
THE INCA QUERY LANGUAGE

STEPHEN F. SIEGEL

Abstract. INCA is a tool for analysis of concurrent systems. The system

to be analyzed is modeled in the S-Expression Design Language (SEDL), and

the properties of the system to be verified are written in the INCA Query
Language. INCA takes these two items as input, and produces Integer Linear

Programming problems, which can be analyzed by standard linear program-
ming tools, such as CPLEX. In this document, we give a precise description
of the syntax and semantics of the INCA Query Language, as well as several

examples of INCA queries.

1. Introduction

The INCA Query Language is a language for describing sets of executions of a
system of communicating finite state automata. (The precise definitions of these
terms will be given in Section 3.) A single INCA query describes a set of execu-
tions of a given system of communicating FSAs; it is analogous to a single regular
expression, which describes a set of strings over a given alphabet. The situation
for queries, however, is more complicated, due to the more complex structure of
communicating FSAs.

While in theory the INCA Query Language may be used to describe executions
for an arbitrary system of communicating FSAs, it was designed, naturally, with
INCA in mind. For this reason, it will help to have a basic understanding of what
INCA does. Briefly, INCA works in two stages. The INCA front end takes as input
a description of a concurrent system written in the S-Expression Design Language
(or SEDL; see [1]) and produces from that a set of communicating FSAs. (There
is one FSA for each task in the concurrent system.) The INCA back end begins
with this set of communicating FSAs and a query. The query describes the set of
all executions which violate the property of the system one wishes to verify. From
these, the back end produces an Integer Linear Programming (ILP) problem in
a standard format which can be read by most linear programming tools, such as
the commercial package CPLEX. The linear programming tool determines if the
system of equations and inequalities produced by INCA has a solution: if it does
not, this means that there are no executions of the concurrent system which satisfy
the query, i.e., the property holds. If, on the other hand, there is a solution to
the system of equations and inequalities, this may or may not represent an actual

Date: July 7, 2003.
This research was partially supported by the National Science Foundation under grant CCR-

9708184 and by the U.S. Army Research Laboratory and the U.S. Army Research Office under
Agreement DAAD190110564. The views and conclusions contained herein are those of the author

and should not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of the National Science Foundation, the U.S. Army Research Labo-
ratory, the U.S. Army Research Office, or the U.S. Government.

1

2 STEPHEN F. SIEGEL

violating execution of the concurrent system, and some further work must be done
to determine which is the case.

With this in mind, it is not surprising that the INCA Query Language uses many
constructs which lend themselves naturally to an easy translation into the language
of Integer Linear Programming. For example, it is quite easy to write a query which
specifies all executions of a system of communicating FSAs in which the number of
occurences of event a is greater than or equal to 3 times the number of occurences
of event b.

There are also some elements of the language which have no effect at all on the set
of executions determined by the query, but are instead used in some way to modify
the final Integer Linear Programing problem generated by INCA. (An example of
this is the “cost” parameter, which is used to define the objective function; see
Section 5.) Moreover, since INCA analyzes programs written in a specific language,
SEDL, there are a few constructs in the INCA Query Language for describing sets of
events which arise naturally from SEDL programs (e.g., “rend” and “rendezvous”;
see Section 7). But despite these few particulars, the INCA Query Language stands
largely on its own, and one really does not have to know anything about INCA to
understand it.

The purpose of this document is to give a precise definition of the syntax and
semantics of the INCA Query Language. In Secion 3 we define precisely what
we mean by a system of communicating FSAs and a (finite) execution. Section 4
gives the highest-level description of a query: in brief, the query consists of a list of
sequences, each of which consists of one or more intervals. The most substantial part
of the document is Section 5, where the various parameters for describing intervals
are explained. Infinite executions are discussed in Section 6. The mechanisms for
defining sets of symbols are explained in Section 7, and Section 8 concludes with
several examples of INCA queries and a thorough discussion of each.

2. Tokens

The following productions will be used throughout in describing the grammar of
the Inca Query Language:

<boolean> ::= ’t’ | ’nil’
<digit> ::= ’0’ | ’1’ | ’2’ | ’3’ | ’4’

| ’5’ | ’6’ | ’7’ | ’8’ | ’9’
<sign> ::= ’+’ | ’-’
<number> ::= [<sign>] <digit> { <digit> }
<letter> ::= ’a’ .. ’z’ | ’A’ .. ’Z’
<alpha> ::= <letter> | <digit> | ’_’ | ’-’
<name> ::= ’"’ <letter> { <alpha> } ’"’
<char> ::= <alpha> | ’;’ | ’(’ | ’)’ | ’.’
<string> ::= ’"’ { <char> } ’"’
<symbol> :: = <string>

Although technically a <symbol> and a <string> are the same thing in the
grammar we are describing, we will always use the former to represent an event in
one of the FSAs, and this will help to clarify the presentation.

THE INCA QUERY LANGUAGE 3

3. The Model

By a system of communicating FSAs we mean a set of FSAs F1, ..., Fn together
with some additional structure. The additional structure is given as follows. Let Ai

be the alphabet of Fi, and let Ti be the set of transitions of Fi. (We are assuming
that Ai ∩ Aj and Ti ∩ Tj are empty for i 6= j.) For each i, we are given a subset
Ac

i of Ai, the elements of which are called communication events. (The elements of
Ai \Ac

i are called local events.) Let Ac be the (disjoint) union of the Ac
i , and let

f : Ac → Ac

be a map such that (i) f ◦ f = idAc and (ii) for all i, if a ∈ Ac
i then f(a) 6∈ Ai. In

other words, f establishes a pairing between the communication events in such a
way that every communication event is paired with another communication event
in a different FSA. The specification of the subsets Ac

i together with the function
f constitute the additional structure.

Each FSA in the system has a unique name, which is represented in the query
language by a <name>. Each state in each FSA has an identifcation number, unique
within that FSA, which is represented in the language by a <number>. The events
are all represented uniquely as <symbol>s in the query language. We will use the
words event and symbol interchangably.

Although the language we are about to describe may be applied to any system
of communicating FSAs, its main application is to INCA. The events in the com-
municating FSAs generated by INCA have a particular form; some examples are
as follows:

• "call(t1;t2.e)"
• "accept(t1;t2.e)"
• "internal(t1;x)".

The first two are paired communication events: the “call” is in the alphabet of the
FSA named t1, and the “accept” is in the alphabet of t2. From the point of view
of INCA and the query language, however, it does not matter which is the call and
which is the accept. The third event is an example of a local event in task t1.

Suppose we have a finite sequence of sets of transitions

S1, S2, . . . , Sm

for which
(i) |Sj | ∈ {1, 2} (1 ≤ j ≤ m).
(ii) If |Sj | = 1 then the element of Sj is labeled by a local event (1 ≤ j ≤ m).
(iii) If |Sj | = 2 then the labels of the elements of Sj are a pair of communication

events x, f(x) (1 ≤ j ≤ m).
For any i ∈ {1, . . . , n}, we can “project” this sequence onto Ti as follows: we remove
any of the Sj which do not contain an element of Ti and we replace any Sj which
contains an element t of Ti with t.

Now we say that the finite sequence is an execution-prefix of the system of
communicating FSAs if in addition:

(iv) For all i ∈ {1, . . . , n}, the projection of the sequence onto Ti is an execution-
prefix of Fi.

When we say a sequence of transitions is an execution-prefix of an FSA we just
mean that it is a valid sequence of transition firings starting from the start-state,

4 STEPHEN F. SIEGEL

but the FSA does not necessarily have to be in an accepting state after the last
transition.

The idea is of course that the executions of the FSAs may be interleaved in
any way possible, with the sole proviso that matching communication events must
always occur simultaneously.

4. The Query

The INCA Query Language uses a Lisp-like syntax, which is not surprising, as
INCA is written in Common Lisp. The general form of a query is

<query> ::= ’(’ ’omega-star-less’ { <sequence> } ’)’

For the origins of the term “omega-star-less”, see [2].
In INCA, one generally defines a query and binds it to a name (say to the name

"my query") using the syntax:

(defquery "my_query" "nofair" <query>).

The string "nofair" indicates that no fairness assumptions are to be added to the
execution model described in Section 3 when interpreting this query. There are in
fact other options which can be used in place of "nofair" but these are rarely used
and are not discussed in this document.

The query represents a set of execution-prefixes of a system of communicating
FSAs. We say that an execution-prefix matches the query if the execution is in
the set represented by the query. In INCA, the query is used to define the set of
executions which violate the property one wishes to verify.

We now focus on the question: when does an execution-prefix match a query?
The execution-prefix matches the query if, and only if, it matches at least one

of the sequences.
When does an execution-prefix match a sequence?
A sequence has the form

<sequence> ::= ’(’ ’sequence’ { <interval> } ’)’

where

<interval> ::= ’(’ ’interval’ [’:initial’ <boolean>]
[’:progress’ <boolean>]
[’:open’ <boolean>]
[’:perpetual’ <boolean>]
[’:starts-after’ <symbol list>]
[’:ends-with’ <symbol list>]
[’:require’ <symbol list>]
[’:force’ <symbol list>]
[’:forbid’ <symbol list>]
[’:restrict’ <restriction list>]
[’:constraints’ <constraint list>]
[’:costs’ <cost spec>] ’)’

<symbol list> ::= ’’(’ { <symbol spec> } ’)’
<restriction list> ::= ’’(’ { <restriction> } ’)’
<constraint list> ::= ’’(’ { <constraint> } ’)’

THE INCA QUERY LANGUAGE 5

A symbol spec specifies a set of symbols and these will be discussed in Section 7.
The syntax and semantics for <cost spec>, <restriction>, and <constraint>
will be given in the relevant parts of Section 5.

Suppose we are given a sequence with k intervals I1, . . . , Ik. Assume also that
there are no occurences of “:perpetual t” in any of the intervals. (This is used
to specify a set of infinite executions, and these will be discussed in Section 6.)
Then an execution-prefix (S1, . . . , Sm) matches the sequence if, and only if, there
are positive integers 1 ≤ j1 ≤ . . . ≤ jk ≤ m + 1 such that the k execution segments

(Sj1 , . . . , Sj2−1), (Sj2 , . . . , Sj3−1), . . . , (Sjk
, . . . , Sm)

match the intervals I1, . . . , Ik. (Note: one or more of the segments may be empty.)
What it means for the segments to match the intervals is the subject of Section 5.

5. The Interval Requirements

Each interval I in the sequence imposes certain requirements on the execution
segments. The requirements are determined by the values of certain parameters
associated with the interval. The values of the parameters are set using the keyword-
value notation in Common Lisp. The various keywords, their default values, and
the requirements they impose are explained below. The segments will match the
intervals if, and only if, all of the interval requirements for all of the intervals hold.

Note that in order for the execution segments to match the intervals, all of the
requirements specified by all of the intervals must hold. There is no (direct) way to
say “or” in the query language, i.e., “this requirement must hold or that one must
hold,” within a single sequence.

For the following descriptions, let us fix an interval I, with corresponding seg-
ment (Sa, ..., Sb). We now give for each interval parameter, the type of values that
parameter takes, the default value, and a description of the requirement(s) which
are implied by that parameter.

initial type: boolean default: nil (false)

Requirement: If initial is true (t), then we require a = 1.

progress type: boolean default: nil (false)

Requirement: If true, we require that at the end of the execution segment: (i)
there is at least one i for which Fi is not in an accepting state, and (ii) there does
not exist a transition set S such that the sequence (S1, . . . , Sb, S) is an execution-
prefix. In other words, at least one FSA is permanently blocked at the end of this
segment.

open type: boolean default: nil (false)

Requirement: By itself, this does not add any requirements. It is used in conjuction
with ends-with to alter the requirements associated with that parameter. See
ends-with.

6 STEPHEN F. SIEGEL

starts-after type: symbol list default: nil (empty list)

Requirement: For each i for which Ai has at least one symbol in at least one of
the sets specified in the symbol list: consider the execution-prefix of Ti obtained
by projecting the entire execution-prefix. Then at the beginning of the segment, Ti

must be in a state which has at least one incoming transition labeled by a symbol
in at least one of the sets specified in the symbol list.

ends-with type: symbol list default: nil (empty list)

Requirement: For each i for which Ai has at least one symbol in at least one of the
sets specified in the symbol list, if we take the projection of the segment onto Ti,
then (i) this projected segment is nonempty, and (ii) the label of the last transition
in the projected segment is an element of ends-with. In addition, if open is false
(which it is by default), then we also require (iii) that the label of every transition
in the projected segment other than the last is not in ends-with.

require type: symbol list default: nil (empty list)

Requirement: For each symbol spec in the symbol list, each event in the set
corresponding to that symbol spec must occur at least once as a label of a transition
in the segment. Note: the meaning of require is different for infinite traces; see
Section 6 below.

force type: symbol list default: nil (empty list)

Requirement: Exactly the same as require. But unlike require, the meaning
does not change for infinite traces; see Section 6.

forbid type: symbol list default: nil (empty list)

Requirement: None of the events in the sets of the symbol list can occur as the
label of a transition in the segment.

restrict type: restriction list default: nil (empty list)

Requirement: Each restriction defines an equation or inequality which we require
to hold. The grammar is as follows:

<restriction> ::= ’(’ <relation> ’(’ ’total’ { <symbol spec> } ’)’
<number> ’)’

<relation> ::= ’<=’ | ’=’ | ’>=’

This is interpreted as follows: each symbol represents the number of times that
event occurs as the label of a transition in the segment; we total up these values
over all symbols in the symbols specs, and we require that the resulting value
be either less than or equal to, equal to, or greater than or equal to <number>,
depending on whether <relation> is ’<=’, ’=’, or ’>=’. For example,

(<= (total "a" "b" "a" "a" "c") 15)

THE INCA QUERY LANGUAGE 7

means 3a + b + c ≤ 15, where here a represents the number of occurences of a
transition labeled by a in the segment, etc.

constraints type: constraint list default: nil (empty list)

Requirement: This is similar to restrict, but more general. The grammar is as
follows:

<constraint> ::= ’(’ <relation> <expr> <expr> ’)’
<expr> ::= <number>

| <symbol>
| ’(’ ’aux’ <name> ’)’
| ’(’ ’traversals’ ’(’ <node> <symbol> <node> ’)’ ’)’
| ’(’ <op> <expr> { <expr> } ’)’

<node> ::= ’(’ <number> <name> <number> ’)’
<op> ::= ’+’ | ’-’ | ’*’

In a <node>, the first number is a positive integer representing an interval, the
name is the name of an FSA, and the second number is the identification number
of a state in that FSA. In the list following “traversals”, the two nodes should
have the same interval numbers and be in the same FSA; this list then represents
a particular transition in that FSA in the specified interval, and the expression

(traversals (<node> <symbol> <node>))

represents the total number of times that transition is taken in the specified interval.
(Note: if there are two (or more) transitions between the same two nodes with the
same label, then only one of them will be selected.) Note that the specified interval
does not have to be I (the interval in which this clause occurs). As usual, a
<symbol> by itself just represents the total number of occurences of transitions in
I labeled by that symbol.

The “aux” expression is used to define an auxiliary variable which can be used
in any constraint (in this interval or another). There is no need to declare the
auxiliary variable. For example:

(defquery "t" "nofair"
(omega-star-less
(sequence
(interval
:initial t
:constraints
’(
(= (aux "a") "call(t1;t2.a)")
(= (aux "b") "call(t1;t2.b)")
(>= (aux "b") 1)
(>= (aux "a") (* 3 (aux "b")))))

(interval
:constraints
’(
(= "call(t1;t2.a)" (* 2 (aux "a")))
(= "call(t1;t2.b)" (* 3 (aux "b"))))))))

This describes executions of two segments in which:

8 STEPHEN F. SIEGEL

(i) In the first segment, the number of calls to entry b is at least 1, and the
number of calls to entry a is at least 3 times the number to entry b.

(ii) In the second segment, the number of calls to entry a is exactly 2 times the
number of such calls in the first segment, and the number of calls to entry
b is exactly 3 times the number of such calls in the first segment.

Notice that (aux "a") refers to the same value no matter which interval it occurs
in, whereas the value of "call(t1;t2.a)" depends upon the interval: it represents
the number of calls to entry a in the segment corresponding to the interval in which
it appears.

Note: In INCA, one may use any name one likes for an auxiliary variable, as
long as the name does not conflict with one already in use by INCA. To see the
auxiliary variable names INCA uses for a particular system, use the INCA “booklet”
command.

costs type: cost-spec default: "ILP-variable-unit"

Requirement: This does not add any requirements; instead, it is used to define
or modify the objective function in the ILP system generated by INCA, which can
impact (a) how fast the system can be solved by the ILP tool, and (b) the nature
of the counterexample produced if the system has a solution. The grammar is as
follows:

<cost spec> ::= <standard objective>
| ’(’ ’costs’ ’(’

[’(’ ’:base’ <number> ’)’]
{ ’(’ <symbol spec> <number> ’)’ } ’)’ ’)’

This specifies the cost function by starting with a base value for each ILP variable
and then adding a given value if it represents the occurrence of a symbol in one of
the symbol specs.

<standard objective> ::= ’"ILP-variable-unit"’
| ’"event-symbol-unit"’
| ’"connect-arc-unit"’
| ’"connect-arc-unit-self-loops-bad"’
| ’"connect-arc-unit-self-loops-real-bad"’
| ’"random"’

These are interpreted respectively as

• “All ILP vars have weight 1.”
• “Event occurrence has weight 1.”
• “Connect arcs have weight −1.”
• “Connect arcs and self loops have weight −1.”
• “Connect arcs have weight −10, self loops have weight −3, and all other

arcs have weight 1.”
• “Each ILP variable has random weight between 0 and *max-capacity*.”

The exact meanings of these objective functions are beyond the scope of this doc-
umentation, as they have no bearing on the set of executions matching the query.

THE INCA QUERY LANGUAGE 9

6. Infinite Traces

By an infinte execution we mean an infinite sequence of sets of transitions:

S1, S2, . . .

for which (i), (ii), and (iii) of Section 3 hold and also

(iv’) For all i = 1, . . . , n: the projection of the sequence onto Ti is either (i) finite
and is a complete execution of Fi (i.e., Fi is in an accepting state at the
end), or (ii) is infinite and passes through an accepting state of Fi infinitely
often.

A sequence in which the final interval is declared perpetual represents a set of
infinite executions. In order for the sequence to be valid, only the final interval
may be declared perpetual. Also, the parameter progress must be nil (false) in
a perpetual interval.

perpetual type: boolean default: nil (false)

Requirement: If true, this interval is declared perpetual.

When does an infinite execution match the sequence in this case? If, and only
if, there are positive integers 1 ≤ j1 ≤ · · · ≤ jk such that the execution segments

(Sj1 , ..., Sj2−1), (Sj2 , ..., Sj3−1), . . . , (Sjk
, . . .)

satisfy all the interval requirements. The requirements are essentially the same as
in the finite case, with the following modifications for the final interval and segment
only :

require type: symbol list default: nil (empty list)

Requirement: For each event e in the union of the sets specified in the symbol
list, let Ai be the alphabet containing e, and consider the projection of the infinite
segment onto Ti. Then we require that either (i) the projection is empty (i.e., Fi

has terminated), or (ii) e is the label of at least one transition in the projection.
If we wish to require that an event e occurs in the perpetual segment in any

case, use :force.

ends-with type: symbol list default: nil (empty list)

Requirement: For each i for which Ai intersects notrivially the union of the sets
specified in the symbol list, if we take the projection of the segment onto Ti, then (i)
this projected segment is nonempty and finite, and (ii) the label of the last transition
in the projected segment is an element of at least one of the sets specified in the
symbol list. In addition, if open is false (which it is by default), then we also require
(iii) that the label of every transition in the projected segment other than the last
is not in any set specified in the symbol list.

10 STEPHEN F. SIEGEL

7. Symbols

A symbol spec specifies a set of symbols. It provides a convenient way for speci-
fying a set without having to explicity list each element. INCA expands the symbol
spec in a “pre-processing” stage into an explicit list of symbols. The grammar is
as follows:
<symbol spec> ::= <symbol>

| ’(’ ’rendezvous’ <string> ’)’
| ’(’ ’rend’ <string> ’)’
| ’(’ ’contains’ <string> ’)’
| ’(’ ’prefix’ <string> ’)’
| ’(’ ’or’ <symbol spec> { <symbol spec> } ’)’
| ’(’ ’and’ <symbol spec> { <symbol spec> } ’)’

The semantics for each case are as follows:
"X": A symbol by itself just represents the set of one element containing that

symbol.
(rendezvous "X"): This represents the set of two elements "accept(X)" and

"call(X)".
(rend "X"): This represents the set of all elements in the alphabet which

begin with either "accept(X" or "call(X". It is equivalent to
(or (prefix "accept(X")) (prefix "call(X")))

(contains "X"): This represents the set of all elements in the alphabet which
contain the substring "X".

(prefix "X"): This represents the set of all elements in the alphabet which
begin with the substring "X".

(or a b): Here a and b are symbol specs. This represents the union of the
set specified by a and the set specified by b.

(and a b): Here a and b are symbol specs. This represents the intersection
of the set specified by a and the set specified by b.

Example 7.1 (Rendezvous with parameters). In SEDL, as in Ada, entries may
have parameters which allow data to be passed from one task to another during a
rendezvous. The INCA front end deals with this by creating a separate rendezvous
for each possible set of values of the parameters. (Since in SEDL all types are finite,
there are only a finite number of these.) For example, suppose there is a system with
two tasks, t1 and t2, and t2 has an entry e with a paramter that takes values in an
enumerated type {a1,a2,...,a20}. INCA will essentially replace this rendezvous
with 20 “ordinary” (parameter-less) rendezvous. Assuming all 20 of these calls
actually occur at some place in the SEDL program, this means the alphabet for t1
will contain the 20 events

"call(t1;t2.e;a1)", . . . , "call(t1;t2.e;a20)"
and the alphabet for t2 will contain the corresponding matching events

"accept(t1;t2.e;a1)", . . . , "accept(t1;t2.e;a20)".
In this situation, (rend "t1;t2.e") represents all 40 of these events. On the other
hand, (rendezvous "t1;t2.e") specifies the empty set, while

(rendezvous "t1;t2.e;a1")

represents two events (one call and one accept). Now (rend "t1;t2.e;a1") rep-
resents 22: not only "accept(t1;t2.e;a1)" and "call(t1;t2.e;a1)", but also

THE INCA QUERY LANGUAGE 11

"accept(t1;t2.e;a10)", . . . , "accept(t1;t2.e;a19)",
"call(t1;t2.e;a10)", . . . , "call(t1;t2.e;a19)"

The moral is, one must be very careful when using these symbol macros!

8. Examples

Example 8.1 (Global Absence). Suppose we have a system of communicating
FSAs in which the alphabet of one FSA, say Fi, contains the symbol "P". Consider
the following query:

(defquery "global_absence_of_p" "nofair"
(omega-star-less
(sequence
(interval :initial t :ends-with ’("P")))))

Suppose S1, . . . , Sm is an execution-prefix for the system, and consider the pro-
jection t1, . . . , tk of the execution-prefix onto Fi. Then S1, . . . , Sm will match the
query if, and only if, tk is labeled by "P", and tj is not labeled by "P" for j < k.

If there is no execution-prefix matching this query then there can be no execution-
prefix of the system in which event "P" occurs. For if event "P" did occur in an
execution-prefix, there must be a first occurence of "P" in the prefix, and cutting off
the prefix after that first occurence would yield a prefix which matches the query.

Recall that in INCA, a query is used to describe the set of executions which
violate the property one wishes to verify. So if we show that the query has no
matches, we have verified that "P" will not occur in any execution-prefix of the
system, hence the name of the property, “Global Absence of P.”

Example 8.2 (Absence of P Before R). Suppose we have a system of communi-
cating FSAs in which two distinct symbols "P" and "R" occur. Say "P" belongs to
the alphabet of Fi and "R" to that of Fj . (It is possible that i = j.) Consider the
query:

(defquery "absence_of_p_before_r" "nofair"
(omega-star-less
(sequence
(interval :initial t :ends-with ’("R") :require ’("P")))))

Suppose S1, . . . , Sm is an execution-prefix for the system, and consider the projec-
tions onto Fi and Fj respectively:

t1, . . . , tk u1, . . . , ul.

(These will be the same if i = j.) Then S1, . . . , Sm will match the query if, and
only if, all of the following hold:

(i) For at least one a (1 ≤ a ≤ k), ta is labeled by "P".
(ii) ul is labeled by "R".
(iii) ua is not labeled by "R" for a < l.

If we can show that there is no execution-prefix matching this query, then we have
verified the following property of our system:

Absence of P Before R : In any execution-prefix in which "R" occurs,
there can be no "P" before the first "R".

12 STEPHEN F. SIEGEL

For if there is a prefix S1, . . . , Sm which violates the property, then we can cut
off the prefix after the first occurence of "R" and the result will be a prefix which
satisfies (i) through (iii).

Actually, we might have verified something even stronger than the property, for
it is possible that for some systems there are execution-prefixes which match the
query but are not violations of the property. Specifically, as long as i does not equal
j, it is conceivable there is an execution-prefix of the system in which the "P" occurs
after the "R", but still satisfies (i), (ii), and (iii). The simplest possible example is
where "P" and "R" are local events in different tasks and the execution-prefix has
the form {u}, {t}, where label(u) = "R" and label(t) = "P". This prefix matches
the query, but it clearly does not violate the property as it is stated above.

So in some cases our query over-estimates the set of all possible violations of the
property. That is fine, because if we show there is no execution-prefix matching
the query, there can certainly be none which violates the property. However, if an
analysis tool such as INCA produces a “counterexample,” i.e., an execution-prefix
which matches the query, one would have to check it to determine whether or not
it represents an actual violation of the property. In other words, this query is a
conservative, but not precise, representation of the space of violating executions.

(However, in the case where "P" and "R" are in the same task, this query is
actually precise.)

Example 8.3 (Existence of P Between Q and R). Suppose we have a system of
communicating FSAs which involves events "P", "Q", and "R", where P does not
equal Q, and P does not equal R. (But we do allow Q = R.) We wish to verify:

Existence of P between Q and R : If S1, . . . , Sm is any execution-
prefix, 1 ≤ i < k ≤ m, "Q" labels a transition in Si, and "R" labels
a transition in Sk, then there exists j such that i ≤ j ≤ k and "P"
labels a transition in Sj .

Consider the query:

(defquery "existence_of_p_between_q_and_r" "nofair"
(omega-star-less
(sequence
(interval :initial t :open t :ends-with ’("Q"))
(interval :ends-with ’("R") :forbid ’("P")))))

An execution-prefix S1, . . . , Sm will match the query if, and only if, there is some
l, 1 ≤ l ≤ m + 1, such that the following three conditions hold:

(i) The projection of S1, . . . , Sl−1 onto the task containing "Q" has its last
transition labeled by "Q".

(ii) The projection of Sl, . . . , Sm onto the task containing "R" has its last tran-
sition labeled by "R", and no other transition in the projection is labeled
by "R".

(iii) Sl, . . . , Sm contains no transition labeled "P".

We claim that if there is a violation of the property then there will be a prefix
which matches the query.

To see this, suppose S1, . . . , Sm is a violation. That means there are integers i
and k with 1 ≤ i < k ≤ m, such that "Q" labels a transition in Si, "R" labels a
transition in Sk , and no transition in any Sj (j = i, . . . , k) is labeled "P".

THE INCA QUERY LANGUAGE 13

Let k′ be the least integer such that i < k′ ≤ k and "R" labels a transition in
Sk′ . (We know there is such an integer, because k itself is one.)

Consider the execution-prefix S1, . . . , Sk′ . Let l = i + 1. Then it is clear that (i)
through (iii) hold for this prefix with this l, and our claim is proved.

Hence, if we show the query has no matches, we have verified that the system
satisfies “Existence of P Between Q and R.”

References

[1] J. C. Corbett. The S-expression design language (SEDL). ICS-TR-93-02, Information and

Computer Science Department, University of Hawaii at Manoa, 1993.

[2] J. C. Corbett and G. S. Avrunin. Using integer programming to verify general safety and
liveness properties. Formal Methods in System Design, 6:97–123, January 1995.

Laboratory for Advanced Software Engineering Research, Department of Computer

Science, University of Massachusetts, Amherst, MA 01003-4610

E-mail address: siegel@cs.umass.edu

