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Abstract. We compute the cohomology of the Morava stabilizer group S2 at the

prime 3 by resolving it by a free product Z=3 � Z=3 and analyzing the \relation

module."

1. Introduction and Statement of the Main Result

The applications of the main theorem of this paper in homotopy theory are due to
the Morava Change of Rings Theorem [7]. Let p be a prime, and denote by Sn the
group of units in the maximal order of a cyclic division algebra over Q p of index n
and Hasse invariant 1

n
. The Morava Theorem says essentially that the cohomology

of Sn with coe�cients in a certain representation describes the Bous�eld localization
functor LK(n). This is the localization of stable homotopy theory with respect to
the spectrum of the n-th Morava K-theory, K(n) [2]. The functors LK(n) play an
important role in homotopy theory [10]. At present the case n = 1 is completely
understood for all primes p. The next case, n = 2, has been partially investigated
for primes p � 5 (see for example [15], [16]). The functor LK(2) for small primes is
harder to study because the group S2 is of in�nite cohomological dimension.

In this paper we deal with the prime 3 only. As the �rst step of the analysis of LK(2)

one needs to compute the continuous cohomology of a certain canonical subgroup S02
of S2 with trivial coe�cients. We compute these cohomology groups in the course
of the proof of the Theorem 1.1 below. This \almost" computes, according to the
Morava Change of Ring Theorem, the homotopy groups of the localization of the
Toda Smith complex V (1); for more details see [9]. The rest of the calculation of
�
�
LK(2)S

0 consists of two Bockstein spectral sequences. We will not pursue this here.
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Theorem 1.1. H�

c (S2; F3) is freely generated as a graded-commutative F3 -algebra by

elements Z (in degree 1), C,E (in degree 3), and X (in degree 4). Its Poincar�e series

is
(1+t)(1+t3)2

1�t4
.

We obtain this by �rst calculating the cohomology of the canonical subgroup, Sl,
of S2.

Theorem 1.2. H�

c (Sl; F3) has generators e1, e2 (in degree 1), x1, x2, a (in degree
2), c1, c2 (in degree 3). The product of any two generators with di�erent subscripts
is 0 and in addition there are relations

a2 = ae1 = ae2 = ac1 = ac2 = 0; c1e1 = ax1; c2e2 = ax2:

Its Poincar�e series is 1+t+t2+t3

1�t
.

A computation of H�

c (Sl; F3) was sketched in [9], but the multiplicative structure
given there does not agree with the one above. The question of the cohomology
of Sl was �rst reopened by Henn in connection with a deep theorem of his on the
cohomology of pro�nite groups [4], and he also obtained the result stated here. Our
calculation proceeds by more classical methods.

The structure of H�

c (Sl; F3) can also be described as follows: it was shown in [3]
that if j is the quotient map

Sl
j
�! Sl=Sl 0 �= Z=3� Z=3;

(where Sl 0 denotes the commutator subgroup [Sl;Sl] of Sl), then there exists a homo-

morphism Z=3 � Z=3
i
�! Sl such that ji is onto. The image R = j�H�(Z=3� Z=3) �

H�

c (Sl) is mapped isomorphically ontoH�(Z=3�Z=3) by i� (R is the subring generated
by 1, e1, e2, x1, x2). The kernel R

0 = Ker i� (generated by a, c1, c2, as an R-module)
is additively like R but with the degrees increased by 2. The structure of R0 as an
R-module is as given above and R02 = 0 : this determines the ring H�

c (Sl)
�= R�R0.

2. Background Information

We briey recall some facts about the group of units of a maximal order in a
division algebra. A full account can be found in [11], for example. Consider a cyclic
algebra D over Q p of index n and Hasse invariant 1

n
. It can be constructed as follows.

Let W be the totally unrami�ed extension of Q p of degree n (so W �= Q p(�) where
� is a (pn � 1)-st root of unity). The Galois group of the extension W =Q p is a
cyclic group of order n: it is generated by the Frobenius homomorphism �. We form
the crossed product algebra of W and Gal(W =Q p). This amounts to introducing a
variable S which commutes with W according to the formula wS = Sw� and satis�es
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Sn = a 2 Q p
�. To de�ne D we set Sn = p. D is a division algebra over Q p of rank

n2.

Let O be the maximal order in D : it is generated by S and the integers of W . Its
maximal ideal is OS and O=O S �= Fpn . We are interested in three groups contained
in O . The �rst is the group of units of O , which we denote by Sn. The second is the
subgroup of strict units in Sn. It consists of the elements a 2 Sn such that a � 1
mod S. We denote it by S0n. The third is the kernel of the reduced norm restricted
to S0n. We denote this subgroup by Sl. It is a pro-p group because it is p-�ltered and
compact ([6], II, 2.1.3).

Let Hr denote the subgroup of Sl consisting of elements congruent to 1 modulo Sr.
By de�nition H1 = Sl. According to [12], there are injective maps �r : Hr=Hr+1 !
O=O S �= Fpn given by �r(1+aSr) � a modS, (a 2 O ). They are also surjective unless
njr, in which case the image consists of those elements of trace 0 over the prime �eld.

From now on we shall only consider p = 3 and n = 2. Then jH1=H2j = 9,
jH2=H3j = 3, jH3=H4j = 9, and according to [12], [H1; H1] = H2, [H1; H2] = H3,
[H2; H2] = H4. Now W contains an 8-th root of unity �, and so z = �S�1

2
2 D is a

cube root of unity. Thus X = z and Y = zS are two elements of Sl of order 3. Their
images x = j(X ), y = j(Y) generate Sl=Sl 0 �= Z=3�Z=3, (where Sl0 = [Sl;Sl] = H2).
We now de�ne i : Z=3 �Z=3! Sl to be the map which takes the generators X and Y
to X and Y. This map is in fact injective [3], but we do not need to know that here.

There is a group D of automorphisms of Sl which has order 8 and is generated by
(i) conjugation by S, which interchanges X and Y, and (ii) conjugation by S�, which
interchanges X and X 2 and �xes Y.

Note that the action of D lifts to an action on Z=3 � Z=3.
The natural cohomology theory for a pro�nite group is the cohomology on contin-

uous cochains [13], denoted by H�

c , and that is what we use here. It agrees with the
usual cohomology on a �nite group.

Any maximal �nite subgroup of Sl is cyclic of order 3, so the Krull dimension of
H�

c (Sl; F3) is one [8], [7].

3. Resolutions

The fact that ji is onto implies that Im i is dense in the pro-3 topology. So we
have an epimorphism of pro-3 groups

\Z=3 � Z=3 �! Sl (b denotes pro-3 completion):

Let K denote the kernel of this map. The kernel of Z=3�Z=3�! Z=3�Z=3 is free on
the four generators [Xi ;Yj ], (1 � i; j � 2) [14]. The completion of the corresponding
short exact sequence remains exact, since Z=3�Z=3 is �nite. This leads to a diagram
with exact rows and columns:
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K ���! F̂4 ���! Sl 0


???y

???y

K ���! \Z=3 � Z=3 ���! Sl
???y

???y

Z=3� Z=3 Z=3� Z=3:

(3.1)

Now K is a closed subgroup of a free pro-3 group (i.e. the pro-3 completion of a free
group), so is itself a free pro-3 group ([13], Cor. 2 to I, Prop. 24).
According to the theory in ([6], V 2.5.7), Sl0 is equi-3-valued (with the usual 3-adic

valuation), so H�

c (Sl
0) �= ��H1

c (Sl
0). Sl0=[Sl0;Sl0] = H2=H4 has order 27 and is easily

seen to have exponent 3, so it has rank 3, and thus so does H1
c (Sl

0).
Let N denote Sl0=[Sl0;Sl0] as F3E-module (where E = Sl=Sl0 �= Z=3� Z=3). Then

H2
c (Sl

0) �= N by duality.
We want to be able to describe modules such as N explicitly. For this purpose

note that if we set X = x � 1 and Y = y � 1, then F3E �= F3 [X; Y jX3 = Y 3 = 0].
The augmentation ideal I is generated by X and Y , and, because E is a p-group, I
is the radical.
Since [H1; H2] = H3 and jH2=H3j = 3, we must have N=IN �= F3 . If we consider

the image of annN in I=I2 �= E, we see that it cannot be 1-dimensional, since then
it could not be invariant under the group of automorphisms D. Hence annN = I2

and N �= F3E=I2.
Now consider the spectral sequence

Hp
c (Sl

0;Hq
c (K))) Hp+q

c (F̂4):

There are only two rows, since K is a free pro-3 group, and we deduce that

Hr
c (Sl

0;H1
c (K)) = 0; r � 2;

H1
c (Sl

0;H1
c (K)) �= H3

c (Sl
0) �= F3 ;

and there are short exact sequences

0 �! H1
c (Sl

0) �! H1
c (F̂4) �! E0;1

1
�! 0;(3.2)

0 �! E0;1
1
�! H1

c (K)Sl
0

�! N �! 0:(3.3)

Sequence (3.2) shows that E0;1
1

�= F3 . Let M denote H1
c (K)Sl

0

as an F3E-module, so
we have

0 �! F3 �!M �! N �! 0:
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4. The Structure of M

The short exact sequence 0! F3 !M ! N ! 0 shows that either M �= N � F3 ,
or M is generated by one element. In the latter case, M �= F3E= annM , and we
shall assume that this holds for the rest of this section. The image of annM in
I2=I3 is a subspace S of codimension 1, which must be invariant under the action of
the group of automorphisms, D. Since I2=I3 has basis fX2; XY; Y 2g, it is easy to
check that the only possibilities for S are S1 = hX2; Y 2i; S2 = hXY;X2 + Y 2i, and
S3 = hXY;X2 � Y 2i. Let Mi = F3E=Si. We claim that, in fact, M �= M1, but this
will only become apparent later. Notice, however, that if we extend the �eld to F9 ,
then all three modules di�er only by an automorphism of the group algebra, for if

�2 : X 7! X + Y; Y 7! X � Y;

then �2(S1) = S2, and so M�2
2
�= M1. Similarly, if

�3 : X 7! X + iY; Y 7! X � iY; (where i2 = 1)

then �3(S1) = S3, and so M
�3
3
�= M1.

5. The Cohomology of M1

Let p be an odd prime, k a �eld of characterisitc p, and E = hx; yi an elementary
abelian p-group of order p2. (We will only need the case where p = 3 and k = F3 , but
it is just as easy to prove the result of this section more generally.) The group algebra
kE is the truncated polynomial algebra k[X; Y j Xp = Y p = 0], where X = x � 1
and Y = y � 1. A minimal projective resolution P

�
! k of the trivial kE-module k

may be constructed as follows. First let Pn be the free left kE-module on the n + 1
symbols er;s where r+ s = n and r; s � 0. For notational convenience we set er;s = 0
if r < 0 or s < 0. Then de�ne

@(er;s) = X1+(p�2)�(r+1)er�1;s + (�1)rY 1+(p�2)�(s+1)er;s�1;

where �(n) is de�ned to be 0 if n is even and 1 if n is odd, and set �(e0;0) = 1. We
have

H�(E; k) = HomkE(P; k) = k[x1; x2]
k �k[e1; e2]

where x1 = e�0;2 (by which we mean x1(e0;2) = 1 and x1(er;s) = 0 for (r; s) 6= (0; 2)),

x2 = e�2;0, e1 = e�0;1, and e2 = e�1;0. The generators e1 and e2 in H
1(E; k) �= Hom(E; k)

correspond to maps E �! k with kernels hxi and hyi respectively, and x1 and x2 are
their Bocksteins.

Now let M1 = kE=(Xp�1; Y p�1). (If p = 3 and k = F3 , this is consistent with the
de�nition of M1 given above.)
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Proposition 5.1. As a right H�(E; k)-module, H�(E;M1) is generated by elements

� (degree 0), �1; �2 (degree 1), and � (degree 2), subject to the relations

�e1 = �e2 = �2e1 = �1e2 = 0;

�1e1 = �x1; �2e2 = �x2;

�e1 = ��2x1; �e2 = �1x2:

In particular, H�(E;M1) is a free k[x1; x2]-module on �; �1; �2; �.

Proof. We compute an explicit basis for Hn(E;M1) = Zn(E;M1)=B
n(E;M1). First

note that M1 is a commutative ring, and HomkE(Pn;M1) is a free left M1-module on
the generators fni = e�i;n�i (0 � i � n). Let �a denote the image in M1 of an element

a in kE. Then �Xp�1 = �Y p�1 = 0, so for f 2 HomkE(Pn;M1) and r; s � 0 we have

f@(er;s) = �(r) �Xf(er�1;s) + (�1)r�(s) �Y f(er;s�1):(5.1)

Suppose �rst that n = 2m is even. Let f =
Pn

i=0 �if
n
i (�i 2M1) and for notational

convenience set �
�1 = �n+1 = 0. Then equation (5.1) implies that f 2 Zn(E;M1) if

and only if

�(j)�j�1
�X + (�1)j�(n + j + 1)�j

�Y = 0 whenever 0 � j � n + 1.

But this occurs if and only if �j
�X = 0 = �j

�Y for all even j, or equivalently �j 2

( �Xp�2 �Y p�2) for all even j. Hence

Zn(E;M1) = f
nX

j=0

�jf
n
j j �j 2M1 if j is odd, �j 2 ( �Xp�2 �Y p�2) if j is eveng:

A similar calculation yields

Bn(E;M1) = f
nX

j=0

�jf
n
j j �j 2 ( �X; �Y ) if j is odd, �j = 0 if j is eveng:

Hence the images of the n + 1 elements �m
k = �Xp�2 �Y p�2e�2k;2m�2k (0 � k � m) and

�m
k = e�2k+1;2m�2k�1 (0 � k < m) of Zn(E;M1) form a basis in Hn(E;M1).

Now suppose that n = 2m+1 is odd. Let S = f(�; �) 2 M1�M1 j � �X = � �Y g and
T = f(� �Y ; � �X) j � 2M1g. Working as in the even case, we get

Zn(E;M1) = f
mX

i=0

(�if
n
2i + �if

n
2i+1) j (�i; �i) 2 Sg;

Bn(E;M1) = f
mX

i=0

(�if
n
2i + �if

n
2i+1) j (�i; �i) 2 Tg:
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Now S=T is 2-dimensional and is spanned by the images of ( �Xp�2; 0) and (0; �Y p�2).
Hence the images of the n+ 1 elements mk = �Xp�2e�2k;2m+1�2k; �

m
k = �Y p�2e�2k+1;2m�2k

(0 � k � m) of Zn(E;M1) form a basis in Hn(E;M1).
We now turn to the module structure. Recall that composition with � is a chain map

HomkE(P; P ) ! HomkE(P; k) and this map induces an isomorphism in cohomology

H�HomkE(P; P )
�=
! H�(E; k). The action

H�(E;M1)
k H
�(E; k)! H�(E;M1)

is induced by the map on the cochain level

HomkE(P;M1)
k HomkE(P; P )! HomkE(P;M1)

given by composition. So we must �rst lift xi, ei to maps ~xi 2 Z2HomkE(P; P ), ~ei 2
Z1HomkE(P; P ). This is accomplished by setting ~x1(er;s) = er;s�2, ~x2(er;s) = er�2;s,
~e1(er;s) = (�1)r+s+1Y (p�2)�(s+1)er;s�1, ~e2(er;s) = (�1)r+1X(p�2)�(r+1)er�1;s.

Now let � = [�0
0], �1 = �[00 ], �2 = �[�00], and � = [�1

0 ]. We have �xi1x
j
2 = [�

i+j
j ],

�1x
i
1x

j
2 = �[i+j

j ], �2x
i
1x

j
2 = �[�i+j

j ], and �xi1x
j
2 = [�i+j+1

j ] (i; j � 0). These are easily
veri�ed; the �rst, for example, just follows from the fact that

�0
0~x

i
1~x

j
2(er;s) = �0

0(er�2j;s�2i) =
�Xp�2 �Y p�2((r; s) = (2j; 2i)) = �i+j

j (er;s):

(Here we are using the computer science notation where, for a proposition P, (P) = 1
if P and (P) = 0 otherwise.) This proves that �, �1, �2, and � generate H�(G;M1)
as a k[x1; x2]-module and that H�(G;M1) is a free k[x1; x2]-module on those four
generators.
We now turn to the relations. It is routine to check that the generators satisfy

these relations; for example, the last of these follows from the fact that

�1
0~e1(er;s) = (�1)r+s+1 �Y (p�2)�(s+1)�1

0(er;s�1) =
�Y p�2((r; s) = (1; 2)) = �00 ~x1(er;s):

Now let A� denote the graded H�(E; k)-ring de�ned abstractly by these 4 generators
and 8 relations. Since H�(E;M1) satis�es the relations, there is a surjective H

�(E; k)-
homomorphism A� � H�(E;M1). We wish to show that this homomorphism is an
isomorphism, and to do this it su�ces to show that dimk(A

n) � dimkH
n(E;M1) for

all n. This will follow if we can show that A� is generated as a k[x1; x2]-module by
the four generators, because we know that H�(G;M1) is a free k[x1; x2]-module on
those generators. Hence for each � 2 f�; �1; �2; �g and i 2 f1; 2g we must show that
�ei is in the k[x1; x2]-submodule of A� generated by �; �1; �2; �. But this is exactly
what the 8 relations tell us.

The following lemma is easy to check, but will be useful.

Lemma 5.2. We can replace � by any other element of H2(E;M1) linearly indepen-
dent of �x1 and �x2 and get the same relations.
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6. The Final Calculation for Sl

We assume for now thatM =M1: this will be justi�ed later. Consider the spectral
sequence

Hp(E;Hq
c (Sl

0;H1
c (K)))) Hp+q

c (Sl;H1
c(K))

Again it has only two rows.

H��2(E)
d2�! H�(E;M):

H�(E) is a torsion-free F3 [x1; x2] module, hence so is Ker d2. But this spectral se-
quence shows that H�(Sl;H1(K)) is �nitely generated over H�(E), and hence over
H�

c (Sl), which has Krull dimension 1. It maps on to Ker d2, forcing a common bound
on dimKer d2 in each degree. Thus Ker d2 = 0 and we have:

0! H��2(E)! H�(E;M)! H�

c (Sl;H
1
c(K))! 0:(6.1)

Now d2(1) is not a linear combination of �x1 and �x2 otherwise it would be annihi-
lated by e1 and e2. By Lemma 5.2 we may assume that d2(1) = �.
We have proved:

Proposition 6.2. H�

c (Sl;H
1
c(K)) is an H�(E)-module on generators � (degree 0),

�1, �2 (degree 1) with relations

�e1 = �e2 = �1e2 = �2e1 = �1x2 = �2x1 = 0;

�1e1 = �x1; �2e2 = �x2:

Now consider the spectral sequence

H�

c (Sl; H
�(K))) H�

c (
\Z=3 � Z=3):

One has H�

c (
\Z=3 � Z=3) �= H�(Z=3 � Z=3). (Consider the short exact sequence F4 !

Z=3�Z=3! Z=3�Z=3 and its pro-3 completion, and use the Comparison Theorem.)
The map i� : H�

c (Sl)! H�(Z=3�Z=3) is an isomorpism in degree 1, by construction.
As the right hand side is generated by elements of degree 1 and their Bocksteins, i�

is onto in all degrees and the spectral sequence becomes the short exact sequence

0 �! H��2
c (Sl; H1

c(K))
d2�! H�

c (Sl)�! H�(Z=3 � Z=3) �! 0;(6.3)

of right H�(E)-modules. Set a = d2�, ci = d2�i. Identify ei and xi with their images
under j�. All that remains is to check that Im j� = R �= H�(Z=3 � Z=3), i.e. that
e1e2 = e1x2 = e2x1 = x1x2 = 0:
The spectral sequence

H�(E;H�

c (Sl
0))) H�

c (Sl)
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has four rows. We know that d2(E
�;1
2 ) � E�;0

2
�= H�(E) is contained in Ker(ji)�,

which is generated as an H�(E)-module by e1e2, e1x2, e2x1, and x1x2. Since H
1
c (Sl

0)
is dual to N as an E-module it is isomorphic to I3, and we can calculate dimE0;1

2 = 1
and dimE1;1

2 = 3. (Use dimension shifting: F3E=I3 has invariants of dimension 3.)
But E1;0

2 yields all of H1
c (Sl) and thus dimd2(E

0;1
2 ) = 1. This accounts for e1e2. Also

dimE2;0 = 2 and dimH2
c (Sl) = 3, so dimKer(d2 : E

1;1
2 �! E3;0

2 ) � 1. The image of
this map must have dimension � 2, which accounts for e1x2 and e2x1. Finally x1x2
is the Bockstein of e1x2.

All that remains is to justify our assertion thatM �= M1. We do this by carrying out
the above calculation for each of the other possibilities and obtaining a contradiction.

If M �= F3 � N , then the short exact sequence (6.1) shows that dimHn
c (Sl;M) =

dimHn(E;N) + 2. This is impossible because N has complexity 2, yet H�

c (Sl) has
Krull dimension 1.

If M �= M2, then the structure of H�(E;M2) as an H�(E)-module is like that of
H�(E;M1), but twisted by �2. Let us denote the new module structures by �. Then

u � v = u(��2v); u 2 H�(E;M); v 2 H�(E):

Thus a�x1x2 = a(x1+x2)(x1�x2) = ax21�ax
2
2 6= 0. But the argument that x1x2 = 0

is still valid since it only depends on the additive structure of H�

c (Sl;M). The case
M �= M3 is similar.

7. The Cohomology of S2

Remark 7.1. [9] If p > 3 and n = 2 then Sl is torsion-free so H�(Sl) has �nite
cohomological dimension by [8]. It contains an open subgroup H2, which is a Poincar�e
duality group of dimension 3. So by ( [13], V4.7) Sl is also a Poincar�e duality group of

dimension 3. Since dimH1
c (Sl) = 2, there is only one possible multiplicative structure,

namely that with generators e1, e2 (degree 1), f1, f2 (degree 2), and relations e1e2 = 0,
e1f1 = e2f2, f

2
1 = f 2

2 = f1f2 = 0.

Remark 7.2. The map

S02
nrd
� (1 + 3Z3)

�
log
�!
�=

3Z+
3

is split by x 7! exp(1
2
x), the image being central in S02. Thus S02

�= Sl � Z+
3 and

H�

c (S
0
2)
�= H�

c (Sl)
 �(z), degz = 1.
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The group S2 is the semi-direct product of S02 and Z=8 (the splitting is obtained by
lifting the elements of F�9 to roots of unity in W ). Therefore H�

c (S2; F3) is isomorphic
to the subring of H�

c (Sl; F3) invariant under conjugation by the eighth root of unity
� 2 W .

We must track the action of � through our calculation. Notice that conjugation by
� has the e�ect X 7! Y 7! X 2 7! Y2 7! X . Thus e

�
1 = �e2; e

�
2 = e1, and the same

for their Bocksteins, x�1 = �x2; x�2 = x1.

Regarding all groups as �-modules now, (3.3) shows that H0(E;M) �= E0;1
1

�= F3 .
From short exact sequence (3.2) we see that � acts on H0(E;M) as multiplication by

detH1
c (F̂4)(�)= detN(�). But � permutes the explicit generators of F̂4 transitively,

hence detH1
c (F̂4) = �1. To calculate detN(�), note that under the map �2 of Section

2, conjugation by � acts as the identity, whilst under �3 it corresponds to multiplica-
tion by �� on F9 , which has determinant 1 over F3 . This proves that detN(�) = �1,
and consequently from (6.1), �� = ��. Sequence (6.3) then shows that a� = �a.

The relations involving the elements ci now force c�1 = �c2; c�2 = �c1. Clearly
z� = z, and this completes the calculation of the action of �.

It is now fairly straightforward to calculate the invariants of this action, especially
if one notes that, if X = x21+x

2
2, then X is invariant and H�

c (Sl; F3) is free over F3 [X].
We obtain Theorem 1.1 by setting Z = z; C = c1 � c2; E = e1x1 + e2x2; X =
x21 + x22.
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