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ABSTRACT
We present a method to verify the correctness of parallel
programs that perform complex numerical computations,
including computations involving floating-point arithmetic.
The method requires that a sequential version of the pro-
gram be provided, to serve as the specification for the par-
allel one. The key idea is to use model checking, together
with symbolic execution, to establish the equivalence of the
two programs.

1. INTRODUCTION
In domains that require extensive computation, such as

high-performance scientific computing, a program may be
divided up among several processors working in parallel in
order to reduce the overall execution time. The process of
“parallelizing” a sequential program is notoriously difficult
and error-prone. Attempts to automate this process have
met with only limited success, and thus most parallel code
is still written by hand. The developers of such programs
expend an enormous amount of effort in testing, debugging,
and a variety of ad hoc methods to convince themselves that
their code is correct. Hence any techniques that can help
establish the correctness of these programs or find bugs in
them would be very useful.

In this paper we focus on parallel numerical programs,
i.e., parallel programs that take as input a vector of (usu-
ally floating-point) numbers and produce as output another
such vector. Examples include programs that implement
matrix algorithms, simulate physical phenomena, or model
the evolution of a system of differential equations. We are
interested in techniques that can establish the correctness of
a program of this type—i.e., prove that the program always
produces the correct output for any input—or that exhibit
appropriate counterexamples if the program is not correct.

The usual method for accomplishing this—testing—has
two significant drawbacks. In the first place, it is usually in-
feasible to test more than a tiny fraction of the inputs that
a parallel numerical program will encounter in use. Thus,
testing can reveal bugs, but, as is well-known, it cannot
show that the program behaves correctly on the inputs that
are not tested. Secondly, the behavior of concurrent pro-
grams, including most parallel numerical programs, typi-
cally depends on the order in which events occur in different
processes. This order depends in turn on the load on the
processors, the latency of the communication network, and
other such factors. A parallel numerical program may thus

behave differently on different executions with the same in-
put vector, so getting the correct result on a test execution
does not even guarantee that the program will behave cor-
rectly on another execution with the same input.

The method proposed here, which combines model check-
ing with symbolic execution in a novel way, does not exhibit
these two limitations: it can be used to show that a parallel
numerical program produces the right result on any input
vector, regardless of the particular way in which the events
from the concurrent processes are interleaved.

In attempting to apply model checking techniques in this
setting, two issues immediately present themselves. The first
arises from the fact that these techniques require that one
first build a finite-state model of the program being checked.
But numerical programs typically deal with huge amounts
of floating-point data, and the very nature of our problem
dictates that we cannot just abstract this data away. Hence
it is not obvious how to construct appropriate finite-state
models of the programs. The second issue concerns the na-
ture of the property we wish to check: the statement that the
output produced by the program is correct must be made
precise, and formulated in some way that is amenable to
model checking tools.

We deal with the first issue by modeling computations
in the programs symbolically. That is, in our model, the
input is considered to be a vector of symbolic constants xi,
and the output is some vector of symbolic expressions in the
xi. The numerical operations in the program are replaced by
appropriate symbolic operations in the model. Furthermore,
each symbolic expression is represented by a single integer,
which prevents the blowup of the size of the state vector and
which makes it possible to easily express the model in the
language of standard model checking tools, such as Spin [9].

We deal with the second issue by requiring that the user
provide a sequential version of the program to be verified,
which will serve as a specification for the parallel one. The
model checker will be used to show that the parallel and se-
quential programs are equivalent, i.e., that they produce the
same output on any given input. Of course, this means that
our method only reduces the problem of producing a correct
parallel program to the problem of producing a correct se-
quential one. However, most problems in this domain have
a much simpler sequential solution than parallel one, and
it is already common for developers of scientific software
to produce sequential versions of their parallel programs,
for testing and other purposes. Moreover, we will see be-
low that our method provides additional information that
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can help verify the correctness of the sequential program as
well.

Another issue that arises in this approach is the fact that
most numerical programs contain branches on conditions
that involve the input. Such programs may be thought of
as producing a set of cases, each case consisting of a pred-
icate on the input and the corresponding symbolic output
vector. Our method deals with this as follows. We use the
model checker to explore all possible paths of the sequential
program, and for each such path we record the path con-
dition pc, the Boolean-valued symbolic expression on the
input that must hold in order for that path to have been
followed. The model of the parallel program is engineered
to take as input not only the symbolic input vector, but the
path condition pc as well. The model checker is then used
to explore all possible paths of the parallel program that are
consistent with pc. If, for every pc, the result produced by
the parallel program always agrees with the result produced
by the sequential one, the two programs must be equivalent.

The method is described in detail in Section 2. Using
Spin, we have applied the method to four parallel numerical
programs; we describe this experience and present some data
that arose from it in Section 3. Section 4 discusses related
work and Section 5 presents some conclusions and directions
for future work.

2. METHODOLOGY
We consider a parallel numerical program Ppar that con-

sists of a fixed number of parallel processes. We write n
for the number of parallel processes. We assume that these
processes have no shared memory and communicate only
through message-passing functions such as those provided
by the Message Passing Interface (MPI) [15, 16]. (Though
much of what follows will apply equally to other communi-
cation systems, or even to shared memory systems, MPI has
become the de facto standard for high performance compu-
tation, particularly in the domain of scientific computation.)
We assume we are given a sequential program Pseq, which
serves as the specification for Ppar. We also assume that
both Pseq and Ppar terminate normally on every input, a
property that can often be verified using more traditional
model checking techniques [21, 22]. In some cases, we may
also have to impose a small upper bound on the number of
iterations of certain loops in a program, to ensure that the
model we build will not have an inordinately large (or even
infinite) number of states.

Notice that the requirement that Ppar and Pseq be equiv-
alent implies, in particular, that each program be determin-
istic, i.e., that if given the same input twice, it will produce
the same output. If either program fails to be deterministic,
this will be caught and flagged as an error by our method.

To simplify the presentation, we begin by explaining the
method under the assumption that neither program contains
branches on expressions involving variables that are modeled
symbolically. After this we consider some numerical issues
that arise from the fact that floating-point arithmetic is only
an approximation to the arithmetic of the real numbers, and
finally we describe the general approach, in which branches
on symbolically modeled expressions are allowed.

2.1 A simple example
To illustrate the method, we consider the example of Fig-

ure 1(a). This sequential C code takes the product of an

N × L matrix A and an L × M matrix B and stores the
result in the N ×M matrix C. We can consider this to be
a numerical program for which the input vector consists of
the NL + LM entries for A and B, and the output vector
consists of the NM entries of C at termination. There are
many ways to parallelize Pseq, but we will consider the one
shown in Figure 1(b), which is adapted from [7] and uses
MPI functions for interprocess communication. Each pro-
cess should be thought of as executing its own copy of this
code, in its own local memory. A process may also obtain its
rank (a unique integer between 0 and n− 1) from the MPI
infrastructure. For this code, which uses a master-slave ap-
proach to achieve automatic load-balancing, we assume that
N ≥ n− 1 ≥ 1, and that all three matrices are stored in the
local memory of the process of rank 0 (the master). To com-
pute the product, the master will distribute the work among
the processes of positive rank (the slaves).

We assume that each slave process already has a copy of
B in its local memory. The master begins by sending the
first row of A to the first slave, the second row of A to the
second slave, and so on, until the first n− 1 rows of A have
been handed out. A slave, after receiving a row vector of
length L from the master, multiplies it by B, and sends
back the resulting row vector of length M to the master.
The master waits at a receive statement that will accept a
message from any process (we will refer to a statement of
this kind as a wildcard receive). After one or more messages
have arrived, the master chooses one for reception, copies
the row vector received into the appropriate row in C, sends
the next row of A to the slave that had just returned the
result, and returns to the wildcard receive. It continues in
this way until all the rows of A have been handed out. After
that point, whenever a slave sends in a result, the master
sends back a termination message to that slave. After all
results have come in, and the last termination message has
been sent out, C should contain the product of A and B,
and all processes should terminate normally.

The first step of our method is to create a finite-state
model Mseq of Pseq in Promela, the input language for Spin.
The model will use symbolic expressions in place of the
floating-point values that arise in Pseq. (Integer values can
also be modeled symbolically, though this is often not neces-
sary.) A symbolic expression may be thought of as a tree-like
structure in which the leaf nodes are either floating-point
literals or symbolic constants. The symbolic constants are
denoted x0, x1, . . . and correspond to the components of the
input vector. To each non-leaf node in the tree is associated
a (unary or binary) operator, e.g., +,−,∗,/, or any other
arithmetic operator that occurs in the program.

Each numerical operation in the program involving a sym-
bolically modeled variable is replaced by an operation on
symbolic expressions in the model. The symbolic operation
simply forms a new tree from a given operator and one or
two operands. We will use the usual infix notation to de-
note symbolic expressions, but we must keep in mind that
no interpretation is given to the operations, and none of the
usual rules of real arithmetic (associativity, commutativity,
etc.) hold. For example, for the matrix multiplication pro-
gram with N = L = M = 2, if the initial symbolic values
for A and B are given by

A =

(
x0 x1

x2 x3

)
, B =

(
x4 x5

x6 x7

)
,
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double A[N][L], B[L][M], C[N][M];

...

int i,j,k;

for (i=0; i<N; i++)

for (j=0; j<M; j++) {

C[i][j] = 0.0;

for (k=0; k<L; k++)

C[i][j] += A[i][k]*B[k][j];

}

(a) Sequential code

int rank,nprocs,i,j,numsent,sender,row,anstype;

double buffer[L], ans[M];

MPI_Status status;

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank==0) { /* I am the master */

numsent=0;

for (i=0; i<nprocs-1; i++) {

for (j=0; j<L; j++)

buffer[j] = A[i][j];

MPI_Send(buffer, L, MPI_DOUBLE, i+1,

i+1, MPI_COMM_WORLD);

numsent++;

}

for (i=0; i<N; i++) {

MPI_Recv(ans, M, MPI_DOUBLE, MPI_ANY_SOURCE,

MPI_ANY_TAG, MPI_COMM_WORLD, &status);

sender = status.MPI_SOURCE;

anstype = status.MPI_TAG-1;

for (j=0; j<M; j++)

C[anstype][j] = ans[j];

if (numsent<N) {

for (j=0; j<L; j++)

buffer[j] = A[numsent][j];

MPI_Send(buffer, L, MPI_DOUBLE, sender,

numsent+1, MPI_COMM_WORLD);

numsent++;

}

else MPI_Send(buffer, 1, MPI_DOUBLE, sender,

0, MPI_COMM_WORLD);

}

} else { /* I am a slave */

while (1) {

MPI_Recv(buffer, L, MPI_DOUBLE, 0,

MPI_ANY_TAG, MPI_COMM_WORLD, &status);

if (status.MPI_TAG==0) break;

row = status.MPI_TAG-1;

for (i=0; i<M; i++) {

ans[i] = 0.0;

for (j=0; j<L; j++)

ans[i] += buffer[j]*B[j][i];

}

MPI_Send(ans, M, MPI_DOUBLE, 0,

row+1, MPI_COMM_WORLD);

}

}
(b) Parallel code

Figure 1: Matrix multiplication code excerpts

then the final value of C[0][0] will be the symbolic expres-
sion (0.0 + x0x4) + x1x6, which does not equal the symbolic
expression x0x4 + x1x6. The symbolic structure can be rep-
resented in a language such as Promela using standard data
structures such as integer arrays, but we will see shortly that
this is not really necessary.

The next step of our method is to create a finite-state
model Mpar of Ppar. To do this we use Spin processes to
represent the processes of the parallel program and Spin
channels to transfer messages between processes, using tech-
niques such as those of [22] and [23]. The arithmetic opera-
tions are represented symbolically, just as in the sequential
case. Finally, a composite model is formed, in which first
Mseq is executed in its own Spin process, then Mpar is exe-
cuted using n additional Spin processes, and finally a series
of assertions are checked to verify that the final symbolic
entries of the copy of C generated by Mseq agree with those
generated by Mpar. Spin is then used to explore all pos-
sible paths of the composite model and to verify that the
assertions are never violated. In the matrix multiplication
example, there are many such paths, due to all the different
possible orders in which the slaves can return their results
to the master.

Now, the method described above may work for small
models, but it has a serious drawback. For a typical pro-
gram, the size of the symbolic expressions—and therefore
the size of the structure used to represent the state of the
model—can quickly blow up. Like most model checking
tools, Spin stores the set of states it has encountered as
it searches the state space of the model, and the amount of
memory required to represent this set is usually the main
barrier to a successful completion of the search. Since the
memory required to represent the set is approximately the
product of the number of states and the size of the struc-
ture used to represent a single state, the method we have
proposed has little chance of scaling.

To ameliorate this problem, we use a form of value num-
bering to reduce the memory needed to represent a symbolic
expression and use subexpression sharing to reduce the total
number of expressions and facilitate expression comparison.
Using this approach, the floating-point values in the original
programs are represented by integer indices that refer to en-
tries in a static symbolic expression table. (By static, we do
not mean that the table never changes, but that it is shared
by every state in the state space, just as a static variable in
a Java class is shared by all instances of that class.) The
table contains one entry for every expression (including ev-
ery subexpression of every expression) that is encountered
during the search of the state space of the composite model.
An entry for a binary expression is a triple in which the
first component is an operator code, the second component
is an integer referring to an (earlier) entry in the table cor-
responding to the left operand, and the third component
is an integer corresponding similarly to the right operand.
The entry for a unary expression is similar but has only two
components. An entry for a leaf expression has either the
form (X, i), corresponding to the symbolic constant xi, or
(L, α), where α is a floating-point number, corresponding to
a literal value.

The table is initialized by entering the literal values 0 and
1, as these are needed by many models and by many of the
routines in our symbolic manipulation package. Next, the
symbolic constants for the input vector are entered into the
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i ei interpretation
0 (L, 0.0) 0.0
1 (L, 1.0) 1.0
2 (X, 0) x0

3 (X, 1) x1

...
...

...
9 (X, 7) x7

10 (*, 2, 6) x0x4

11 (+, 0, 10) 0.0 + x0x4

12 (*, 3, 8) x1x6

13 (+, 11, 12) (0.0 + x0x4) + x1x6

14 (*, 2, 7) x0x5

...
...

...
25 (+, 23, 24) (0.0 + x2x5) + x3x7

Figure 2: Symbolic expression table for 2× 2 matrix
multiplication

table. Other entries to the table are made as needed as sym-
bolic operations are performed during the search of the state
space. The arithmetic operations are modeled by operations
on integers that refer to entries in the table. The operation
that performs addition, for example, takes two integers i
and j, and first looks in the table to see if the triple (+, i, j)
has already been entered. If it has, the addition operation
returns the index of that triple. If it has not, it appends
that triple to the end of the table and returns the new in-
dex. This guarantees that every expression has a unique
entry in the table, and so the expressions corresponding to
two integers i and j are equal if and only if i = j.

The table that is constructed during the verification of
the 2× 2 matrix multiplication example is excerpted in Fig-
ure 2. At the end of execution of Mseq, the table will have
26 entries. Along the way, C[0][0] takes on the values 0, then
11, and finally 13. Hence one of the assertions that will be
checked is that, at the termination of any execution of Mpar,
the variable C[0][0] in the master process will also be 13.

In this case, when the state space of Mpar is explored,
no new entries are ever made, because all of the expres-
sions generated can already be found in the table. (In more
complicated examples, however, the parallel program may
also add new expressions.) In fact, for non-trivial sizes (see
Section 3), Spin can verify that the assertions are never vi-
olated, establishing the equivalence of the two programs.

2.2 Numerical Issues
Floating-point arithmetic is only an approximation to the

arithmetic of real numbers, and many of the standard prop-
erties of the latter do not necessarily hold for the former [5].
(The exact differences depend on which particular floating-
point arithmetic one uses.) In the matrix multiplication ex-
ample, the symbolic expressions computed by the sequential
and parallel models are exactly the same, which guarantees
that the programs being modeled will always produce the
same results, no matter what arithmetic is used to execute
the programs (assuming, of course, that the arithmetic func-
tions are deterministic). There are cases, however, where
two models may compute expressions that are not exactly
the same, but which may be close enough for particular
needs. For example, in most floating-point arithmetics—

including all those that conform to the IEEE 754 or 854
standards [10,11]—the expressions 0+ f and f must always
evaluate to the same floating-point value, for any floating-
point expression f . Hence, if the symbolic results produced
by the two models are the same “up to” the relation that
identifies any symbolic expression e with the symbolic ex-
pression 0+e, we are still guaranteed that the two programs
will produce the exact same floating-point results on any
platform implementing IEEE arithmetic.

In general, let ∼ be an equivalence relation on the set
S(X) of symbolic expressions over a set of symbolic con-
stants X = {x1, x2, . . .}. We assume that ∼ is operation-
preserving, i.e., that

e1 ∼ e2 ∧ f1 ∼ f2 ⇒ e1 + f1 ∼ e2 + f2

holds for all ei, fi ∈ S(X), and that similar statements
hold for the other operators. This means that each oper-
ation induces an operation on the set of equivalence classes
S̄(X) ≡ S(X)/ ∼, and so all of the arithmetic and compar-
isons for equality in the models may be thought of as taking
place in S̄(X).

Note that in S̄(X), it is no longer trivial to test for the
equality of two elements. We will see in Section 3.1 that
our implementation deals with this by performing certain
simplifications on an expression before it is entered into the
symbolic table. This is not quite as strong as reducing the
expression to a true normal form (i.e., to a unique repre-
sentative of its equivalence class), but it is very inexpensive
and provides sufficient precision for most cases.

Each operation-preserving equivalence relation yields a
different notion of program equivalence. We have identi-
fied three that we think are useful and have used in our
implementation, though the same methods can certainly be
used for other relations. The three relations are as follows:

• Herbrand equivalence: this is the strongest, and there-
fore most desirable, notion of equivalence. Two sym-
bolic expressions are Herbrand equivalent if and only
if they are exactly equal. As we have seen, two Her-
brand equivalent programs will produce the same re-
sults, independently of the way in which the arithmetic
operations are implemented.

• IEEE equivalence: this is a slightly weaker relation.
There are a number of identities for real arithmetic
that also hold for IEEE arithmetic, e.g, x + y = y + x,
xy = yx, and 1x = x1 = x+0 = 0+x = x/1 = x. Two
elements of S(X) are considered to be equivalent if one
can be transformed to the other by a finite sequence of
transformations corresponding to such identities. Two
IEEE equivalent programs must produce the same out-
put on any platform implementing IEEE arithmetic.
Of course, they would also produce the same output if
the arithmetic were exactly real arithmetic.

• Real equivalence: this is weaker still. Two elements
of S(X) are considered to be equivalent if one can be
transformed to the other using any identities of real
numbers, including those that do not hold for IEEE
arithmetic, such as the associativity of addition or mul-
tiplication, and the distributive property. Two real
equivalent programs would produce the same results
if all computations were performed as real arithmetic,
but they may produce different results when run on
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an actual computer, even one that implements IEEE
arithmetic. The differences may be slight, but in some
situations the error can mushroom and the two can
differ greatly.

The sad truth is that real equivalence is often the best
that we can hope for. This is because there are many com-
mon scenarios that rely on associativity or some other prop-
erty that does not hold for IEEE arithmetic. For example,
it is often the case that one needs to compute a sum of
floating-point variables that reside in the local memory of
different processes and return the result to every process.
MPI provides a convenient way to do this: one just calls
MPI_Allreduce with a parameter specifying that the reduc-
tion operation is to be floating-point addition. However, the
MPI Standard states that the implementation may add the
values in any order—the implementation is not even required
to use the same order twice. Hence an MPI program mak-
ing one call to MPI_Allreduce may produce different results
when run twice on the same input, even if the execution
platform uses IEEE arithmetic.

For programs that are real but not IEEE equivalent, dif-
ficult issues may arise in creating test oracles or in deter-
mining whether the error (the difference between the ac-
tual results and what the results would have been had real
arithmetic been used) falls within acceptable bounds. Such
questions are simply beyond the scope of our method. Other
investigations have attempted to deal precisely with floating-
point errors, in different circumstances; see, for example, [14]
and the references cited there.

We mentioned above that sometimes we might want to
model integer variables symbolically. This requires a small
modification to the above framework, in which we associate
a type (either integer or floating-point) to each symbolic
constant and, consequently, a type to each symbolic expres-
sion. The notion of Herbrand equivalence is unchanged, but
for both IEEE and real equivalence we allow all the usual
rules of integer arithmetic, including commutativity, asso-
ciativity, and the distributive property for integer addition
and multiplication.

2.3 The general case
The method used for the matrix multiplication example

applies to any program with no branches on expressions that
involve the symbolically modeled variables. We now drop
this restriction. To illustrate the general case, we use the
program in Figure 3, which implements the Gaussian elim-
ination algorithm to transform an N ×M matrix to its re-
duced row echelon form. The input vector for this program
consists of the NM initial values of the matrix entries, and
the output vector consists of the NM final values of those
entries.

Recall that an important step in this algorithm is to lo-
cate, at each stage, a pivot row, i.e., a row at or below the
current top row that contains a non-zero entry in the cur-
rent column. This is accomplished in the sequential code by
looping over the rows, starting at top and working down,
looking for a non-zero entry. If none is found, the algorithm
moves to the next column and loops over the rows again.
This continues until the first non-zero entry is found, or un-
til we fall off the bottom or the right side of the matrix.

In the parallel version (Appendix B.1) , we assume that
n = N (where n is the number of parallel processes) and
that the ith row of the matrix is stored in the local memory

double matrix[N][M];

...

int top,col,row,i,j;

double pivot,tmp;

for (top=col=0; top<N && col<M; top++, col++) {

pivot = 0.0;

for (; col<M; col++) {

for (row=top; row<N; row++) {

pivot = matrix[row][col];

if (pivot!=0.0) break;

}

if (pivot!=0.0) break;

}

if (col>=M) break;

if (row!=top)

for (j=0; j<M; j++) {

tmp = matrix[top][j];

matrix[top][j] = matrix[row][j];

matrix[row][j] = tmp;

}

for (j=col; j<M; j++) matrix[top][j] /= pivot;

for (i=0; i<N; i++)

if (i!=top) {

tmp = matrix[i][col];

for (j=col; j<M; j++)

matrix[i][j] -= matrix[top][j]*tmp;

}

}

Figure 3: Sequential Gaussian elimination code

of the process of rank i. The pivot row is determined in a
very different way, using a call to MPI_Allreduce in which
the reduction operation returns the minimum of the given
values. Each process contributes an integer to this com-
munication, according to the following rule: if its entry in
position col is 0 or the rank of the process is less than top,
the process contributes the integer n, else it contributes its
rank. The call to MPI_Allreduce results in the minimum
of all these contributions being stored in the variable row of
each process. If, after this communication completes, row
is less than n, then each process knows that the process of
rank row will be used as the next pivot row and breaks out
of the pivot-searching loop, else the search for a pivot con-
tinues. Additional communication is used to exchange the
top and pivot rows and to broadcast the pivot row.

Because of the branch expressions that involve the float-
ing-point input (e.g., pivot!=0.0), the sequential program
can follow different paths, depending on the input. Con-
sider, for example, the case where N = M = 2, and the ma-

trix is initially

(
x0 x1

x2 x3

)
. If x0 6= 0 and x3−x2(x1/x0) = 0

then the program will follow a path resulting in the final

value of

(
1 x1/x0

0 0

)
(assuming IEEE arithmetic is used).

If instead x0 6= 0 and x3 − x2(x1/x0) 6= 0, the final result
is the identity matrix. In fact, in this 2 × 2 case, there are
7 possible paths through the sequential program. To each
path there is an associated path condition, the predicate on
the input vector that must hold in order for that path to be
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followed, and a resulting symbolic output vector. (Notice it
is possible for two different paths to yield the same output:
the path arising from the condition x0 = 0∧x2 6= 0∧x1 6= 0
also yields the identity matrix.)

We deal with this as follows. In Mseq, we model the
floating-point variables symbolically, as before, but we also
introduce an integer variable that gives the index in the
symbolic table of the current path condition pc for the pro-
gram. This expression is Boolean-valued and can involve
operators such as <,>,=,6=,≥,≤,∧,∨. Its initial value is the
special symbolic expression true. At each point where there
is a floating-point branch in the program, say on a condi-
tion e, the model calls a function φ(pc, e). This function
returns one of three possible values: if it can determine that
pc ⇒ e it returns true; if it can determine that pc ⇒ ¬e, it
returns false; and if it cannot determine either, it returns
unknown. If the answer is true or false, the correspond-
ing branch is taken, but if the answer is unknown then the
model makes a non-deterministic choice between the true
and false branches. In this latter case, if the true branch is
selected, the value of pc is updated by setting it to pc ∧ e,
while if the false branch is selected, it is set to pc ∧ ¬e.

Recall that in the composite model, the execution of Mpar

begins just after Mseq terminates. Now, the branches in
Mpar will be dealt with in the same way as in Mseq, but—
and this is the crucial point—Mpar will use the same path
condition variable that was used in Mseq. Hence execution of
Mpar begins with pc holding the final value computed by the
sequential model. This means that, assuming φ(pc, e) can
be evaluated with sufficient precision, the parallel model can
only follow a path that is consistent with the one followed by
the sequential model. Finally, the last step in the composite
model is the sequence of assertions comparing the output
vectors of the two models, just as before.

Now when Spin is used to check for assertion violations
in the composite model, it will have to explore all possible
paths through Mseq, and for each of these it will have de-
termined a path condition-output vector pair (pc,y). For
each such pair, it will explore all possible paths of the paral-
lel model that are consistent with pc, determine the parallel
output y′, and check the equivalence of y and y′. If the
assertions can never be violated, we can conclude that for
any input vector, the two programs must produce equiva-
lent results, assuming the arithmetic used in executing the
programs obeys the identities of the designated equivalence
relation.

Notice that the path condition pc produced by a sequential
run does not necessarily specify all the branch conditions for
Mpar. In the Gaussian elimination code, for example, the
sequential program breaks out of the loop that searches for
a pivot as soon as the first non-zero entry is found. Hence
the symbolic variables for the entries that are not examined
remained unconstrained in pc. In the parallel code, on the
other hand, each process examines its own entry to see if
it is non-zero, and those processes that cannot make this
determination based on pc must make a non-deterministic
choice. The model checker explores all of these choices, and
checks that each of them results in the same output vector
y.

The effectiveness of this approach depends heavily on the
precision with which the φ(pc, e) are evaluated. If unknown
is returned for a case where it can in fact be shown that
pc ⇒ e (or that pc ⇒ ¬e), it is possible that Spin will explore

infeasible paths through Mseq, or paths through Mpar that
are not consistent with the one followed by Mseq. In these
cases the analysis might produce a spurious result, i.e., it
might report that a violation has been found when one does
not really exist. However, since the analysis is conservative,
i.e., it only ignores a branch when it is certain that the
branch cannot be taken, a positive result guarantees that
the two programs are equivalent.

A useful byproduct of this method is the set of pairs (pc,y)
produced by Spin in analyzing Mseq. These can be used to
establish the correctness of the sequential program, although
exactly how this is done would depend on the particular
program. For the Gaussian elimination example, each of
the matrices that corresponds to a y in one of the pairs can
be checked, by a series of assertions, to satisfy the conditions
of reduced row echelon form.

In summary, our method to compare a sequential and par-
allel version of a numerical program consists of the following
steps: (1) build a Spin model Mseq of the sequential program
in which the floating-point computations (and perhaps some
integer computations) are represented symbolically, and in
which branches are modeled using non-deterministic choices
and a path condition variable; (2) in a similar way, build
a Spin model Mpar of the parallel program; (3) put these
together to form a composite model, in which first Mseq is
executed, then Mpar (using the same path condition vari-
able), and which ends with assertions stating that the out-
puts of Mseq and Mpar agree; (4) use Spin to check that the
assertions of the composite model can never be violated.

3. EXPERIMENTS
In this section, we discuss our implementation of the meth-

od and our experience in applying it to four numerical pro-
grams. The source code for the implementation, the mod-
els, and all of the experimental results can be obtained at
http://laser.cs.umass.edu/~siegel/projects.

3.1 Implementation
The core of our implementation is a library of functions

for manipulating symbolic expressions and maintaining the
symbolic expression table. This library is written in C and
is incorporated into our models by using the embedded C
code facility of Spin. The entries in the table are C structs,
and include fields for the index of the expression, an integer
code representing the operator, pointers to the left and right
subexpressions for binary expressions, etc. A hashtable is
also used, in order to find table entries quickly.

Three “levels” of each arithmetic operation are provided,
corresponding to the three different equivalence relations
discussed in Section 2.2. The level 0 operations correspond
to Herbrand equivalence; these simply form a new expres-
sion from the operator and operands, check to see if the new
expression already exists in the table, add it to the table if
it does not, and return the index. The level 1 operations
correspond to IEEE equivalence and do a little more work;
the level 1 addition operation, for example, checks to see
whether one of the operands is 0 (in which case it returns
the other operand), or if one operand is the negative of the
other (in which case it returns 0). The level 2 operations
correspond to real equivalence. The level 2 addition opera-
tion, for example, exploits associativity and commutativity
to reduce sums to a simplified form in which the parentheses
are moved to the left as far as possible, the terms are or-
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dered by increasing index, literal integer terms are combined
into a single literal, and so on. Of course, when checking for
IEEE equivalence, the level 2 addition and multiplication
operations can also be used for all integer expressions.

Similar things could of course be done for the other level
2 operations (multiplication, subtraction, and so on), but
in the examples we have studied so far this has not been
necessary, and so at present these work exactly as the cor-
responding level 1 operations. In our experience, it seems
that additive reduction operations, which are very common
in parallel numerical programs, account for much of the dif-
ference between the exact symbolic expressions computed in
the sequential and parallel models. Reductions over other
operations, such as multiplication, seem to be much less
common. In any case, the symbolic package is designed to
make it easy to specify the symbolic operation used for a
particular computation in the code and to add new versions
of the symbolic operations to reduce expressions to other
simplified forms, as the need arises.

The function φ, which attempts to determine whether the
given path condition pc implies the given expression e (or
¬e), is implemented as follows. First, by construction, pc
will always be a conjunction of smaller expressions of the
form pci or ¬pci, where each pci arises by evaluating one of
the conditional expressions in a branching statement. Our
implementation of φ simply loops over i, looking for a pci

which can be easily seen to imply e or ¬e. By “easily seen”
we mean by using reasoning such as x < y ⇒ x 6= y,
x = y ⇒ ¬(x 6= y), and so on. If it finds such a pci, it
returns true or false, as the case may be, otherwise it re-
turns unknown. This lightweight procedure seems to be
effective because the conditional expressions evaluated in
the sequential and parallel programs—or, at least, the ones
that matter for correctness—tend to be quite similar.

All of the variables from the symbolic package are static,
that is, they are not incorporated into the state vector by
using, for example, the Spin c_track function. Thus the
only variables incorporated into the state vector are those
corresponding to variables in the original programs and the
path condition variable.

The type of equivalence that one wishes to verify (Her-
brand, IEEE, or real) is controlled by a command-line argu-
ment specified when compiling the verifier (pan.c) generated
by Spin. This argument tells the symbolic package which
level of symbolic operations it should use: level 0 for Her-
brand, level 1 for IEEE, and level 2 for real. (When verifying
IEEE equivalence, integer addition and multiplication oper-
ations use level 2, instead of level 1.) Finer control over the
operations can be obtained by defining additional functions
and calling them from the Promela model where desired.

3.2 The programs
For our preliminary study, we analyzed four scalable par-

allel numerical programs. We attempted to verify each of
these using the method of this paper, scaling until Spin ex-
hausted the 800 MB of available memory or verification time
exceeded 10,000 seconds. In what follows, we give a brief
description of each program, we discuss certain issues that
arose in verifying its correctness, and we explain what we
were able to verify (or not verify).

Partial orders and related techniques play an important
role in model checking, by reducing the number of states
that need to be explored. Ideally, we would have liked to

apply techniques that are optimized for models of MPI pro-
grams, such as those discussed in [21], but we could not
find an easy way to implement them in Spin. Instead, we
proved a result (Appendix A.1) that justifies slightly weaker
techniques, but can be easily incorporated into Spin mod-
els. One consequence of the theorem is that for models with
no wildcard receives, we may instruct Spin to use only syn-
chronous communication, and we may place the code for
each process in an atomic block. Though this greatly re-
stricts the ways in which events from the different processes
can be interleaved, the theorem implies that Spin will still
explore every possible terminal state of the model, which is
all that is required for our purposes. For models with wild-
card receives, we must use asynchronous communication,
but we can still use atomic blocks, as long as every wildcard
receive occurs either outside, or as the first statement of, an
atomic block. In both cases, the reduction in the number of
states explored can be dramatic.

In Table 1, we give data for the largest configuration of
each program that we were able to verify. The columns of
the table give (1) the type of equivalence that was verified,
(2) the number n of parallel processes, (3) the number of
distinct sequential executions, (4) the number of expressions
generated in the course of the verification, (5) the length of
the input vector, i.e., the number of symbolic constants, (6)
the length of the output vector, (7) the maximum number
of terms in the path condition conjunction, (8) the number
of states explored, (9) the amount of memory used by Spin,
and (10) the verification time. We used Spin version 4.2.4
with options -DCOLLAPSE -DSAFETY -DNOBOUNDCHECK on a
2.2GHz Pentium 4 Linux box.

3.2.1 matmat
Our first example is the matrix multiplication program

of Section 2.1, with N = L = M = 2(n − 1). We were
able to verify that the sequential and parallel programs are
Herbrand equivalent for n ≤ 6.

3.2.2 gauss
Our second example is the Gaussian elimination program

of Section 2.3, with N = M = n. We were able to verify that
the sequential and parallel programs are Herbrand equiva-
lent for n ≤ 6. We note, however, that in order to show that
the sequential program really produces the reduced row ech-
elon form, we needed IEEE arithmetic. This is because, for
example, the use of Herbrand arithmetic results in matrix
entries of the form x0/x0 where the definition of reduced
row echelon form requires 1.

3.2.3 jacobi
Our third example implements a Jacobi iteration algo-

rithm to solve a linear system of the form Ax = b. Both
the sequential and parallel versions are from the CD ROM
accompanying [12]. In this algorithm, the N ×N matrix A
and the column vector b of length N form the input, and
the goal is to solve for the value of the column vector x of
length N , which forms the output. We take N = 2n + 2.
The algorithm begins with an initial guess for x (the col-
umn vector in which every entry is 1.0), and then enters a
loop in which the entries of x are adjusted at each iteration,
based on the values of neighboring entries. The algorithm
stops when the error term, which is computed as the inner
product of the difference between two consecutive values of
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program
name

equivalence
type

parallel
processes

sequential
executions

symbolic
expressions

input
vector

output
vector

path
condition

states
(103)

memory
(MB)

time
(s)

matmat Herbrand 6 1 2202 200 100 0 4443 217 506
gauss Herbrand 6 13327 247656 36 36 36 16114 801 3224
jacobi real 17 4 8239 1333 36 3 6295 362 9846
monte IEEE 9 4 1232 99 1 3 3112 279 738

Table 1: Experimental data

x with itself, falls below a given threshold ε, or when the
number of iterations exceeds a fixed bound MAXITS.

In the parallel version, the data are partitioned so that
each process contains a certain number of rows of A, x,
and b. Communication is used to update the contents of
ghost-cells, which mirror the boundary data on neighboring
processes, and in a reduction operation used to compute the
error term after each iteration. In our models, ε is treated as
another symbolic constant, and we take MAXITS = 3. (Some
constant bound must be specified for MAXITS if the model is
to have a finite number of states.)

Our analysis quickly revealed that the results of the se-
quential and parallel programs could disagree for n = 2,
even using real arithmetic. The source of the problem was a
small mistake in the computation of the error in the sequen-
tial code: instead of taking the inner product of the differ-
ence between two successive values of x with itself, the code
simply took the inner product of the two successive values.
This was pointed out to one of the authors, who acknowl-
edged the mistake. After correcting this error, we verified
real equivalence (which is the best that can be hoped for, due
to the floating-point reduction operation) for n ≤ 17. While
this example scaled significantly further than the others, it
is also the only case in which time, rather than memory,
proved to be the limiting factor. This appears to be due
to the large amount of computation required to simplify ex-
pressions when using the level 2 operations.

3.2.4 monte
Our fourth example is a parallel program taken from [7]

that implements a Monte Carlo algorithm to estimate π.
The algorithm repeatedly chooses a point at random from a
square with sides of length 2. If the distance from the point
to the center exceeds 1.0, an integer variable out, initially
0, is incremented, else a variable in is incremented. The
estimate for π is 4.0*in/(in+out). The algorithm stops
when an error term falls below a fixed threshold ε, or in+out
exceeds a fixed bound. In the parallel code, one process
acts as a random number server, returning blocks of random
numbers to the remaining “worker” processes. The worker
processes use these blocks to determine a set of points and
make their own local in and out calculations. The values of
in and out are summed at the end of each iteration, using
an integer reduction operation. At the end of the reduction,
each process has the global sums, forms the estimate for π,
computes the error, and decides whether to perform another
iteration or terminate.

The random nature of this code presents an interesting
challenge to our method. On the face of it, a program that
depends in an essential way on the values returned by a
random function can hardly be deterministic. We resolve
this problem by considering the sequence of random num-

bers generated by the random function to be the inputs to
the program. Hence our method can be used to verify that
if the random number function were to generate the same
sequence of values for the sequential and the parallel pro-
grams, the two programs must return the same estimate for
π. This seems to us to be a natural extension of our no-
tion of equivalence to numerical programs that use random
numbers.

We used two additional reduction techniques for this ex-
ample, which proved very effective. The first concerns the
program statement

if (x*x+y*y<1.0) then in++ else out++;

which is used to determine whether a point (x, y) is within
distance 1.0 of the center. If we were to follow our method
strictly, each time this statement is executed in Mseq a non-
deterministic choice would be made between the two alter-
natives. Since this statement is executed many times in the
model, the number of sequential executions would blow up
quickly. To avoid this problem, we made a simple program
transformation. First, we defined a new operation delta

which takes two floating-point arguments a and b, and re-
turns the integer 1 if a < b and 0 otherwise. The statement
above can then be replaced by

in += delta(x*x+y*y,1.0);

out += 1-delta(x*x+y*y,1.0);

which does not require a non-deterministic choice. The only
change we had to make to the symbolic package was to add
a level 0 operation for delta, i.e., we just treat delta as an
uninterpreted function. With this modification, the sym-
bolic output of Mseq will be a more complicated expression,
involving many delta-subexpressions, but the number of ex-
ecutions of Mseq will be much smaller, which turns out to be
a good tradeoff. Notice also what happens if we use IEEE
arithmetic to compute the sum of in and out; since the sym-
bolic package knows to use associativity and commutativity
for integer expressions, the delta terms in the sum all cancel
and the result is a single integer constant. This also reduces
the number of states explored, since it allows the symbolic
package to determine with precision when the sum exceeds
the upper bound, rather than forcing it to make another
non-deterministic choice.

The second reduction technique exploited a symmetry re-
duction theorem (Appendix A.2) that we proved for general
parallel numerical programs. To see how this comes into
play in this example, observe that in Mpar, the worker pro-
cesses can send their requests to the random number server
in any order. Hence in one execution worker 1 may get
the first block of random numbers and worker 2 the second
block, while in another execution the situation could be re-
versed. In fact, any permutation of the block distribution

8



can take place on each iteration of the main loop, and the
model checker will be forced to explore all of them, leading
to a rapid blowup in the number of states of Mpar. This
problem does not, however, arise for Mseq, because Mseq

utilizes the random numbers in a fixed order. Moreover, for
all executions of Mseq, both the output vector and the path
condition turn out to be invariant under these permutations.
The upshot of our symmetry reduction theorem is that in
these circumstances, it suffices to explore only one of these
permutations in Mpar, rather than all of them.

Using these reductions, we were able to establish IEEE
equivalence for n ≤ 9.

4. RELATED WORK
The idea of representing computations symbolically has a

long history and has enjoyed many applications, including
to testing and debugging (e.g., [2,3,8]). There has also been
some work incorporating these ideas into model checking.
For example, a component of the SLAM toolkit [1] trans-
lates a C program into a program that operates solely on
Boolean variables corresponding to predicates in the origi-
nal program. A theorem prover is used in that process to
determine the effect of each statement in the original pro-
gram on the predicates. Another component uses symbolic
execution to determine whether a path through the Boolean
program corresponds to an actual execution of the original
program. This is similar in spirit to our method, which
translates a program into one which operates on symbolic
expressions and uses a (very lightweight) form of theorem
proving to determine branches and expression equivalence.

Symbolic execution has also been used to improve the pre-
cision of Java PathFinder, in order to verify properties of
Java programs that manipulate complex data structures and
that may even contain unbounded loops [13,17].

Our approach differs from this previous work in several
ways: (1) in the way we use the path condition to filter
out executions of the parallel program that are not consis-
tent with a sequential execution, (2) in our emphasis on
complex floating-point expressions, rather than on heap-
allocated data and integer expressions, and (3) in our use
of the value numbering scheme to represent the state space
efficiently.

There are a number of tools and techniques that can be
used to estimate the error arising from floating-point com-
putations in programs; see [14] for a description and com-
parison of some of these.

5. CONCLUSIONS AND FUTURE WORK
We have described a method that uses model checking

techniques in combination with symbolic execution to ver-
ify the correctness of the calculations performed by paral-
lel programs—even complex floating-point calculations. We
have successfully applied this method to four quite differ-
ent examples, scaling to configurations of between 6 and
17 processes. While these numbers are much smaller than
those that arise in practice, evidence from the application
of model checking techniques with other kinds of software
suggests that problems are usually exposed by verification of
relatively small configurations. This is quite different from
the case with testing, where the small size may make it dif-
ficult to trigger particular pathological patterns of behavior.
The difference is due to the fact that model checking takes

into account all possible executions of the model.
The key idea of our method is to compare a sequential

and a parallel program. This approach takes advantage of
the fact that, since it is usually easier to construct a cor-
rect sequential numerical program, developers often start
with a sequential version or develop one in tandem with
the parallel version. The effectiveness of our method relies
on the assumption that the computations performed in the
two programs are close to being exactly the same, though
those computations may be distributed in a complex way
in the parallel program. This assumption means that it is
usually relatively inexpensive to determine if two symbolic
expressions are equivalent or if one symbolic predicate im-
plies another. The further removed the computations in the
two programs become, the more powerful the symbolic ma-
nipulation must be in order to arrive at a conclusive result.
If the computations performed by the two programs are very
different, we might argue that the sequential program is not
a good specification for the parallel one. Nevertheless, as
we examine more complex programs, it is certainly possi-
ble that the kind of lightweight symbolic manipulation and
theorem proving that we are currently using will no longer
suffice. For this reason, we are exploring ways to integrate
our approach with more sophisticated symbolic algebra and
theorem proving tools.

One of the biggest barriers to the wide adoption of model
checking techniques is the problem of model extraction. For
our preliminary study, we built Spin models by hand, and
though we designed our symbolic package to make this as
easy as possible, it still requires a great deal of expertise.
The ideal situation would be to have tools that automat-
ically extract the models from source code, and indeed a
great deal of research on this subject has been carried out,
at least for other domains. We are exploring ways to adapt
these techniques to MPI programs, though we expect to en-
counter some significant challenges when it comes to auto-
matically creating models of programs with large amounts
of floating-point data.

Perhaps the greatest problem with model checking is state
explosion: the fact that the number of states of a program
typically grows exponentially with the number of processes.
A vast array of techniques has been developed to counter-
act this problem, and we have demonstrated that some of
these, such as partial order and symmetry reductions, can
be adapted to work with our method. Spin turned out to
be an excellent platform for the rapid prototyping of our
method, although it was too difficult to code some of the
optimizations that we wanted to consider. We plan to ex-
plore these using the Bogor model checker [18], which is
designed to allow easy customizations of its search strategy
and other components. We intend to try to take advantage
of this platform to explore a wide range of optimizations and
extensions to our method.
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APPENDIX

A. REDUCTION THEOREMS

A.1 A partial order reduction theorem for
MPI programs

To explore all possible terminal states of a program, it is
usually not necessary to explore all possible paths through
the program. That is because there are often many equiv-
alent paths, i.e., paths terminating in the same terminal
state. This means that we may restrict the set of paths that
we explore, as long as we are sure to keep at least one rep-
resentative from each equivalence class. The theorem below
justifies such a restriction for MPI programs.

To state the theorem, we adopt the notation of [21]. Let
M be any model of an MPI program, and ν a channel size
vector. Thus ν assigns to each channel c a value ν(c) which
is either ∞ or a non-negative integer. Suppose that T is a
finite trace of M from a global state σ0 to a global state σf

and that T is ν-bounded, i.e.,

∀c ∈ Chan : maxlenc(T ) ≤ ν(c).

Recall that this means that the number of messages queued
in any channel c never exceeds the bound ν(c). Suppose
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further that σf is ν-halted, i.e., there is no global transition
departing from σf that does not cause the number of queued
messages in some c to exceed ν(c). Another way of saying
this is that there is no way to extend T to a ν-bounded trace
of length n + 1, where n = |T |.

We consider a game that involves two players, the sched-
uler and the selector, and constructs a new ν-bounded trace
T ′. The game consists of a sequence of stages, each of which
extends the trace by one transition. So, at the beginning of
stage i, the first i−1 transitions of T ′ have already been se-
lected. Stage i proceeds as follows. First, if T ′ terminates in
a ν-halted state, then the game ends in deadlock. Otherwise,
the scheduler chooses a non-empty subset of enabled tran-
sitions, according to a certain rule that we describe below.
The selector then chooses a specific transition from this sub-
set and appends it to T ′. The game ends if it deadlocks, or
after n stages have completed, whichever occurs first. The
selector wins the game if the final trace constructed termi-
nates in σf , else the scheduler wins. The theorem states
that there is a strategy for the selector so that the selector
always wins.

We now describe the scheduling rule that constrains the
choice made by the scheduler. Say the current state is σ. Let
Eσ denote the set of all ν-enabled global transitions at σ,
i.e., the set of all global transitions enabled at σ that do not
cause the number of queued messages for any channel c to
exceed its bound ν(c). Suppose Eσ is non-empty. Then the
scheduler must choose a non-empty subset F of Eσ that sat-
isfies at least one of the following conditions: (1) F = {τ},
where τ is not a local event transition, nor a receive tran-
sition emanating from a wildcard receive state (i.e., a state
from which there are outgoing transitions labeled by receives
on at least two distinct channels), nor a synchronous tran-
sition for which the associated receive transition emanates
from a wildcard receive state, (2) F is the set of all tran-
sitions enabled in a single process that is at a local event
state, or (3) F = Eσ. We call such a set F an acceptable set
at σ, and the set of all acceptable sets at σ will be denoted
Cσ.

To state the theorem precisely, we introduce the following
notation. First, for any finite sequence S = (x1, . . . , xn) of
elements of a set X, and any x ∈ X, we let S · x denote the
sequence obtained by appending x to the end of S. Next,
given any two global states σ and σf of M, we define state-
ments θ(σ, σf , n), for all n ≥ 0, as follows: θ(σ, σf , 0) is the
statement σ = σf , and for n > 0, θ(σ, σf , n) is the statement

Eσ 6= ∅ ∧ ∀F ∈ Cσ ∃τ ∈ F : θ(des(τ), σf , n− 1).

This is a formal way of stating that, starting from σ, the
selector can always force the trace to terminate at σf in n
steps, no matter what moves are made by the scheduler.

Theorem 1. Let M be a model of an MPI program, ν a
channel size vector, T a ν-bounded trace in M from a global
state σ to a ν-halted global state σf . Then θ(σ, σf , |T |) holds.

Proof. The proof is by induction on |T |. If |T | = 0 then
σ = σf , and since this is exactly the statement θ(σ, σf , 0),
the theorem holds. So suppose n > 0, T = (τ1, . . . , τn), and
the theorem holds for any trace of length less than n. We
cannot have Eσ = ∅ since τ1 is ν-enabled at σ. Let F ∈ Cσ.

If F = Eσ then let τ = τ1. Then (τ2, . . . , τn) is a ν-
bounded trace from des(τ) to σf of length n− 1, and so by
the inductive hypothesis, θ(des(τ), σf , n − 1) holds. Hence

θ(σ, σf , |T |) holds.
Suppose F is the set of all ν-enabled local event transitions

from a single process p. Now there must exist an integer i
such that 1 ≤ i ≤ n and τi is in process p. For if not, there
would still be a local event transition in p enabled at σf , and
σf would not be a ν-halted state. Let i be the least integer
with this property. We claim that there is a ν-bounded trace

T ′ = (τ ′i , τ
′
1, . . . , τ

′
i−1, τ

′
i+1, . . . , τ

′
n)

from σ to σf with label(τ ′j) = label(τj) for all j. This is
because we may move τi to the left one step at a time,
applying [20, Lemma 1] at each step. Let τ = τ ′i , and argue
as in the paragraph above to see that θ(σ, σf , |T |) holds.

Suppose F is a singleton set {τ}, where τ is either a send,
receive, or synchronous transition. Say τ is a receive in
process p. Then, according to the scheduling rule, at σ, p
must be in a receiving state for a sole channel c, and so
label(τ) = c?x for some x that is already queued at σ. Now
there must exist some i such that (1) 1 ≤ i ≤ n, (2) τi is
a receive in process p, and (3) there is at most one j such
that 1 ≤ j < i and τj belongs to process p, and, if there is
such a j, then σ is a send-receive state and τj is the send
emanating from that state. The reason for this is that if
it were not the case, there would still be a receive enabled
at σf , and σf would not be ν-halted. Now we argue as
before to move τi to the left, using [20, Lemma 2] to move
past the send τj if necessary. The only thing we must check
is that the message received by τi was already queued at
σ. However, since c is the sole receiving channel for p at
σ, τi must also be a receive on c, and so we must have
label(τi) = c?x, as required. Now we proceed to argue as
in the paragraph above that θ(σ, σf , |T |) holds. The case
where τ is a send is similar but easier since we do not have
to deal with wildcards. If τ is a synchronous transition, then
first decompose it into its send and receive parts, then move
each all the way to the left, and then recompose them into
a synchronous transition.

We now examine some practical consequences of Theo-
rem 1. Say we are using Spin to verify an assertion on the
terminal states of M. In creating a Spin model, we must
specify a finite bound ν(c), for each channel c, when c is
declared. By the scheduling policy we mean the mechanism
of Spin that determines the set of all possible next transi-
tions from a given state. The scheduling policy plays the
role of the scheduler in our game. In its default mode, the
scheduling policy returns all ν-enabled transitions. Hence in
the default mode, Spin will explore all ν-halted states that
are reachable by ν-bounded traces from the initial state.

Notice that, if there are terminal states that can only be
reached by traces in which the number of queued messages
for some c exceeds ν(c), these states will not be explored by
Spin. In some cases, one may verify that there are no such
states by using assertions to check that control never reaches
a send statement for a channel when that channel is full. In
other cases, this may not be possible, or the channel sizes
required may be so large that the verification becomes infea-
sible. In such cases we may still use a less-than-satisfactory
channel size and satisfy ourselves with a result that is not
quite conservative. (Of course, if Spin finds an error, this
is just as helpful as if we had used unbounded channels.)
The situation is similar to the need that sometimes arises
to place small bounds on the number of loop iterations, and
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is a problem that often arises with finite-state verification
techniques. What we will see shortly, however, is that the
reduction strategy we describe cannot make the problem
any worse, i.e., if there exists a property violation within
the specified bounds, it will still be found after applying the
reduction.

Now, the scheduling policy used by Spin can be restricted
with the careful use of atomic blocks. When control is in-
side an atomic block of a process, Spin’s scheduling policy
returns only the ν-enabled transitions from that process,
assuming there is at least one. If there are none, then the
process loses atomicity, and the scheduling policy returns
the set of all ν-enabled transitions. A special rule is used
for rendezvous channels, i.e., channels of size 0. A send on a
rendezvous channel is not blocked precisely when the receiv-
ing process is in a position to receive the message; in this
case, the Spin scheduling policy returns just the synchronous
transition and control passes to the receiving process. If the
receiving process happens to also be inside an atomic block,
then atomic control passes directly from the sender to the
receiver.

Now we can use atomic statements in any way, as long
as the resulting scheduling policy obeys the scheduling rule
defined above. Let us say, for example, that we have in-
serted atomic statements in such a way that if a wildcard
receive occurs within an atomic block B then it must be the
first statement in B and B cannot be inside another atomic
block. Assume also that ν(c) ≥ 1 for all c, so there are
no rendezvous channels. These assumptions mean that the
only state from which Spin’s scheduling policy can select a
wildcard receive is one in which no process has atomic con-
trol. But if no process has atomic control, Spin’s scheduling
policy will return the set of all ν-enabled transitions. Hence
the scheduling policy satisfies the scheduling rule, and we
are guaranteed that Spin will still explore all ν-halted states
reachable from the initial state by ν-bounded traces.

Consider now the case where M has no wildcard receives,
and let ν be any channel size vector. Say that we construct
a Spin model of M in which we set all channel sizes to 0
and place the code of each process in a single atomic block.
What is the resulting scheduling policy? In any state, it will
return either (1) a singleton set consisting of a synchronous
transition (that by assumption does not involve a wildcard),
or (2) the set of all local transitions in a single process, or
(3) the empty set, if the state is potentially halted (i.e.,
no synchronous or local event transition is enabled). If (3)
occurs when the state is not terminal, Spin will report this as
an improper end state (i.e., a deadlock). Hence if the search
returns without ever reporting an improper end state, then
the scheduling policy satisfies the scheduling rule, and we
are guaranteed that the search has visited every ν-halted
state of M reachable by a ν-bounded trace.

A.2 A symmetry reduction theorem for MPI
programs

In this section we prove a theorem that has consequences
for numerical programs in which the output vectors and path
conditions exhibit symmetry in the symbolic constants. The
theorem is expressed using the language of group theory and
group actions [19].

Let n and m be non-negative integers, G a finite group,
and X a G-set of cardinality n. Let

X = {(x1, . . . , xn) | {x1, . . . , xn} = X},

which is a set of cardinality n!. Let Π and Y be G-sets, and
let Y = Y m. The action of G on X induces an action of G
on X by defining

g(x1, . . . , xn) = (gx1, . . . , gxn),

for g ∈ G. The action of G on Y induces a component-wise
action on Y as well. We call the 6-tuple

C = (G, X,X , Π, Y,Y)

a symbolic context.
Let C be a symbolic context. Consider a pair of functions

(C, f), where C assigns, to each x ∈ X and p ∈ Π, a set
C(x, p), and f assigns to each triple (x, p, c), where x ∈ X ,
p ∈ Π, and c ∈ C(x, p), an element y = f(x, p, c) ∈ Y.
Assume that for all g ∈ G, x ∈ X , p ∈ Π, and c ∈ C(x, p),
the following both hold:

C(gx, gp) = C(x, p) (1)

gf(x, p, c) = f(gx, gp, c). (2)

Then we call (C, f) a symbolic model over C.

Theorem 2. Let C = (G, X,X , Π, Y,Y) be a symbolic
context and let (C, f) be a symbolic model over C. Suppose
there are x ∈ X , p ∈ Π, and y ∈ Y for which the following
all hold:

1. gp = p for all g ∈ G,

2. gy = y for all g ∈ G, and

3. ∀c ∈ C(x, p) ∃g ∈ G : f(gx, p, c) = y.

Then f(x, p, c) = y for all c ∈ C(x, p).

Proof. Given c, choose g to satisfy hypothesis 3. Then

f(x, p, c) = g−1f(gx, gp, c)

= g−1f(gx, p, c)

= g−1y

= y.

Now we describe the application of this theorem to sym-
bolic models of numerical programs. In this application, the
set X is the set of symbolic constants, and X is the set of
all possible input vectors to the model. The group G may
be any subgroup of ΣX , the group of all permutations of X.
The set Π is the set of all boolean-valued symbolic expres-
sions in the symbolic constants, e.g., (x1x2)/x3 ≥ 0 ∧ x2 6=
x3. A path condition, for example, is an element of Π. No-
tice that the action of G on X extends naturally to an action
on Π in which G acts trivially on operators and literals. We
may also take Π to be the set of all boolean-valued symbolic
expressions modulo an operation-preserving equivalence re-
lation ∼, as long as ∼ is preserved by the action of G, i.e.,
p ∼ q ⇒ gp ∼ gq for all g ∈ G. The examples of equivalence
relations that we have considered in this paper all satisfy this
property. The set Y is the set of all real-valued symbolic ex-
pressions in the symbolic constants, e.g., (x1x2)/x3 + x4.
Again, we may apply an appropriate equivalence relation.
The set Y is the set of all symbolic output vectors.

The pair (C, f) represents our numerical program P . The
set C(x, p) corresponds to the set of all executions of P on
input x that are consistent with the path condition p. The
element y = f(x, p, c) represents the output of P when given
input x, a path condition p, and a particular execution c
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consistent with p. The assumptions (1) and (2) express what
is essentially a functorial property in the symbolic constants:
permuting the names of the input does not change the set
of behaviors of the program, nor does it change the output
produced by the program, except to permute the names of
the symbolic constants in the output in the same way that
they were permuted in the input.

The theorem may now be interpreted as follows: suppose
we are given an input vector and a path condition p and
output vector y such that both p and y are invariant under
the action of G. Then for each possible path through the
model that is consistent with p, we may first permute the
input according to any element of G before computing the
output produced by that path. If the output is always y
then we may conclude the output would have been y even
if we had not permuted the input.

B. CODE

B.1 Parallel Gaussian Elimination Code

double matrix[M];
...

int top,col,row,j,rank,nprocs;

double pivot,tmp;

double toprow[M];

MPI_Status status;

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

for (top=col=0; top<N && col<M; top++, col++) {

for (; col < M; col++) {

if (matrix[col]!=0.0 && rank>=top)

MPI_Allreduce(&rank, &row, 1,

MPI_INT, MPI_MIN, MPI_COMM_WORLD);

else

MPI_Allreduce(&nprocs, &row, 1,

MPI_INT, MPI_MIN, MPI_COMM_WORLD);

if (row<nprocs) break;

}

if (col>=M) break;

if (row!=top) {

if (rank==top)

MPI_Sendrecv_replace(matrix, M, MPI_DOUBLE,

row, 0, row, 0, MPI_COMM_WORLD, &status);

else if (rank==row)

MPI_Sendrecv_replace(matrix, M, MPI_DOUBLE,

top, 0, top, 0, MPI_COMM_WORLD, &status);

}

if (rank==top) {

pivot = matrix[col];

for (j=col; j<M; j++) {

matrix[j] /= pivot;

toprow[j] = matrix[j];

}

}

MPI_Bcast(toprow, M, MPI_DOUBLE, top,

MPI_COMM_WORLD);

if (rank!=top) {

tmp = matrix[col];

for (j=col; j<M; j++)

matrix[j] -= toprow[j]*tmp;

}

}

13


