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Abstract. This paper explores a way to apply model checking tech-
niques to parallel programs that use the nonblocking primitives of the
Message Passing Interface (MPI). The method has been implemented as
an extension to the model checker Spin called Mpi-Spin. It has been ap-
plied to 17 examples from a widely-used textbook on MPI. Many correct-
ness properties of these examples were verified and in two cases nontrivial
faults were discovered.

1 Introduction

Parallelism has proved remarkably effective at providing the high level of per-
formance demanded by scientific computing. But parallel programming is no-
toriously difficult and, as the complexity of scientific applications increases,
computational scientists find themselves expending an inordinate amount of ef-
fort developing, testing, and debugging their programs. Concerns about this level
of effort—and the correctness of the resulting programs—have led to growing in-
terest in new verification and validation approaches for scientific computing [6].

Model checking is a formal verification method that is widely-used in many
hardware and software domains and in theory could be applied to scientific
software. Yet significant hurdles must be overcome before model checking can
be practically applied in the scientific domain. Among these is the fact that
model checkers operate on a model of a program, rather than on the program
itself. Hence techniques must be developed to construct finite-state models of
scientific programs.

This paper describes a way to create finite-state models of programs that
employ the “nonblocking” communication primitives of the Message Passing
Interface (MPI) [3, 4]. MPI is a large message-passing library with subtle and
complex semantics and has become the de facto standard for high-performance
parallel computing. The nonblocking primitives provide a precise way to specify
how computation and communication can be carried out concurrently in an MPI
program. For example, one may specify that a communication task is to begin
at one point in an MPI process and that the process should block at a subse-
quent point until that task has completed; computational code can be inserted
between these two points to achieve the desired overlap. An algorithm expressed
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in this way can be mapped efficiently to hardware architectures, common in high-
performance computing, that utilize distinct, concurrently-executing components
for communication and computation. Because of this, nonblocking communica-
tion is ubiquitous in MPI-based scientific software and is generally credited with
playing a large role in the high level of performance that scientific computing has
achieved.

While previous work applying model checking techniques to MPI programs
has focused on various aspects of MPI, including the basic blocking point-to-
point and collective functions [9,8,7,11,10], “one-sided” operations [5] and pro-
cess management [2], none has dealt with nonblocking communication. There are
two reasons that might explain this. First, the semantics of nonblocking commu-
nication are considerably more complex than those of blocking communication.
The nonblocking semantics involve the introduction of types, constants, and a
number of functions for creating and manipulating objects of those types, as
well as complex rules prescribing how the MPI infrastructure is to carry out
requests concurrently with program execution. Second, it is not obvious how to
represent the state of a nonblocking MPI program in a way that is amenable to
standard model checking techniques. MPI blocking communication operations
map naturally to primitives provided by a model checker such as Spin [1]: Spin

channels can be used to represent queues of buffered messages en route from one
MPI process to another and the send and receive channel operations correspond
closely to the blocking MPI send and receive functions. No Spin data structure
corresponds to an MPI nonblocking communication request nor supports the
myriad operations upon it.

We proceed with a brief summary of the MPI nonblocking primitives (Sec.
2). This is followed by a detailed description of our approach for modeling non-
blocking MPI programs for verification by standard explicit-state model checking
techniques (Sec. 3). Discussion of a preliminary validation of the approach fol-
lows (Sec. 4): it has been implemented as an extension to Spin called Mpi-Spin

and has been applied to the 17 examples in the popular MPI textbook [12]
dealing with nonblocking communication. Many correctness properties of these
examples were verified and, in two cases, nontrivial faults were discovered.

2 Nonblocking Communication

The standard mode blocking function used to send a message from one MPI
process to another is MPI_Send. Its arguments specify a communicator object
that represents the communication universe in which the processes live, the rank
of the destination process (an integer process ID relative to the communicator),
the number and type of elements to send, their location in memory (the send
buffer), and an integer tag. It blocks until the message has been completely
copied out of the send buffer—either into a system buffer or directly into the
receive buffer at the destination process. In particular, the MPI infrastructure
may block the sender until the destination process is ready to receive the message
synchronously.
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The nonblocking version of this function is MPI_Isend. It takes the same
arguments as MPI_Send but in addition it allocates and returns a handle r to
a request object. This function initiates the sending of the message and does
not block. A subsequent call to MPI_Wait on r blocks until the message has
been completely copied out of the send buffer and then deallocates the request
object. In particular, MPI_Send is equivalent to MPI_Isend followed immediately
by MPI_Wait.

The receive operations MPI_Recv and MPI_Irecv work in an analogous way.
In particular, MPI_Irecv initiates the receiving of a message and the subsequent
call to MPI_Wait blocks until the incoming message has been completely copied
into the receive buffer, from either a system buffer or directly from the send
buffer. The receive request will only be paired with a message whose destina-
tion, tag, and communicator fields match the source, tag, and communicator
fields of the receive, respectively. Unlike sends, the source and tag arguments
for the receiving functions can take the wildcard values MPI_ANY_SOURCE and
MPI_ANY_TAG, specifying that the receive will accept a message from any source,
and/or with any tag, respectively.

MPI makes certain guarantees concerning how receives and messages are
paired (or “matched”) [3, Sec. 3.5]. Fix two processes p and q. A receive r posted
from q cannot be paired with a message emanating from p if there is an earlier-
posted unpaired message from p to q that matches r. Similarly, a message s
emanating from p cannot be paired with a receive posted from q if there is an
earlier-posted unpaired receive from q that matches s.

These strictly negative guarantees are complemented by the following positive
ones. If s is an unpaired send request posted by p and r is an unpaired receive
request posted by q, and r and s match, then (1) s will complete unless r is paired
with another message and completes, and (2) r will complete unless s is paired
with another receive request and completes. In particular, at least one of r, s will
complete.

The function MPI_Test can be invoked on r to determine whether r has com-
pleted without blocking; it sets a boolean flag to 0 if r has not completed, else
it sets this flag to 1 and proceeds as MPI_Wait.

MPI_Request_free can be invoked on r to indicate that the request object
should be deallocated as soon as the request completes (in which case no subse-
quent call to MPI_Wait is necessary).

A number of MPI functions operate on arrays (ri) of request handles. The
function MPI_Waitany takes such an array and blocks until at least one request
has completed. It then chooses one of the completed requests, returns its index
i, and proceeds as if MPI_Wait were invoked on ri. MPI_Waitall blocks until
all requests in the array have completed and then proceeds as if MPI_Wait were
invoked on all ri. MPI_Waitsome blocks until at least one has completed and
then invokes MPI_Wait on all that have completed and returns the subset of
indices of all completed requests. The functions MPI_Testany, MPI_Testall,
and MPI_Testsome work in an entirely analogous way but never block.
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The function MPI_Probe takes source, tag, and communicator arguments and
blocks until it determines there is an incoming message that matches these pa-
rameters. However, it does not consume the message (as a receive operation
would) but simply returns certain information about the message which can
then be used in a subsequent receive operation. MPI_Iprobe is similar but re-
turns a flag instead of blocking. MPI guarantees that if a send request is posted
with parameters matching those passed to MPI_Probe, then MPI_Probewill even-
tually return, though there can be a delay between the posting and the return of
the probe. Similarly, repeated calls to MPI_Iprobe must eventually return true
if a matching send is posted.

MPI_Cancel is invoked on r to attempt to cancel the request. The cancellation
may or may not succeed. If it does succeed then any receive buffer involved
in the canceled communication should remain unchanged; if it does not then
execution should proceed as if MPI_Cancel were never called. A subsequent call
to MPI_Test_canceled on the status object of r is used to determine whether
or not the cancellation succeeded.

Persistent requests are created by calling MPI_Send_init or MPI_Recv_init.
The arguments are similar to those for MPI_Isend and MPI_Irecv but, unlike
ordinary requests, a persistent request r is inactive until started by invoking
MPI_Start on r. After invoking MPI_Wait (or one of the other completion oper-
ations) on r, the request object is not deallocated but is returned to the inac-
tive state until it is re-started. A persistent request is deallocated by invoking
MPI_Request_free. MPI_Startall starts all persistent requests in an array.

An example of the use of nonblocking communication is given in the MPI/C
code of Fig. 1, which is extracted from [12, Ex. 2.18]. In this program, multiple
producers repeatedly send messages to a single consumer. The consumer posts
receive requests for each producer in order of increasing rank, and then waits
on each request in a cyclic order. After a receive request completes, the message
is consumed and another receive request is posted for that producer. Note that
overlap between computation and communication is achieved because the con-
sumer may consume a message from a producer while the MPI infrastructure
carries out the requests to receive data from other producers.

3 Modeling Approach

We now describe our notion of a model of an MPI program that consists of a fixed
number of processes and uses the functions described in Sec. 2. For this work, we
make a few simplifying assumptions: the only communicator is MPI_COMM_WORLD,
each process is single-threaded, there is no aliasing of request handles, and no
non-zero error codes are returned by the MPI functions. In future work we expect
to eliminate each of these assumptions.

Our model consists of a particular kind of guarded transition system for each
processandaglobalarrayofcommunication records representingbufferedmessages
andoutstanding requests.Theexecutionsemantics aredefinedsothat, atanyglobal
state, either an enabled transition from one process or a transition corresponding
to an action by the MPI infrastructure may be selected for execution.
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MPI_Comm_rank(comm, &rank);
MPI_Comm_size(comm, &size);
if (rank != size-1) { /* producer code */

while (1) {
/* produce data */
MPI_Send(buffer->data, buffer->datasize, MPI_CHAR, size-1 tag, comm);
}

} else { /* consumer code */
for (i=0; i < size-1; i++)
MPI_Irecv(buffer[i].data, MAXSIZE, MPI_CHAR, i, tag, comm,
&(buffer[i].req));

for (i=0; ; i=(i+1)%(size-1)) {
MPI_Wait(&(buffer[i].req), &status);
/* consume data */
MPI_Irecv(buffer[i].data, MAXSIZE, MPI_CHAR, i, tag, comm,
&(buffer[i].req));

}
}

Fig. 1. Code excerpt from [12, Ex. 2.18], Multiple producer, single consumer

We now sketch how this can be made precise. We first fix values for the
following parameters: the number n ≥ 1 of MPI processes, an upper bound b ≥ 0
on the total number of buffered messages that may exist at any one time, and an
upper bound r ≥ 0 on the total number of outstanding requests that may exist
at any one time. We consider it an error if the outstanding request bound can be
exceeded. On the other hand, if a send is posted after the buffer bound has been
reached, execution can proceed but the MPI infrastructure will not be allowed
to buffer messages. The difference in how our model treats these two bounds
stems from the different roles these concepts play in MPI. The MPI Standard
states that each request object consumes some system resources and so there
must be some limit on the number of outstanding requests. (The precise limit is
implementation-dependent but is expected to be reasonably high.) Furthermore,
a function that allocates a new request, such as MPI_Isend, will not block if this
limit has been reached—instead, an error occurs. On the other hand, a correct
MPI implementation should never report an error if it has insufficient space to
buffer messages; at worst, the send operations will not complete until they can
be paired with matching receives or sufficient buffer space becomes available.

We begin with the definition of communication record, then describe the tran-
sition system for a single process, and finally define the global model and exe-
cution semantics.

3.1 Communication Records

A communication record is an 11-tuple

(core, source, dest, datatype, count, tag, data, handle, status, freeable, match).
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For each of these components (or fields) we give a description and a default value.
The symbol ‘−’ will denote the appropriate default value wherever it appears.
We let C denote the set of all communication records. The null element of C is
the one for which all fields have their default values; it is also the default value
for C.

The field core (or core state), captures the most essential information about
the object: whether the record is for a request or message, a send or receive
request, whether it has been canceled, completed, or matched, and so on. The
core state is completely specified by the values of 9 boolean flags that answer
the questions given in Fig. 2a. With a few exceptions, these are self-explanatory.
A request is active if it is either (1) a nonpersistent request that has not been
canceled or completed, or (2) a persistent request that has been started and
has not been canceled or completed since last being started. A send request or
message is visible if it can be detected by a probe on the receiver side.

At first glance it appears there could be as many as 29 distinct core states.
But it is clear that many of the combinations are not possible, and in fact a
simple reachability analysis reveals that only a small number (24, including a
special null value) can occur. This analysis, carried out with Spin, considers all
ways in which a communication record can be created, modified, and destroyed
by the 13 types of primitive state transformations described in this paper (Fig.
4). The 24 reachable core states are enumerated in Fig. 2b and the transitions
between them are depicted in Fig. 3. The default value is s0.

The integer fields source, dest, count, and tag mean exactly what one would
expect; the special wildcard values may be used for the source and tag fields of
receive requests. The default values are all 0.

The datatype field specifies the type of the elements comprising the message.
We assume there is a fixed, finite set of datatypes numbered 0, 1, . . . , d − 1
and that for each i we are given size(i), the size (in bytes) of datatype i. In
our implementation, there are several integer types of various sizes, an empty
type of size 0, and a symbolic type (of size 4) used to model floating point
values as symbolic expressions. There is no reason this could not be extended in
many ways, including to incorporate MPI derived datatypes. The default value
is 0.

For requests, the data field is an integer referring to the location of the start
of the send or receive buffer. We will see below that the local memory of a
process is modeled as a finite sequence of bytes; this integer refers to the index
in that sequence. For messages, this integer instead encodes the sequence of
bytes comprising the message. We assume there is a fixed procedure to losslessly
encode any sequence of bytes into an integer, and decode the integer back into
the byte sequence. The default is 0.

Our modeling approach requires that for each process, a unique integer ID be
associated to each variable that will hold a request handle (i.e., each variable of
type MPI_Request in MPI/C). It is assumed that there is at most one variable
containing any given handle. (While aliasing of handles is allowed in MPI, this
feature is rarely used. One could incorporate aliasing into our approach using
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R: Is this a request?
B: Is this a buffered message?
P: Is this a persistent request?
S: Is this a send request?
A: Is this an active request?
C: Is this a request that has completed successfully?
V: Is this a visible (but unmatched) send request or buffered message?
M: Is this a matched (but incomplete) send request or buffered message?
X: Is this a request that has been successfully canceled?

(a) Core state flags

ID name RBP S ACVMX
s0 NullState · · · · · · · · ·
s1 InvisibleSendReq � · · �� · · · ·
s2 VisibleSendReq � · · �� · � · ·
s3 MatchedSendReq � · · �� · · � ·
s4 CompleteSendReq � · · ��� · · ·
s5 CanceledSendReq � · · � · · · · �
s6 UnmatchedRecvReq� · · · � · · · ·
s7 MatchedRecvReq � · · · � · · � ·
s8 CompleteRecvReq � · · · �� · · ·
s9 CanceledRecvReq � · · · · · · · �

s10 InactiveSendPreq � · �� · · · · ·
s11 InvisibleSendPreq � · ��� · · · ·

ID name RBP S ACVMX
s12 VisibleSendPreq � · ��� · � · ·
s13 MatchedSendPreq � · ��� · · � ·
s14 CompleteSendPreq � · ���� · · ·
s15 CanceledSendPreq � · �� · · · · �
s16 InactiveRecvPreq � · � · · · · · ·
s17 UnmatchedRecvPreq� · � · � · · · ·
s18 MatchedRecvPreq � · � · � · · � ·
s19 CompleteRecvPreq � · � · �� · · ·
s20 CanceledRecvPreq � · � · · · · · �
s21 InvisibleMessage · � · · · · · · ·
s22 VisibleMessage · � · · · · � · ·
s23 MatchedMessage · � · · · · · � ·

(b) Reachable core states

Prod0 Prod1 Cons MPI c0 c1 c2 c3 c4

0 − − − − −
1 irecv0 v1 − − − −
2 isend v2 v1 − − −
3 reveal1 v3 v1 − − −
4 upload1 v5 v1 v4 − −
5 isend v6 v5 v1 v4 −
6 reveal0 v7 v5 v1 v4 −
7 match0 v5 v4 v8 v9 −
8 irecv1 v5 v10 v4 v8 v9

9 match1 v4 v8 v9 v11 v12

10 wait v8 v9 v11 v12 −
11 isend v2 v8 v9 v11 v12

12 synch0 v2 v11 v12 v13 v14

13 wait0 v2 v11 v12 v13 −
14 irecv0 v2 v1 v11 v12 v13

15 download1 v2 v1 v15 v13 −
16 wait1 v2 v1 v13 − −
17 wait v2 v1 − − −

(c) An execution prefix for program of Fig. 1

co
re

so
ur

ce
de

st
ha

nd
le

m
at

ch

v0 s0 − − − −
v1 s6 0 2 0 −
v2 s1 1 2 0 −
v3 s2 1 2 0 −
v4 s4 1 2 0 −
v5 s22 1 2 − −
v6 s1 0 2 0 −
v7 s2 0 2 0 −
v8 s3 0 2 0 0
v9 s7 0 2 0 −

v10 s6 1 2 1 −
v11 s23 1 2 − 1
v12 s7 1 2 1 −
v13 s4 0 2 0 −
v14 s8 0 2 0 −
v15 s8 1 2 1 −

(d) Communication record
values used in prefix

Fig. 2. Communication records
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Fig. 3. Transitions between communication record core states

techniques similar to those for modeling references to heap-allocated data in Java
or C, but we have chosen to defer this for future work and concentrate here on
issues particular to nonblocking communication.) The integer handle field thus
specifies the unique handle variable referring to that request. It is not used for
messages. The default is 0.

The status field is used only for completed receive requests. It is a 4-tuple
giving the source, tag, count and status type of the received message. (The source
and tag information is redundant unless wildcards were used in the receive.)
The status type can be either undefined (the default), canceled (the request
was successfully canceled), normal (the message was successfully received), or
empty. The last case is used in MPI to signify certain exceptional scenarios. In
the default value, the status is undefined, and the source, tag, and count are
all 0.
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The boolean field freeable is 1 for a request that can be deallocated as soon
as it completes (because of a user call to MPI_Request_free). Otherwise it has
the default value 0. It is not used for messages.

A send request or message that has been matched with a receive request will
have its integer match field set to the handle of the receive request. Since the rank
of the receiver is the dest field, and we are assuming unique references to request
objects, this uniquely determines the matching receive request. The match field
is not used in receive requests, or in messages or send requests that have not
been paired. The default is 0.

3.2 Local Process Model

A local process model of rank R with global buffer bound b and global request
bound r is a tuple L = (Q, q0, T, h, l) where Q is a set of local control states,
q0 ∈ Q is the initial control state, T ⊂ Q×E×Q is a set of local transitions (the
event set E is defined below), and h and l are nonnegative integers specifying,
respectively, the number of request handle variables available to the process and
the size, in bytes, of the local memory (excluding the request handle variables).

Let X = {0, . . . , 255, UNDEF}; these are the possible values for a unit of
the local memory. Let Y = {0, . . . , h − 1, UNDEF, NULL}; these are the possible
values for a request handle variable. The set W = X l×Y h represents all possible
states of the process memory. A local state of L is an element of Q × W . The
initial state of L has control state q0 and all local memory and request variables
set to UNDEF.

The event set E consists of ordered pairs 〈γ, φ〉, where γ : W × Cb+r →
{true, false} is a guard specifying when the transition is enabled and φ : W ×
Cb+r → W × Cb+r is a transformation function describing the change to the
local state and communication record array effected by the transition. A trans-
formation that modifies the communication record array is required to fall into
one of the 8 categories of Fig. 4a. Each of these transformations is specified
by certain parameters that are functions on W ; these parameters represent the
expressions that occur as arguments in the corresponding MPI function. For ex-
ample, at a state with process memory w, the isend transformation modifies the
communication record array by inserting the record

(s1, R, dest(w), dtype(w), count(w), tag(w), buf(w), req(w), −, −, −).

The only change to the process memory W is to set the value of the request han-
dle variable in position req(w) to req(w). A wait transformation on a completed
or canceled nonpersistent request removes the record from the array, sets the
value of the request handle variable to NULL, sets the status object at position
status(w) in local memory to the appropriate value, and so on.

Each MPI function described in Sec. 2 can be modeled using suitable choices
of guards and primitive transformations. For example, an MPI_Isend at control
state q is modeled with two outgoing transitions t1 and t2. The first leads to
an “error” trap state, indicating that the outstanding request bound has been
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transformation corresponding MPI function
isend(buf, count, dtype, dest, tag, req) MPI_Isend
irecv(buf, count, dtype, source, tag, req) MPI_Irecv
wait(req, status) MPI_Wait
cancel(req) MPI_Cancel
send_init(buf, count, dtype, dest, tag, req) MPI_Send_init
recv_init(buf, count, dtype, source, tag, req) MPI_Recv_init
free(req) MPI_Request_free
start(req) MPI_Start

(a) Primitive state transformations effected by an MPI process

transformation effect summary
match(i, j) match send request/message with receive request
upload(i) copy data from send to system buffer
download(i) copy data from system to receive buffer
synch(i) copy data from send to receive buffer
reveal(i) make invisible send request/message visible

(b) Primitive state transformations effected by the MPI infrastruc-
ture

Fig. 4. The 13 primitive MPI state transformations

violated, and has guard γ1, which holds iff the communication record array
contains r requests. Transition t2 leads to the state for the next point of control,
has guard ¬γ1, and a transformation of the isend type described above.

The more complex MPI functions can be translated using more states and
some of the local memory. Say, for example, we wish to translate a call to
MPI_Waitany on the array of request handles that starts with the k-th han-
dle and has length m. To do this, we introduce an intermediate state q′, and add
transitions t1 = (q, 〈γ1, φ1〉, q′), t2 = (q′, 〈γ2, φ2〉, q′), and t3 = (q′, 〈γ3, φ3〉, q′′),
where q′′ is the state for the next point of control. The guard γ1 holds iff there
exists j such that k ≤ j < k+m and the communication record array contains a
request from process R with handle j that has completed or been canceled. The
transformation φ1 sets some scratch variable i (residing in some part of the local
memory reserved for this purpose) to the least such j. The guard γ2 holds iff
there exists j such that i < j < k+m and the array contains a request from pro-
cess R with handle j that has completed or been canceled. The transformation
φ2 sets i to the least such j. The guard γ3 is true and φ3 is a wait transformation
on the request with handle i. The effect of all this is to wait until at least one
request has completed or been canceled and then nondeterministically choose
one of them and apply wait to it.

3.3 Global Model

Finally, a model of a nonblocking MPI program with n processes, global buffer
bound b, and global request bound r is an n-tuple M = (L0, . . . , Ln−1), where for
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each i, Li is a local process model of rank i with bounds b and r. Let Wi denote
the set of all local states for Li. A global state of M is an element

(w0, . . . , wn−1, c0, . . . , cb+r−1) ∈ W0 × · · · × Wn−1 × Cb+r.

The initial state is one for which each wi is initial and all cj are null. An exe-
cution of M is a sequence of global states, starting with the initial state, such
that a global transition exists between each pair of consecutive states. A global
transition corresponds to the execution of an enabled local transition or an MPI
infrastructure transition.

The MPI infrastructure transitions correspond to the 5 transformations in
Fig. 4b. Given a global state, one match transition is enabled for each pair (i, j)
for which all of the following hold: (1) 0 ≤ i, j < b + r, (2) ci is an unmatched
receive request and cj is an unmatched send request or buffered message, (3) the
parameters of ci and cj “match” in the MPI sense, and (4) pairing ci and cj would
not violate the ordering rules of the MPI Standard. The effect of the transition
is to change the two entries in the communication record array to indicate the
two records are matched. An upload transition models the completion of a send
request by copying the message data from the send buffer into some system
buffer. One such transition is enabled for each send request as long as the number
of buffered messages is less than b. The effect is to complete the send request
record and create a new record for a buffered message. A download transition
models copying a message from a system buffer to the receive buffer; this results
in changing the local state of the receiver appropriately, deleting the record
for the message, and completing the receive request record. A synch transition
corresponds to copying the message directly from the send to the receive buffer
and completes both requests. A reveal transition makes an invisible send request
or message visible; it is only enabled if all preceding send requests/messages
emanating from the same sender and destined for the same receiver are already
visible.

An execution prefix for the example of Fig. 1 is described in Figs. 2c and 2d.
In each row (other than 0) of Fig. 2c there is a transition from either one of
the three processes or the MPI infrastructure. This is followed by a description
of the state of the communication record array after executing the transition.
The vi refer to entries in the table of Fig. 2d. This table contains one entry for
each communication record value occurring in the prefix and gives the values for
the 5 most essential fields of each. The subscripts on the transitions from the
consumer and the MPI infrastructure refer to the rank of the sending process.

3.4 Order

We have seen that both process and infrastructural transitions may insert, delete,
and modify entries in the communication record array, but we have not yet
discussed the way in which the entries of this array are ordered. It is clear
that the order must reflect some information concerning the temporal order in
which the requests were generated, in order to prevent violations to the MPI
matching rules. On the other hand, if we maintain this temporal ordering in
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its full precision, we risk creating unnecessary distinctions between states and
an explosion in their number. The trick is to keep track of just as much “his-
tory” as is required to prevent violations of the MPI matching rules, and no
more.

Our approach is to maintain the communication record array in such a way
that the b+r entries always occur in the following order: (1) the send requests and
messages that need to be matched (i.e., those with core state s1, s2, s11, s12, s21,
or s22), (2) the receive requests that need to be matched (s6, s17), (3) all other
non-null records, and (4) all null records. These sections are further refined as
follows. Within section 1, all records with source 0 occur first, followed by those
with source 1, and so on. Within each of these subsections, those with destination
0 occur first, followed by those with destination 1, and so on. Within each of these
subsubsections, the records occur according to the order in which the requests
were posted. Within section 2, all records with destination 0 occur first, followed
by those with destination 1, and so on. Within each of these subsections, the
records occur according to the order in which the requests were posted. Notice
that, for receives, the further division by source is not possible because of the
possible use of MPI_ANY_SOURCE. Within section 3, the records are placed in any
canonical order. (In our implementation, each communication record value is
assigned a unique integer ID; the canonical order is that of increasing ID.)

Each primitive MPI transformation is engineered to preserve this order. For
example, in line 4 of Fig. 2c, an upload transition applied to the send request
v3 that was in section 1, at position 0, causes the send request to be completed
(v4) and moved to section 3, in position 2. A new record for a buffered message
(v5) is inserted at the original position of the send request.

4 Validation

We have implemented the approach of Sec. 3 as an extension to Spin called
Mpi-Spin. The core of the implementation is a C library for manipulating com-
munication records. The library provides functions corresponding to the primi-
tive MPI state transformations of Fig. 4. Because the memory required to store
a single communication record is quite large, the library employs a “flyweight”
pattern which (1) assigns a unique integer ID to each communication record
value it encounters, and (2) stores a single copy of the record in a hash table.
By using these IDs, the communication record array can be represented as an
integer array in the Promela model. The library functions that operate on the
array are incorporated into the Promela model using Spin’s embedded C code
facility. The user can access these functions through preprocessor macros defined
in a header file. There is one macro for each of the MPI primitives discussed in
this paper, and their syntax corresponds closely to the syntax for the C bindings
of MPI, making it particularly easy to create models of C/MPI programs (Fig.
5). The MPI infrastructure events are incorporated into the model through an
additional “daemon” process that, at each state, nondeterministically selects one
of the enabled infrastructure events for execution.
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active proctype consumer() {
MPI_Request req[NPRODUCERS];
byte i = 0;

MPI_Init(Pconsumer, Pconsumer->_pid);
do
:: i < NPRODUCERS ->

MPI_Irecv(Pconsumer, RECV_BUFF, COUNT, MPI_POINT,
Pconsumer->i, TAG, &Pconsumer->req[Pconsumer->i]);

i++
:: else -> i = 0; break
od;
do
:: MPI_Wait(Pconsumer, &Pconsumer->req[Pconsumer->i],

MPI_STATUS_IGNORE);
MPI_Irecv(Pconsumer, RECV_BUFF, COUNT, MPI_POINT, Pconsumer->i,

TAG, &Pconsumer->req[Pconsumer->i]);
i = (i + 1)%NPRODUCERS

od;
MPI_Finalize(Pconsumer)

}

Fig. 5. Mpi-Spin source for model of consumer process of Fig. 1

By default, Mpi-Spin checks a number of generic properties that one would ex-
pect to hold in any correct MPI program. These include (1) the program cannot
deadlock, (2) there are never two outstanding requests with buffers that inter-
sect nontrivially, (3) the total number of outstanding requests never exceeds the
specified bound r, (4) when MPI_Finalize is called there are no request objects
allocated for and there are no buffered messages destined for the calling process,
and (5) the size of an incoming message is never greater than the size of the
receive buffer. In addition, Mpi-Spin can check application-specific properties
formulated as assertions or in linear temporal logic.

Mpi-Spin includes some primitives that do not correspond to anything in
MPI, but are useful for modeling MPI programs. For example, there is a type
MPI_Symbolic (together with a number of operations on that type) that can
be used to represent floating-point expressions symbolically. Previous work [11]
showed how symbolic techniques can be used to verify that a parallel program
computes the same result as a trusted sequential version of the program on any
input. Another primitive, MPI_POINT, represents an “empty” MPI datatype that
can be used to abstract away data completely; this is particularly useful for
constructing a model of the MPI communication skeleton of a program, as in
Fig. 5.

We applied Mpi-Spin to Examples 2.17–2.33 of [12], attempting to verify
generic and application-specific properties of each. (The source code for Mpi-

Spin and all input and output for these experiments are available at http://
www.cis.udel.edu/ siegel/projects.) The symbolic technique was applied

http://www.cis.udel.edu/~siegel/projects
http://www.cis.udel.edu/~siegel/projects
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to various configurations of the Jacobi iteration examples (2.17, 2.27, 2.32; the
sequential version is Ex. 2.12). Ex. 2.17 is one of the cases for which Mpi-Spin

discovered a fault. The problem occurs when the number of matrix columns is
less than twice the number of processes. In this case, on at least one process
two send requests will be posted using the same buffer: the single column stored
on that process. For configurations outside of that range, equivalence with the
sequential program was verified successfully. One of the larger configurations for
Ex. 2.17 involved N = 11 matrix columns distributed over n = 4 processes,
k = 2 loop iterations, r = 16, and b = 0; its verification resulted in searching
256,905 states and consumed 30 MB of RAM. The configuration with N = 7,
n = 3, k = 2, r = 12, b = 6 required 65,849 states and 8 MB.

For each of the producer-consumer systems (2.18, 2.19, 2.26, 2.28, 2.33) the
following were checked: (p0) freedom from deadlock and standard assertions,
(p1) every message produced is eventually consumed, (p2) no producer becomes
permanently blocked, and (p3) for a fixed producer, messages are consumed in
the order produced. Again, various configurations were used in each case; one
of the largest involved the verification of p0 for Ex. 2.18, with n = 8, r = 14,
and b = 0, which resulted in 1.8 million states and consumed 235 MB. Some of
the properties were and some were not expected to hold on particular systems
and, in general, the expected result was obtained for each property-system pair.
An exception was Ex. 2.19. In this program, the second for loop in Fig. 1 is
replaced with

i = 0;
while(1) {
for (flag=0; !flag; i= (i+1)%(size-1)) {
MPI_Test(&(buffer[i].req), &flag, &status);

}
/* consume data */
MPI_Irecv(bufer[i].data, MAXSIZE, MPI_CHAR, i, tag, comm,

&buffer[i].req);
}

The idea is that the busy-wait loop allows the consumption of messages in what-
ever order they arrive, rather than enforcing a cyclic order. However, while check-
ing p0, Mpi-Spin discovered that i is erroneously incremented after the call to
MPI_Test sets flag to true and before exiting the loop. This causes the con-
sumer to consume from and repost to the wrong producer and can lead to a
violation of the outstanding request bound (and other errors). After correcting
this problem, the expected results were obtained.

These preliminary experiments were encouraging in several ways: (1) the tool
was able to achieve a conclusive result on all of the examples to which it was
applied, including some of nontrivial size, (2) the resources consumed were not
excessive, at least by the standards of model checking, and (3) the tool discov-
ered two nontrivial faults that had survived two editions of a widely-used text.
However, these examples were admittedly small, and the true viability of the



58 S.F. Siegel

approach will only become apparent as we attempt to scale it to larger and
more realistic scientific programs. This will be the focus of our future work.
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