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Abstract. We show that many important properties of certain MPI
programs can be verified by considering only a class of executions in
which all communication takes place synchronously. In previous work, we
showed that similar results hold for MPI programs that use only blocking
communication (and avoid certain other constructs, such as MPI_ANY_-
SOURCE); in this paper we show that the same conclusions hold for
programs that also use the nonblocking functions MPI_ISEND, MPI_-
IRECV, and MPI_WAIT. These facts can be used to dramatically reduce
the number of states explored when using model checking techniques to
verify properties such as freedom from deadlock in such programs.

1 Introduction

MPI includes nonblocking communication constructs, such as MPI_ISEND and
MPI_IRECV, that can increase the parallelism of a program by allowing processes
to overlap computation and communication. But this same parallelism can make
programs hard to understand, test, and debug. In principle, model checking tech-
niques [1] can explore all the possible executions of a parallel program and detect
problems such as deadlock even if those problems arise only on rare and unusual
execution paths, and these techniques have attracted growing interest from the
scientific computing community. One of the main difficulties in the application of
model checking, however, is the state explosion problem—the number of system
states that the model checker must examine typically grows exponentially in the
number of processes in the program. In particular, for MPI programs the buffer-
ing of messages makes an enormous contribution to this state explosion. In [13],
we showed that many properties of a class of MPI programs using only the (stan-
dard mode) blocking communication constructs (MPI_SEND, MPI_RECV, etc.)
could be verified by checking only synchronous executions, thereby eliminating
the buffering and greatly expanding the range of model checking. In this paper,
we extend those results to the nonblocking communication constructs.
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In the next section, we explain how we model MPI programs and state a
key lemma. In Sec. 3, we use the lemma to show that checking for deadlock can
be restricted to synchronous executions, and in fact to an even more restricted
type of synchronous execution. We present a few experimental results showing
its impact on model checking using the model checker Mpi-Spin [10] in Sec. 4.
The last section presents some conclusions and discusses future work.

2 Traces

In what follows, we let P be a model of an MPI program in which the only
MPI functions used are MPI_INIT, MPI_FINALIZE, MPI_COMM_RANK, MPI_-
COMM_SIZE, MPI_ISEND, MPI_IRECV, and MPI_WAIT, and which does not use
MPI_ANY_SOURCE. We call such a model permissible. (We will see below that
the list of permitted functions can be expanded significantly.) The definition of
such a model can be made mathematically precise in a variety of ways (see, for
example, [10]). However, in the discussion here we will use a somewhat informal
notion of model in order to emphasize the essential concepts underlying the
theorem and its proof.

In essence, P may be thought of as an abstract version of an MPI program
consisting of a fixed number of single-threaded processes. Each process has a
unique integer process ID (pid); the rank of the process in MPI_COMM_WORLD
could be used as the pid, for example. A process of P may use MPI_ANY_TAG
and may even make nondeterministic choices. Such choices are common in models
of MPI programs that have been created by abstracting the data and variables in
the original program. Each process maintains a local state, which may be thought
of an assignment of values to all variables in the process, including “invisible”
variables such as the program counter.

An execution of P is considered to progress in a series of discrete atomic
steps, each step corresponding to the execution of a statement by one process in
P and possibly modifying the state of that process. In general, there are many
different ways P can execute, because the steps from the different processes can
be interleaved in various ways and a process can make nondeterministic choices.
An execution can consist of a finite or (countably) infinite number of steps. Finite
executions can stop at any point—it is not required that the processes terminate
or become permanently blocked—and are sometimes called execution prefixes.

We think of each execution of P as leaving behind a trace which captures
all information regarding that execution. We will treat the trace as a sequence
of events that occur instantaneously and atomically when the processes execute
certain actions. Each event contains complete information describing the change
made to the system state. The events fall into the following categories:

1. A post-send event ps is generated when an MPI_ISEND statement returns.
The information incorporated into this event includes the pid of the sending
process, the pid of the destination process, the tag, and some unique identifier
for the request object instantiated by the call, which we will call the request
id (rid).



2. A post-receive event pr is generated upon the return of an MPI_IRECV. The
event information includes the pid of the process executing the statement,
the pid of the source, the tag (or MPI_ANY_TAG), and the rid.

3. An enter-wait event ew is generated just before executing a call to MPI_WAIT.
The event information includes the pid of the process executing the call and
the rid of the request being waited on.

4. An exit-wait event xw is generated when a call to MPI_WAIT returns. The
event information includes the pid of the process executing the call and the
rid of the request. If the request is for a receive operation, the data received
is also included.

5. A term event term is generated just before a process terminates.
6. A local event local is generated for every statement that does not fall into one

of the categories above (and hence does not involve communication). The
event includes all information necessary to determine the change in local
state resulting from execution of the statement.

We need both the ew and xw events since an MPI_WAIT call can block. To
simplify the presentation we have not recorded MPI_INIT and MPI_FINALIZE in
the trace. We assume those functions are invoked properly by each process.

We say that traces T and T ′ are equivalent if for each process p, the sequence
of events from p are identical in the two traces and the state of p after the last
event in T is the same as the state after the last event in T ′. In particular, the
two traces differ only in how events from different processes are interleaved.

Note that, since we have forbidden MPI_ANY_SOURCE, there is a unique
way that send and receive operations can be paired by the MPI infrastructure,
and this pairing relation is clearly discernible from the trace. An important point
about the pairing relation is that it depends only on the order of the posting
events within each process, and not in any way on how events from different
processes are interleaved. We will say that a ps or pr event in T is paired in T if
the pr or ps event with which it must be paired also occurs in T .

The rids allow us to determine which posting events correspond to which ew
and xw events. Hence every communication involves at most six related entries:
the ps and matching pr, the two corresponding ew events, and the two corre-
sponding xw events. Of course, not all six events need occur. It is possible, for
example, for a send to post and then complete without a matching receive ever
posting, because the message emanating from the send can be buffered. On the
other hand, a receive request can never complete if the related send has not
posted. In fact, this last restriction is the only barrier to changing the interleav-
ing of events from different processes. This is made precise by the following:

Lemma 1. Suppose that T is a trace from P , and let ei and ei+1 be consecutive
events in T satisfying the following conditions:

(i) The two events ei and ei+1 do not come from the same process.
(ii) If ei+1 is an xw for a receive request, then ei is not the matching ps.

Then the sequence obtained by transposing ei and ei+1 is a trace of P equivalent
to T .



Lemma 1 may be taken as an “axiom” following from the informal semantics
described in the MPI Standard [4], or may be proved from a formal model such
as the one described in [10].

3 Deadlock

Let T be a finite trace of a model P . A process p is in a potentially blocked state
at the end of T if p has either terminated or the last event for p is an ew for
which the corresponding posting event is not paired in T . The motivation for
this terminology is the fact that the Standard permits—but does not require—
an MPI implementation to block a (standard mode) send operation until the
message can be delivered synchronously, i.e., until the receiving process has
posted a matching receive. We say that T ends in a potentially halted state if at
the end of T every process is potentially blocked. Hence in a potentially halted
state it is not possible to progress unless, possibly, send operations are allowed
to complete without their matching receives having been posted. To distinguish
between the “good” case where all processes have terminated normally and the
“bad” one where deadlock may occur, we say T ends in a potentially deadlocked
state if T ends in a potentially halted state and furthermore at least one process
has not terminated. We say P is deadlock-free if it has no trace ending in a
potentially deadlocked state.

A trace T is synchronous if every xw event on a send request is preceded
by the related pr. Hence a synchronous trace represents an execution in which
no message buffering was required. We say P is synchronously deadlock-free if it
has no synchronous trace ending in a potentially deadlocked state.

A synchronous trace T = e1, e2, . . . is greedy if, for all i, if ei is an event from
process p and ei+1 is an event from process q 6= p, then p is in a potentially
blocked state at the end of e1, . . . , ei. In other words, control switches from one
process to another in T only when the first process becomes potentially blocked.

Theorem 1. Let P be a permissible model of an MPI program and assume that
no greedy trace of P ends in potential deadlock. Suppose that T is a finite trace
from P ending in a potentially halted state. Then there exists a greedy trace T ′

from P which is equivalent to T .

Proof. We will produce the greedy trace T ′ by modifying the interleaving of
T . The modification proceeds in m stages numbered 1, . . . ,m, where m is the
number of events in T . Let T0 = T and let Ti denote the modified trace after
stage i (1 ≤ i ≤ m). We will show by induction on i that Ti is equivalent to T
and its prefix of length i is greedy. The case i = 0 is vacuously true and the case
i = m is the desired result.

Suppose 1 ≤ i ≤ m and let the event sequence Ti−1 just before stage i be
e1, . . . , em. By the induction hypothesis, we may assume that the prefix R =
e1, . . . , ei−1 is greedy. Stage i proceeds as follows. Let p be the process of ei−1.
(If i = 1 we may let p be any process.) Assume p satisfies the following criterion:
there is an event from p in the suffix S = ei, . . . , em, and if the first such event



e is an xw then the posting event associated with e is paired in R. Then, by
Lemma 1, the sequence Ti obtained by commuting e to the left until it is in
position i is a trace equivalent to Ti−1, which the induction hypothesis tells us is
equivalent to T . Moreover, the prefix of Ti of length i is greedy. So if p satisfies
the criterion, we have completed the inductive step.

Now if p fails to satisfy the criterion, then it must be potentially blocked.
For suppose that there are no events from p in S. Since T ends in a potentially
halted state, that means p must either have terminated in R or ended with an
ew for which one of the two related posts does not occur in R. In this case, we
may choose any process q satisfying the criterion and proceed as before, and the
resulting prefix of length i is still guaranteed to be greedy, and we have again
completed the inductive step.

We are left with the possibility that no process p satisfies the criterion. In that
case, every process is potentially blocked at the end of R, yet not every process
has terminated, since there remain events in S. This means R is a greedy trace
ending in potential deadlock, contradicting the hypothesis that no greedy trace
ends in potential deadlock. ut

Corollary 1. Let P be a permissible model of an MPI program. Then P is
deadlock-free if, and only if, P is synchronously deadlock-free.

Proof. If P is deadlock-free then no trace ends in potential deadlock, so certainly
no synchronous trace does. So suppose P is synchronously deadlock-free. Since
any greedy trace is synchronous, no greedy trace of P can end in potential dead-
lock. Now if P had a trace T ending in potential deadlock, then by Theorem 1, P
would have to have a greedy trace ending in potential deadlock, a contradiction.
So P has no trace ending in potential deadlock, i.e., P is deadlock-free. ut

While we have expressed Theorem 1 using a very limited subset of MPI, it
is clear that a number of other functions can be safely added to that subset.
For example, MPI_SEND is functionally equivalent to an MPI_ISEND followed
immediately by an MPI_WAIT, and so can be included. The same goes for MPI_-
RECV. MPI_SENDRECV may be replaced by the post of the send, followed by
the post of the receive, followed by the two waits. MPI_SENDRECV_REPLACE
may be expressed in a similar way, using a temporary buffer to handle the
receive. All of the collective functions can be modeled using these basic point-
to-point functions (see [11]) and so can be included as well. The functions MPI_-
WAITALL, MPI_SEND_INIT, MPI_RECV_INIT, MPI_START, MPI_STARTALL,
MPI_REQUEST_GET_STATUS, and MPI_REQUEST_FREE are also permissible.

It is instructive to see how the proof fails if P uses MPI_ANY_SOURCE.
Consider the code in Fig. 1(a). In the sole synchronous trace of this program,
every process terminates normally. If buffering is allowed, process 1 may send
both messages, then process 2 may execute to completion, then the receive in
process 0 may get paired with the message from process 2, and then process 0 will
deadlock at the second receive. In attempting to apply the algorithm from the
proof to convert this sequence into a synchronous one, one gets to a point where
there is no process satisfying the criterion, but nevertheless the synchronous



if (rank==0) { MPI_Recv(...,MPI_ANY_SOURCE,...); MPI_Recv(...,2,...); }

else if (rank==1) { MPI_Send(...,0,...); MPI_Send(...,2,...); }

else if (rank==2) { MPI_Recv(...,1,...); MPI_Send(...,0,...); }

(a) Counterexample using MPI_ANY_SOURCE and 3 processes

if (rank==0) {

MPI_Isend(...,1,tag0,...,&req[0]); MPI_Isend(...,1,tag1,...,&req[1]);

MPI_Waitany(2,req,&i,...);

if (i==0) { MPI_Recv(...,1,tag2,...); MPI_Wait(&req[1],...); }

else { MPI_Wait(&req[0],...); }

} else if (rank==1) {

MPI_Recv(...,0,tag0,...); MPI_Send(...,0,tag2,...);

MPI_Recv(...,0,tag1,...);

}

(b) Counterexample using MPI_WAITANY and 2 processes

assert (rank == 0 || rank == 1);

MPI_Isend(..., 1 - rank, tag1, &req, ...);

MPI_Test(&req, &flag, ...); MPI_Barrier(...);

if (flag) { MPI_Recv(..., 1 - rank, tag2, ...); }

else { MPI_Recv(..., 1 - rank, tag1, ...); MPI_Wait(&req, ...); }

(c) Counterexample using MPI_TEST and 2 processes

Fig. 1. Counterexamples to Corollary 1 for models using “impermissible” primitives

prefix is not potentially deadlocked. The reason is that the wildcard receive can
be paired with a different send in order to escape from the deadlock. The proof
of Theorem 1 depends on the fact that the way sends and receives are paired
cannot be changed.

The functions MPI_TEST and MPI_WAITANY are impermissible. Counterex-
amples using these are given in Fig. 1(b,c).

4 Application

Theorem 1 has implications for model checking to verify properties such as
deadlock-freedom: It is sufficient to use the model checker to explore all syn-
chronous (or just all greedy) executions. If no potentially deadlocked state is
found, then P is deadlock-free.

But Theorem 1 applies to more than just deadlock-freedom. Suppose we
have established deadlock freedom for P (as above) and we wish to prove some
property about the state of P at termination—for example, that the values
computed by P are correct. If we can use the model checker to establish this
correctness for all greedy traces, then Theorem 1 implies correctness must hold
on any execution. For if there were some execution leading to an incorrect result
then Theorem 1 says there must exist an equivalent greedy execution. Since the
final values of all variables are the same in equivalent executions, the greedy



one will also be incorrect. Hence if the model checker can show that all greedy
executions lead to a correct result, we can conclude that all executions do.

Mpi-Spin is an extension to the model checker Spin [2] that adds a number
of features corresponding closely to the MPI primitives, making it much easier to
model MPI programs for verification. Mpi-Spin can be used to verify properties
such as deadlock-freedom and the correctness of the numerical results produced
by P . The latter is accomplished by providing Mpi-Spin with both a sequential
version of the program, assumed to be correct, and the parallel version and
then using Mpi-Spin to show that the parallel and sequential versions must
produce the same output on any input. The technique uses symbolic execution
to model the numerical operations in the programs and is described in detail
in [14]. Mpi-Spin can check properties of programs employing the nonblocking
operations but uses a general checking algorithm that does not take advantage
of the reductions made possible with Theorem 1. One can force Mpi-Spin to
search only synchronous traces, however, by invoking it with the option -buf=0.
If in addition one encloses the body of each process in an atomic block, then
only greedy traces will be explored.

To illustrate the impact of the optimizations, we consider Example 2.17, “Use
of nonblocking communications in Jacobi computation” from [15]. The program
distributes a matrix by columns, maintaining appropriate ghost cell columns. At
each iteration, a process first computes the new values for its left- and right-most
columns, then posts two send and two receive requests to update the ghost cells,
then computes the new values for its interior columns, and finally waits on the
four requests before moving to the next iteration.

We considered two properties: deadlock-freedom and the functional equiva-
lence of this parallel program to the simple sequential version (Example 2.12).
We scaled n, the number of processes, and set the global matrix size to 3n× 3n
and the number of loop iterations to 3. For each n, we used Mpi-Spin to verify
each property in three different ways: (1) allowing buffering of messages, (2)
allowing only synchronous communication, and (3) allowing only greedy execu-
tions. The number of states for each search can be seen in Fig. 2, where each
curve shows exponential growth as expected. The synchronous optimization cer-
tainly helped but restricting to greedy executions made a dramatic improvement
and allowed the verification to scale much further. In fact, our theorem shows
that we could look only at the greedy executions in which the processes execute
(if not blocked) in some fixed order such as round-robin. This would presumably
allow a much greater reduction in the number of states, but we do not see a
straightforward way to implement that in Spin.

5 Conclusion

To the best of our knowledge, Matlin, Lusk, and McCune [3] were the first to
apply model checking techniques to an MPI problem, using Spin to investigate a
component of the MPI implementation MPICH. In [12,13] we showed how Spin
could be used to verify properties of simple MPI-based scientific programs; we
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Fig. 2. The number of states (y-axis) vs. number of processes (x-axis) for verifying two
properties of the Jacobi iteration program

also presented theorems for countering state-explosion for MPI programs that
used only blocking functions and no wildcard receives. These reduction results
were generalized to deal with wildcard receives in [9]. Pervez, Gopalakrishnan,
Kirby, Thakur, and Gropp [8] used Spin to verify programs that use MPI’s “one-
sided” operations and found a subtle bug in one such program. The problem of
verifying the numerical computations carried out by MPI programs was tackled
by Siegel, Mironova, Avrunin, and Clarke in [14], which introduced the symbolic
method for establishing the equivalence of sequential and parallel versions of
a program. This method was incorporated into the Mpi-Spin tool, which was
introduced in [10], along with a technique for modeling nonblocking functions.

Other very recent results appear to be closely connected to this work. In [6],
Palmer, Gopalakrishnan, and Kirby introduce a model for a somewhat different
subset of MPI and show how dynamic partial order methods allow checking
properties by considering only a subset of the possible traces. Pervez, Gopala-
krishnan, Kirby, Palmer, Thakur, and Gropp [7] have developed a model checking
technique that works directly on source code, bypassing the model construction
step. Using the modeling language TLA+, Palmer, Delisi, Gopalakrishnan, and
Kirby [5] have developed a formal description of a large portion of the MPI
Standard, and have integrated this into model checking tools. In future work,
we will explore the connections between these approaches and ours.

In this paper we have generalized some of the earlier reduction theorems to
the case of nonblocking functions, and demonstrated how these results can be
used to improve the performance of Mpi-Spin. In particular, we have shown that
many important properties of MPI programs that use the (standard mode) non-
blocking operations can be verified by checking only a special class of executions
in which no messages are buffered by the MPI infrastructure. A small example
shows that this can provide a very substantial reduction in the resources required
for verification, allowing model checking of significantly larger MPI programs.
Our results do not hold for programs that make use of MPI_ANY_SOURCE,
MPI_WAITANY, MPI_WAITSOME, MPI_TEST, MPI_TESTANY, or MPI_TEST-



SOME. We plan to investigate the generalization of the Urgent algorithm of [9]
to handle these constructs.
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