffixd(ρ) = Suffixd(ρ).
Now suppose that (13) holds and we wish to show that it holds when k is replaced
by k + 1. There are two cases to consider: (i) ik ≥ md,k and (ii) ik < md,k.

Suppose ik ≥ md,k, so md,k+1 = md,k. Since

(14) Γβkik (Γζkνk(ρ)) = Γζk+1
νk+1

(ρ)

is defined, Lemma 3.5 implies

(15) Suffixmd,k(Γβkik (Γζkνk(ρ))) = Γβkik−md,k(Suffixmd,k(Γζkνk(ρ))).

In particular, the right hand side of (15) is defined. Hence

Γξd,k+1
µd,k+1

(Suffixd(ρ)) = Γβkik−md,k(Γξd,kµd,k
(Suffixd(ρ)))(16)

= Γβkik−md,k(Suffixmd,k(Γζkνk(ρ)))(17)
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is defined. Moreover, combining (14)–(17), we have

Γξd,k+1
µd,k+1

(Suffixd(ρ)) = Suffixmd,k(Γβkik (Γζkνk(ρ)))

= Suffixmd,k(Γζk+1
νk+1

(ρ))

= Suffixmd,k+1(Γζk+1
νk+1

(ρ)),

completing the inductive step for this case.
Suppose instead that ik < md,k. Then ik ≤ md,k+1 = md,k − 1. Hence ξd,k+1 =

ξd,k and µd,k+1 = µd,k. Moreover, Lemma 3.5 implies

(18) Suffixmd,k−1(Γβkik (Γζkνk(ρ))) = Suffixmd,k(Γζkνk(ρ)).

Whence

Γξd,k+1
µd,k+1

(Suffixd(ρ)) = Γξd,kµd,k
(Suffixd(ρ))

= Suffixmd,k(Γζkνk(ρ))

= Suffixmd,k−1(Γβkik (Γζkνk(ρ)))

= Suffixmd,k+1(Γζk+1
νk+1

(ρ)),

completing the inductive step for this case as well. �

We let

(19) τd = 〈stated(ρ), ξd,nd〉 (d ≥ 0).

From Lemmas 3.2 and 3.8, we conclude that τd is a path, and, since md,nd = 0,

last(τd) = first(Γ
ξd,nd
µd,nd

(Suffixd(ρ)))

= first(Suffix0(Γ
ζnd
νnd

(ρ)))

= first(Γ
ζnd
νnd

(ρ))

= last(〈s, (β0, . . . , βnd−1)〉)
= statend(σ).

This proves Proposition 3.6(c), and also shows that τd ∗ Suffixnd(σ) is a path.
We have already seen τd consists solely of transparent transpositions, proving
Prop. 3.6(b).

Write τd ∗ Suffixnd(σ) = 〈stated(ρ), (γ0, γ1, . . .)〉. By (11),

(20) (γ0, . . . , γk−1) = ξd,k+d (k ≥ nd − d).

Write µd,nd = (i′0, i
′
1, . . . , i

′
nd−d−1), and define i′k = ik+d (k ≥ nd − d). It follows

from (12) that

(21) (i′0, . . . , i
′
k−1) = µd,k+d (k ≥ nd − d).

Since ik = 0 for an infinite number of k, i′k = 0 for an infinite number of k.
Moreover, for all k ≥ 0,

Γγ0,...,γk−1

i′0,...,i
′
k−1

(Suffixd(ρ)) = Γξd,k+dµd,k+d
(Suffixd(ρ))

is defined, by Lem. 3.8. Hence Suffixd(ρ)  τd ∗ Suffixnd(σ), proving Proposi-
tion 3.6(d). This completes the proof of Proposition 3.6.
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3.3. Formula Preservation. In this section, we prove the following:

Proposition 3.9. If ρ σ and ρ 6|= φ then σ 6|= φ.

We will first show that it suffices to prove Proposition 3.9 for path formulas in
which the only operators are U, ¬, and ∧. For suppose we have done this, and that
we are given a formula φ which involves those three operators and possibly ∨ as
well. We then transform φ into a formula ψ involving only the first three operations
by replacing every occurrence of θ ∨ χ with ¬((¬θ) ∧ (¬χ)). Now a transition α is
ε-transparent to θ∨χ iff α is ε-transparent to ¬((¬θ)∧ (¬χ)): this is because in the
syntax tree of the latter, the θ and χ lie under an even number (2) of negations.
It follows that α is ε-transparent to φ iff α is ε-transparent to ψ. Hence a choice
of ample sets satisfies C2φ iff that choice satisfies C2ψ. So if we are given a choice
of ample sets satisfying all four conditions for φ it will also satisfy those conditions
for ψ, since the other three conditions do not depend on the formula. Moreover,
we have M |= Aφ⇔M |= Aψ, and M [ |= Aφ⇔M [ |= Aψ, since for any infinite
path π in M , π |= φ ⇔ π |= ψ. By assumption, Proposition 3.9 holds for ψ, i.e.,
M |= Aψ ⇔ M [ |= Aψ. Hence M |= Aφ ⇔ M [ |= Aφ, as required. This shows
that Proposition 3.9 may be extended to formulas using ∨, and the same argument
shows that it can be extended, one operation at a time, to deal with the remaining
operators, by using the identities θ → χ ≡ (¬θ) ∨ χ, Fθ ≡ trueUθ, Gθ ≡ ¬F¬θ,
θRχ ≡ ¬((¬θ)U(¬χ)), and θWχ ≡ (Gθ) ∨ (θUχ).

So we now assume that the only operators occurring in φ are U, ¬, and ∧. The
proof will work by induction over the syntax tree for φ, beginning at the leaf nodes
and working up the tree to the root. For each node u in the tree, we define two
statements pu and qu. The definitions depend on the value of εu.

If εu = 1, then we let pu denote the statement

(22) for all infinite paths ρ, σ in M for which ρ σ, ρ |= φu ⇒ σ |= φu

and qu denote the statement

(23) for all infinite paths π = 〈s, (α0, α1, . . .)〉 in M for which α0 is
εu-transparent to φu, π |= φu ⇒ Suffix1(π) |= φu.

If εu = 0 then pu and qu are obtained by replacing each occurrence of |= in (22)
and (23) with 6|=.

We will show by induction that pu ∧ qu holds for all nodes u. This will complete
the proof of Proposition 3.9, since if u is the root node then pu is just a restatement
of Proposition 3.9. But first, we will need the following:

Lemma 3.10. Suppose that u is a node in the syntax tree of φ, pu∧qu holds, ρ and
σ are infinite paths in M for which ρ σ, d ≥ 0, and nd is as in Proposition 3.6.
Then, if εu = 1, the following both hold:

(a) If Suffixd(ρ) |= φu then Suffixnd(σ) |= φu.
(b) If Suffixi(ρ) |= φu for all i such that 0 ≤ i < d, then Suffixk(σ) |= φu for all

k such that 0 ≤ k < nd.
If εu = 0, then the same statements hold after replacing each occurrence of |= with
6|=.

Proof. Let n0, n1, . . ., and τ0, τ1, . . ., be as in Proposition 3.6. We assume εu = 1,
the case εu = 0 being entirely similar.
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We first prove (a). By Proposition 3.6(d), Suffixd(ρ)  τd ∗ Suffixnd(σ). By pu,
this means that τd ∗Suffixnd(σ) |= φu. By Proposition 3.6(b), τd consists entirely of
transitions that are 0-transparent to φ, i.e., transitions that are εu-transparent to
φu. By repeated application of qu, we conclude that Suffixnd(σ) |= φu, as required.

We now turn to (b). By (a), Suffixni(σ) |= φu for 0 ≤ i < d. Now suppose
0 ≤ k < nd. By Proposition 3.6(a), 0 = n0 ≤ n1 ≤ . . ., and so k = ni + j for some
0 ≤ i < d and 0 ≤ j < ni+1. Write σ = 〈s, (β0, β1, . . .)〉. By Proposition 3.6(e),
βni , βni+1, . . . , βni+j−1 are all 0-transparent to φ, i.e. εu-transparent to φu, and so
repeated applications of qu imply that Suffixk(σ) |= φu. �

We now return to the proof of Proposition 3.9. Suppose that u is a leaf node, so
p = φu ∈ AP . Then for any infinite path ρ in M , ρ |= φu ⇔ p ∈ L(first(ρ)). Since
ρ  σ ⇒ first(ρ) = first(σ), pu holds. Statement qu follows from Definition 2.1
since Suffix1(π) |= φu ⇔ p ∈ L(α0(s)).

Now suppose u is any node and pv ∧ qv holds for all children v of u.
Suppose first that u has two children, v and w, and that φu = φv ∧ φw. Then

εv = εw = εu. So pu ∧ qu holds since, for any infinite path ρ, ρ |= φu iff ρ |= φv and
ρ |= φw.

Suppose instead that u has a single child v, and that φu = ¬φv. Then εv = 1−εu.
Now pu ∧ qu holds since, for any infinite path ρ, ρ |= φu iff ρ 6|= φv.

Suppose now that u has two children, v and w, and that φu = φvUφw. We will
first consider the case εu = 1. In this case, εv = εw = 1.

Let us first prove pu. So assume ρ, σ are infinite paths starting at a state s, and
ρ  σ. Suppose ρ |= φu. We must show that σ |= φu. Since ρ |= φvUφw, there
exists d ≥ 0 such that Suffixd(ρ) |= φw and, for all 0 ≤ i < d, Suffixi(ρ) |= φv.
By Lemma 3.10(a), Suffixnd(σ) |= φw, while by Lemma 3.10(b), Suffixk(σ) |= φv
whenever 0 ≤ k < nd. This shows that σ |= φvUφw, as required.

Let us now prove qu. So suppose π = 〈s, (α0, α1, . . .)〉 is an infinite path in
M for which α0 is 1-transparent to φu, and that π |= φu. We must show that
Suffix1(π) |= φu. Since φu = φvUφw, there exists d ≥ 0 such that Suffixd(π) |= φw
and Suffixi(π) |= φv for 0 ≤ i < d. If d > 0, then we have

Suffixd−1(Suffix1(π)) = Suffixd(π) |= φw

Suffixj(Suffix1(π)) = Suffixj+1(π) |= φv (0 ≤ j < d− 1)

and hence Suffix1(π) |= φu, as required. On the other hand, if d = 0, then π |= φw,
and applying the inductive hypothesis qw we conclude that Suffix1(π) |= φw, which
implies Suffix1(π) |= φu. This completes the proof that pu ∧ qu holds if εu = 1.

Consider now the case εu = 0. In this case, εv = εw = 0. We first prove
pu. So suppose that ρ 6|= φvUφw. There are two possibilities: (i) for all d ≥ 0,
Suffixd(ρ) 6|= φw, or (ii) for some d ≥ 0, Suffixd(ρ) 6|= φv and Suffixi(ρ) 6|= φw for
0 ≤ i ≤ d.

If (i) is the case, then by Lemma 3.10(b), for all d ≥ 0 and k < nd, Suffixk(σ) 6|=
φw. However, by Proposition 3.6(a), limd→∞ nd = ∞, hence Suffixk(σ) 6|= φw for
all k ≥ 0, which means that σ 6|= φvUφw, as required.

If (ii) is the case, then it follows from Lemma 3.10(a) that Suffixnd(σ) 6|= φv,
while Lemma 3.10(b) implies that Suffixk(σ) 6|= φw for 0 ≤ k < nd. Again, this
means that σ 6|= φvUφw, establishing pu.

We now turn to the proof of qu in the case that εu = 0. So suppose π =
〈s, (α0, α1, . . .)〉 is an infinite path in M for which α0 is 0-transparent to φu, and
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that π 6|= φu. We must show that Suffix1(π) 6|= φu. Again, there are two cases to
consider: (i) for all d ≥ 0, Suffixd(π) 6|= φw, or (ii) for some d ≥ 0, Suffixd(π) 6|= φv
and Suffixi(π) 6|= φw for 0 ≤ i ≤ d.

If (i) is the case, then we certainly have

Suffixd(Suffix1(π)) = Suffixd+1(π) 6|= φw (d ≥ 0),

which implies Suffix1(π) 6|= φu, as required.
So suppose (ii) is the case. If d > 0, then

Suffixd−1(Suffix1(π)) = Suffixd(π) 6|= φv

Suffixj(Suffix1(π)) = Suffixj+1(π) 6|= φw (0 ≤ j ≤ d− 1),

whence again Suffix1(π) 6|= φu, as required. So suppose d = 0. Then π 6|= φv and
π 6|= φw. By the inductive hypotheses qv and qw, this means that Suffix1(π) 6|= φv
and Suffix1(π) 6|= φw. Hence Suffix1(π) 6|= φvUφw = φu. This establishes qu for the
case εu = 0, and completes the proof of Proposition 3.9

3.4. Conclusion. We can now complete the proof of Theorem 2.4. One direction
is clear: since any path in M [ is a path in M , we have M |= Aφ ⇒ M [ |= Aφ.
So we must show that M 6|= Aφ ⇒ M [ 6|= Aφ. So suppose M 6|= Aφ, i.e., there
is some infinite path ρ in M , whose start state s is in S0, such that ρ 6|= φ. By
Lemma 3.4, there exists an infinite path σ in M [ starting at s such that ρ σ. By
Proposition 3.9, σ 6|= φ. Hence M [ 6|= Aφ, as required.

4. Experiments

4.1. Methodology. The applications we consider concern parallel programs that
use the Message Passing Interface (MPI) [6]. We will use the formal definition of
a model of an MPI program described in [12, 13]. A model essentially consists of
an automaton for each process and a set of channels, each with a fixed sending
and receiving process. The transitions may be labeled by local, send, or receive
events. Each state in an automaton is either a terminal state (a state with no
outgoing transitions), a local-event state (all transitions departing from that state
are local), a sending state (there is only one departing transition and it is labeled by
a send event), a receiving state (all the departing transitions are labeled by receive
events), or a send-receive state—a state from which first a send can happen and
then a receive, or first a receive then the send. An independence relation I may be
defined so that (t, t′) ∈ I iff t and t′ are from distinct processes or they are from
the same process and one is a send and the other a receive.

The construction of the reduced structure is fairly standard and so we only
summarize it here. The construction proceeds by depth-first search. Given the
current state, the following sets are considered candidates for the ample set: (1)
all enabled transitions in a single process, if that process is at a local event state;
(2) all enabled send transitions in a single process, if that process is at a sending
or send-receive state; (3) all enabled receive transitions in a single process, if that
process is at a receiving or send-receive state for which every receiving channel has
at least one queued message. A candidate set is rejected if (a) it is empty, (b) it
contains a transition that is not transparent, or (c) it contains a transition that
leads to a state already on the search stack. If no candidate set survives rejection,
the set of all enabled transitions is used for the ample set, otherwise one candidate
set is chosen using some heuristic.
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This strategy ensures that if a proper ample set T consists of transitions from a
single process P , then any transition dependent on a transition in T is also in P ;
furthermore none of these dependent transitions are enabled and no action from
another process can enable them. This suffices to show that C1 is satisfied. It is
not hard to see the other ample set conditions are satisfied as well.

Our heuristic proceeds by first looping through the processes in order of increas-
ing process ID, searching for a proper ample set that consists entirely of invisible
local event or receive transitions. If none is found, it then attempts to find a set
consisting of invisible send transitions. If this fails, it then repeats these attempts
but allowing transparent transitions (that are not necessarily invisible). If this also
fails then the set of all enabled transitions is used. The choice of this heuristic is
based on experience which suggests that invisible ample sets give the best reduc-
tion (when they exist), and those consisting of receives or local events generally do
better than those consisting of sends. It also guarantees that the resulting structure
is a subgraph of the structure that would result from the invisible ample search; in
fact, the heuristic can always be designed to have this property since any invisible
transition is also transparent.

The experiments were conducted using a modified version of the Java program
described in [11]. The program takes as input a model of an MPI program and
performs either a full or a reduced search. For a reduced search, the program
also takes as input a predicate specifying which transitions are to be considered
invisible/transparent in the POR algorithm described above. The predicates spec-
ifying transparency and invisibility were constructed by hand for each experiment,
though this process was sufficiently straightforward that it appears it would not
be difficult to automate. In each experiment, we used this approach to search (1)
the full Kripke structure, (2) the reduced structure using invisible POR, and (3)
the reduced structure using transparent POR. In each case, the number of states
was recorded. The program and all experimental data can be downloaded from
http://www.cis.udel.edu/~siegel/projects.

4.2. 3 Models and 8 Experiments. Our first model (Fig. 2, left) is derived
from the “multiple producer, single consumer” (MPSC) program of [14, Ex. 2.18].
In this program, n producers send messages to a single consumer, which consumes
from the producers in a cyclic fashion. As is the case with the other models, the
data is abstracted away altogether. The property to check is that producer 0 never
becomes permanently blocked, which can be expressed in LTL as AGF¬full(c0),
where c0 is the channel used by producer 0 to send to the consumer. Note that
all transitions other than c0! and c0? are invisible, while all transitions other than
c0? are transparent. In experiment (a) the number of producers is fixed at 3 and
the channel size is scaled. In experiment (b), the channel size is fixed at 4 and the
number of producers is scaled.

The second model (Fig. 2, middle) derives from the “coordinator barrier” system
described in [1]. This system consists of n worker processes and one coordinator
process used to enforce a repeatable barrier among the workers. Each worker loops
forever and in each iteration performs some local computation and then enters and
exits the barrier. Entering the barrier is modeled by sending a message on ci and
exiting by receiving a message on di. Three experiments were performed on this
system, each using a different property. The property for experiment (c) states
that if worker 0 enters the barrier then eventually all workers will be inside the
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Figure 2. Models

barrier and worker 0 will remain in the barrier until that time; this is expressed as
AG(enter0 → in0U

∧
i ini), where enteri ≡ ¬empty(ci) and ini holds when worker i

is not at its start state. The property for (d) is that worker 0 will be outside of the
barrier infinitely often and is expressed AGF¬in0. The property for (e) is that all
processes will be (simultaneously) inside the barrier infinitely often: AGF

∧
i ini.

The third model (Fig. 2, right) derives from the “dissemination barrier” system
described in [1]. Instead of using a coordinator, the n processes use a symmetric
protocol to impose the barrier among themselves. The protocol proceeds in stages
0, 1, . . . , dlog2(n)e − 1 ≡ m. In stage j, for each i (0 ≤ i < n), process i sends
a message to process i + 2j and receives a message from process i − 2j using a
send-receive call. (Process IDs are reduced modulo n.) The same three properties
used for the coordinator barrier were used here, though the atomic propositions are
defined slightly differently: enteri holds when process i is at the state s1 which is
the target of the transition labeled by local event λ; ini holds when process i is at
neither the start state nor at s1. This yielded experiments (f), (g), and (h).

The results of experiments (a), (c), (f), and (h) are shown in Fig. 3. The graph
for (b) is similar in complexity to that of (a); (d) is similar to (h); (e) is similar to
(f); and (g) is similar to (c).

In all cases, the number of states explored by the full search increased expo-
nentially with the number of processes (and with the channel size in the case of
MPSC). The effect of the two reduction strategies is more varied. In (a), both the
invisible and the transparent searches reduced the complexity to a linear function,
and the slope for the transparent function is significantly lower than that of the
invisible one. In (c), all functions grow exponentially, but the invisible search ap-
pears to have an exponent equal to that of the full search, while the transparent
one has a significantly smaller exponent. In the case of (f), the transparent and in-
visible algorithms search identical spaces, which are significant improvements over
the full search. For (h), a moderate improvement is obtained in moving from full
to invisible, and again from invisible to transparent.
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Figure 3. Number of states explored (y-axis) by three search strategies

5. Related Work

The reader is referred to [3], [9], [2, Chap. 10], and the references cited in those
works for a guide to the large literature on partial order reduction. Two of the
pioneering works on LTL−X -preserving POR methods are [15] and [7], both of
which require the invisibility condition.

A well-known automata-theoretic model checking algorithm involves the search
for reachable acceptance cycles in the product of an automaton representing the
Kripke structure and a Büchi automaton corresponding to ¬φ. This search can
take place on the fly, i.e., without first constructing the Kripke structure. An al-
gorithm combining the on-the-fly approach with the (invisibility-based) ample-set
POR algorithm is presented in [8] and is similar to the algorithm implemented in
Spin [4]. A relaxation of the invisibility condition in this context is investigated
in [10]. The idea is to dynamically reduce the set of invisible transitions as the
on-the-fly search progresses. The algorithm requires a specific construction for the
Büchi automaton which annotates states with subformulas of ¬φ; the set of invis-
ible transitions is a function of the propositions appearing in certain subformulas
annotating the current state of the Büchi automaton.

A POR-like algorithm for verifying properties such as freedom from potential
deadlock in models of MPI programs is studied in [11]. Freedom from potential
deadlock can be expressed as AG¬phalt, where phalt holds in any state for which the
only enabled transitions are sends which cannot be immediately followed by their
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matching receives. The key ingredients in that algorithm are (1) the introduction
of synchronous transitions and (2) the observation that receives, synchronous, and
local event transitions cannot change the truth value of phalt from true to false.
In the language of this paper, those transitions are transparent to G¬phalt. In
fact, the main theorem of this paper evolved out of an attempt to generalize the
observations of [11].

Other relaxed-visibility techniques are described in [5]. Those techniques apply
to two specific CTL formulas (EF p and AG EF p) and are investigated in the
context of Petri nets. They involve certain sets of transitions called up sets and
down sets. Though the definitions are somewhat complex, the core idea is the
distinction between transitions that can only change the truth value of p from true
to false and those that can only change that value from false to true, an idea that
is also central in this paper.

6. Conclusion

We have described a simple modification to the ample set POR framework. The
modification is a relaxation of the invisibility condition that distinguishes between
propositions that occur only positively in the formula being checked, and those
that occur only negatively. The modified framework may open up opportunities for
reduction that do not exist in the standard framework. Furthermore, any heuristic
for choosing ample sets in the traditional framework can be extended so that the
modified algorithm does no worse (in terms of numbers of states or transitions
explored) than the standard algorithm.

To take advantage of the modified framework, one must be able to identify
program statements that preserve the truth (or falsity) of propositions occurring
in the formula. While sophisticated automated reasoning approaches might be
brought to bear on this problem, there are plenty of commonly-occurring scenarios
that can be easily (and probably automatically) detected. For example, if c is a
FIFO channel, then a send operation on c preserves the truth of full(c) and the
falsity of empty(c); a receive on c preserves the truth of empty(c) and the falsity
of full(c). If x is a numeric variable then the assignment x ← x − 1 preserves the
truth of x ≤ N and x← x+ 1 preserves the truth of x ≥ N . If p is a predicate that
holds iff the flow of control of a process is at a particular point then any statement
that results in transferring control to that point preserves the truth of p, and any
statement that results in transferring control to any other point preserves the falsity
of p.

We have applied the improved algorithm in the context of the verification of
some simple MPI programs. Our experiments show various degrees of (and in some
cases, dramatic) improvement over the standard algorithm. Yet, while the models
do share some features with typical MPI programs (e.g., most or all processes
are similar or identical), they are relatively simple, and a broader study using more
complex examples is needed in order to ascertain the effectiveness of the transparent
framework.

Beyond this, the most important work remaining involves combining the opti-
mization described here with other techniques, such as the on-the-fly algorithm or
the dynamic invisibility technique of [10]. It is easy enough to see how to combine
them—one can simply replace invisible with transparent in the descriptions of these
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algorithms—but the correctness proofs are not at all obvious and remain for future
work.
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