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Abstract. We decompose the maximal ideal spectrum of the Hochschild coho-
mology ring of a block of a finite group into a disjoint union of subvarieties corre-
sponding to elementary abelian p-subgroups of a defect group. These subvarieties
are described in terms of group cohomological varieties and the Alperin-Broué cor-
respondence on blocks. Our description leads in particular to a homeomorphism
between the Hochschild variety of the principal block and the group cohomological
variety. The proofs require a result of Stephen F. Siegel, given in the appendix,
which states that nilpotency in Hochschild cohomology is detected on elementary
abelian p-subgroups.

1. Introduction

Quillen’s two groundbreaking papers of 1971 [18] yield a description of the variety
of a finite group G, that is, of the maximal ideal spectrum of the cohomology ring
H∗(G, k), as a disjoint union of subvarieties corresponding to elementary abelian p-
subgroups (where p is the characteristic of the commutative ring k). Avrunin and
Scott vastly generalized this result to varieties of modules over the group ring kG,
that is to the maximal ideal spectra of quotients of H∗(G, k) associated to these
modules [5]. In this paper we replace H∗(G, k) by the Hochschild cohomology ring
HH∗(kG) of the group algebra kG, and find a suitable analog of the Quillen strat-
ification, describing the maximal ideal spectrum of HH∗(kG) as a disjoint union of
varieties corresponding to elementary abelian p-subgroups. As this Hochschild co-
homology decomposes according to the decomposition of kG into blocks (that is,
indecomposable ideal direct summands), this description is given by a stratification
of the Hochschild cohomology ring HH∗(B) of each block B. This theory is parallel
to that of Linckelmann [16], in which he gives a Quillen stratification for the maximal
ideal spectrum of the block cohomology ring LH∗(B) of a block B, where LH∗(B) is a
particular subring of the group cohomology ring of a defect group of B. However the
techniques we develop to work with Hochschild cohomology are quite different from
those of Linckelmann, and begin with a particular ring homomorphism (Theorem 2.5
below).
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The relationship between the Hochschild cohomology ring HH∗(B) and Linckel-
mann’s block cohomology ring LH∗(B) is not fully understood. In the case of the
principal block, our results imply that their respective varieties are homeomorphic.
The general case is more complicated, but is potentially where the main significance
of these cohomology theories lies: Blocks other than the principal block are not
augmented algebras themselves, and so one must use a cohomology theory such as
Hochschild cohomology or Linckelmann’s block cohomology to study them. There
are a number of recent papers that use Hochschild cohomology to study various types
of finite dimensional algebras and their modules, for example see [10, 13, 24]. The-
ories of support varieties for modules have been built from Hochschild cohomology
[21, 24] and from Linckelmann’s block cohomology [16]. It is hoped that the present
paper will lead to a better understanding of the connections between these two coho-
mology theories for blocks of finite groups and their modules. This would augment
our knowledge of both and give some insight into any connection between the Morita
structure (related to Hochschild cohomology) and the local structure (related to block
cohomology) of a block.

We will start by summarizing the main results of this paper in greater detail.
From now on k will be an algebraically closed field of positive characteristic p divid-
ing the order of the finite group G. The Hochschild cohomology ring HH∗(kG) =
Ext∗kG⊗(kG)op(kG, kG) is known to be isomorphic to H∗(G, kG) = Ext∗kG(k, kG), where
G acts on kG via conjugation. This observation goes back to Eilenberg and Mac Lane,
however the proof that the ring structures correspond appears in [22, §3]. The ring
structure on H∗(G, kG) is given by cup product followed by the algebra multiplication
map kG ⊗k kG → kG. Similarly, if B is a block of kG, then HH∗(B) ∼= H∗(G,B),
where the action of G on B is via conjugation. In this paper, we will work almost
exclusively with the rings H∗(G, kG) and H∗(G,B) in order to exploit group coho-
mological techniques.

It is known that HH∗(kG) is a finitely generated, graded-commutative algebra.
Thus the maximal ideal spectrum of HH∗(kG) (equivalently, of its even degree subring
when p 6= 2) is an affine algebraic variety which we denote by XG. The details, and
the following theorems, appear in Section 2. If H is a subgroup of G, let CG(H)
denote the centralizer of H in G, that is CG(H) = {g ∈ G | gh = hg for all h ∈ H}.

Theorems 2.5, 2.10. There is a ring homomorphism, with nilpotent kernel,

HH∗(kG)→
∏
E

(kCG(E)⊗k H∗(E, k))NG(E) ,

the product over a set of representatives E of conjugacy classes of elementary abelian
p-subgroups E of G. Thus the Hochschild variety XG of kG is a union of subvarieties
XG,E, the union taken over the same set.
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The structure of the subvarieties XG,E in the theorem is given roughly by the
existence of a finite surjection YG,E → XG,E where YG,E is a disjoint union of affine
varieties of dimension equal to the rank of E, the union taken over the set of blocks
of kCG(E).

In order to refine this description, we consider the Hochschild variety of a block B of
kG. Let kG ∼= B1⊕· · ·⊕Bn be the decomposition into blocks (that is, indecomposable
ideal direct summands) B1, . . . , Bn. As there are no nonzero kG-bimodule maps
between distinct blocks, HH∗(kG) ∼= HH∗(B1) ⊕ · · · ⊕ HH∗(Bn) as algebras. The
Hochschild variety XG of kG is thus the disjoint union of the Hochschild varieties XB

of its blocks B, where XB is the maximal ideal spectrum of HH∗(B) ∼= H∗(G,B). We
again find that each XB is a union of subvarieties XB,E, where this time E ranges over
a set of G-conjugacy representatives of elementary abelian p-subgroups of a defect
group of B. There are finite surjective maps YB,E → XB,E where YB,E is a disjoint
union of affine varieties of dimension equal to the rank of E, the union taken over the
set of blocks of kCG(E) corresponding to B under the Alperin-Broué correspondence.
In the union XB = ∪EXB,E, we must determine how the pieces are glued together
to form XB. In contrast to group cohomology, XB,F does not necessarily inject into
XB,E when F < E. Thus we find it necessary to introduce auxiliary varieties XB,E,F

with maps XB,F
Br∗←−− XB,E,F ↪→ XB,E that provide the gluing information for XB.

The map Br∗ is given by the Alperin-Broué correspondence and is neither injective
nor surjective in general.

Let X+
B,E = XB,E −

⋃
F<E XB,E,F , the union over all proper subgroups F of E,

and define Y +
B,E similarly. As before, there are finite surjective maps Y +

B,E → X+
B,E.

Let WG(E) = NG(E)/CG(E), the Weyl group of E. The following result depends on
some technical work done in Section 3:

Theorems 4.2, 4.3. (Quillen stratification) Let B be a block of G and P a defect
group of B. The Hochschild variety XB of B is a disjoint union of subvarieties X+

B,E,
the union over a set of elementary abelian p-subgroups E of P , one from each G-
conjugacy class of elementary abelian p-subgroups of G for which at least one member
is contained in P . If E is an elementary abelian p-subgroup of P for which there is a
unique block of kCG(E) corresponding to B under the Alperin-Broué correspondence,
then there is an inseparable isogeny Y +

B,E/WG(E)→ X+
B,E.

The varieties Y +
B,E of the theorem are given explicitly in terms of group cohomo-

logical varieties and the Alperin-Broué correspondence. The last statement applies
in particular to the principal block B0, and in this special case we have the following
corollary.

Corollary 4.5. The Hochschild variety XB0 of the principal block B0 is homeomor-
phic to the maximal ideal spectrum of the group cohomology ring H∗(G, k).
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This proves a weak form of the conjecture that HH∗(B0) is isomorphic to H∗(G, k),
modulo their radicals [23, Conj. 1] (see also [22, §11, Question 2]). A more general
question, motivated by the results of [17], involves Linckelmann’s block cohomology
LH∗(B) (see Definition 4.6):

Question 4.7. Let B be a block of kG. Are the maximal ideal spectra of HH∗(B)
and LH∗(B) homeomorphic?

In the case of the principal block B0, it is known that LH∗(B0) ∼= H∗(G, k), and so
Corollary 4.5 gives an affirmative answer to this question. Our paper [17] also gives a
positive answer in the cases (1) B has a cyclic defect group and (2) G is a Frobenius
group (p odd). In fact we proved the stronger result that HH∗(B) and LH∗(B) are
isomorphic, modulo their radicals, in these cases. We hope that the results of the
present paper will ultimately lead to an answer to this question in general. Such an
answer could have important consequences in block theory.

The appendix, written by Stephen F. Siegel, contains a detection result that is
needed for our Quillen stratification. Hochschild cohomology is not a functor on
algebras. However, if the algebra is a group algebra, we may define restriction maps
to subgroup algebras by keeping coefficients in the original group ring. Then nilpotent
elements are detected by restrictions to elementary abelian p-subgroups, as stated in
Proposition 2.1 in the next section. The proof is similar to the standard proof given
for the analogous result in group cohomology, but there are some subtleties involved.
This detection result is a special case of the following more general result in the
appendix.

Lemma 5.1. Let A be an algebra on which G acts by automorphisms, and M an A-
module that is also a kG-module for which these two module structures are compatible.
Let ζ ∈ H∗(G,A) such that for each elementary abelian p-subgroup E of G, some
power of resGE(ζ) ∈ H∗(E,A) annihilates H∗(E,M). Then some power of ζ annihilates
H∗(G,M).

The detection result we need is a consequence of Lemma 5.1 and is also a special
case of a theorem of Suslin for finite group schemes [25]. To be complete and to allow
for potential applications of Lemma 5.1 itself, we have decided to include the details
of the proof in the appendix.

2. The Hochschild variety of G

We will begin with some results about the ring structure of HH∗(kG) ∼= H∗(G, kG)
(where the action of G on kG is via conjugation) and their consequences for the
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structure of its maximal ideal spectrum. First we note that H∗(G, kG) is graded-
commutative by a very general result of Gerstenhaber [12, §7, Cor. 1]. It is also
finitely generated: There is an embedding of the group cohomology ring H∗(G, k) into
H∗(G, kG) induced by the unit map k ↪→ kG. Now H∗(G, kG) is finitely generated as
an H∗(G, k)-module, and H∗(G, k) is finitely generated [11, Thm. 7.4.1, Cor. 7.4.6].
The union of two such sets of generators yields a set of generators for H∗(G, kG).

The following result on nilpotent elements in H∗(G, kG) is also stated as Corollary
5.4, proved in the appendix. Alternatively, the proposition follows from a very general
theorem of Suslin for finite group schemes [25]. If H < G, we will use the notation
resGH and corGH for the restriction and corestriction maps, respectively. (See [6] or [11]
for details.)

Proposition 2.1. Let ζ ∈ H∗(G, kG). Then ζ is nilpotent if, and only if, resGE(ζ) is
nilpotent for every elementary abelian p-subgroup E of G.

For any subgroup H of G, let H
∗
(H, kG) (respectively, H

∗
(H, k)) denote the quo-

tient of the cohomology ring H∗(H, kG) (respectively, H∗(H, k)) by the ideal of
“proper transfers”

∑
K<H Im(corHK). We will be interested in the ring homomorphism

(2.2) σ : H∗(G, kG)→
∏
E

(H
∗
(E, kG))NG(E),

the product over a set of representatives E of conjugacy classes of elementary abelian
p-subgroups of G, given in the E-component by the composition resGE of resGE with
the quotient map. We will use the following result from [22]. The statement (i) in the
proposition below is essentially the Universal Coefficients Theorem [8, VI, Thm. 3.3],
whereas the proof of (ii) is more involved and uses a product formula for Hochschild
cohomology [22, Thm. 5.1].

Proposition 2.3. Let H be a subgroup of G, acting on kG by conjugation. The
following are isomorphisms of graded algebras:

(i) [22, Prop. 3.2] H∗(H, kCG(H)) ∼= kCG(H)⊗k H∗(H, k).

(ii) [22, Thm. 10.2] H
∗
(H, kG) ∼= kCG(H)⊗k H

∗
(H, k).

For an elementary abelian p-group E, we have H
∗
(E, k) = H∗(E, k) [11, Lem.

6.3.4], so part (ii) of the above proposition implies that there is a ring isomorphism

(2.4) ψE : H
∗
(E, kG)

∼−→ kCG(E)⊗k H∗(E, k).

Part (i) further implies that kCG(E) ⊗k H∗(E, k) ∼= H∗(E, kCG(E)). We will some-
times consider ψE to be a map to H∗(E, kCG(E)) when it is convenient. Let ρ be the
composition of σ with the direct product of these isomorphisms ψE. Another way to
view ρ is as the product of restriction maps resGE, each followed by the map induced
by the projection of kG = kCG(E)⊕k(G−CG(E)) onto the first summand, and then
by the isomorphism of part (i) of the above proposition.
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Theorem 2.5. There is a ring homomorphism, with nilpotent kernel,

ρ : H∗(G, kG)→
∏
E

(kCG(E)⊗k H∗(E, k))NG(E),

the product over a set of representatives E of conjugacy classes of elementary abelian
p-subgroups of G.

Proof. As ρ is the composition of σ (2.2) with the isomorphisms ψE (2.4), it suffices
to prove that Ker(σ) is nilpotent. This is equivalent to showing that Ker(σ) consists
entirely of nilpotent elements, as H∗(G, kG) is graded-commutative.

Let ζ ∈ Ker(σ). Then for each E in the product, resGE(ζ) ∈
∑

F<E Im(corEF ). We
will show that resGE(ζ) is nilpotent; this involves an argument similar to the proof of
[26, Thm. 3.2, part 2], but we repeat it here for completeness. It will follow that ζ is
nilpotent by Proposition 2.1, as each elementary abelian p-subgroup of G is conjugate
to one of the subgroups E in the product, and resGE(ζ) is nilpotent if and only if its
conjugates by all elements of G are nilpotent.

Write resGE(ζ) =
∑

F<E corEF (ζF ) for some elements ζF ∈ H∗(F, kG). Then

(resGE(ζ))2 = resGE(ζ) ·
∑
F<E

corEF (ζF ) =
∑
F<E

corEF (resGF (ζ) · ζF ).

As ζ ∈ Ker(σ), we also have resGF (ζ) =
∑

L<F corFL(ζL) for some elements ζL ∈
H∗(L, kG). Therefore

(resGE(ζ))2 =
∑
F<E

corEF

(∑
L<F

corFL(ζL) · ζF

)
=

∑
F<E

∑
L<F

corEL (ζL · resFL(ζF )).

Similarly, we may calculate (resGF (ζ))3, and so on. The sizes of the subgroups involved
in the power (resGE(ζ))n strictly decreases as n increases, and so (resGE(ζ))n = 0 for
some n. �

We may use the map ρ in the theorem to obtain a result regarding the maximal
ideal spectrum of the Hochschild cohomology ring H

q
(G, kG), where

H
q
(G, kG) =

{
H2∗(G, kG), if p is odd

H∗(G, kG), if p = 2.

The ring H
q
(G, kG) is commutative, as H∗(G, kG) is graded-commutative. The map

ρ restricted to H
q
(G, kG) will also be denoted ρ.

For each elementary abelian p-subgroup E, the corresponding factor in the target
of ρ consists of elements invariant under NG(E), and so is contained in the invariants
under CG(E):

(kCG(E)⊗k H
q
(E, k))NG(E) ⊆ (kCG(E)⊗k H

q
(E, k))CG(E).
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However CG(E) acts trivially on H
q
(E, k), so the latter ring is Z(kCG(E))⊗kH

q
(E, k),

a commutative algebra. We will set

(2.6) A
q
(E) = Z(kCG(E))⊗k H

q
(E, k),

and define the algebra map

(2.7) φE : H
q
(G, kG)→ A

q
(E)

by restriction of the map ψE ◦ resGE to H
q
(G, kG), followed by inclusion into A

q
(E)

(ψE is defined in (2.4) and resGE in the text above (2.4)).
We now define several varieties.

Definition 2.8. The Hochschild variety of G is XG = max(H
q
(G, kG)), the maximal

ideal spectrum of H
q
(G, kG). Let YG,E = max(A

q
(E)) and XG,E = max(Im(φE)).

Note that φE induces a map φ∗E : YG,E → XG,E ↪→ XG.

We first describe an approximate relationship between the varieties YG,E and XG,E.

Lemma 2.9. The algebra A
q
(E) is finitely generated over Im(φE), so that φ∗E :

YG,E → XG,E is a finite surjective map. In particular, dim(XG,E) = dim(YG,E).

Proof. It suffices to show that kCG(E)⊗kH
q
(E, k) is finitely generated over the image

of φE, as A
q
(E) = Z(kCG(E)) ⊗k H

q
(E, k) is a submodule of this, and H

q
(G, kG) is

Noetherian.
Applying the isomorphism (2.4), we need to show that H

q
(E, kG) is finitely gener-

ated as a module over resGE(H
q
(G, kG)), which will follow once we show that H

q
(E, kG)

is finitely generated over resGE(H
q
(G, kG)). Now H

q
(E, kG) is finitely generated over

H
q
(E, k) by [11, Thm. 7.4.1], and H

q
(E, k) is finitely generated over resGE(H

q
(G, k))

by [11, Cor. 7.4.7]. Therefore H
q
(E, kG) is finitely generated over resGE(H

q
(G, k)).

(Take as a set of generators the set of pairwise products of the previous generators.)
But resGE(H

q
(G, k)) ⊆ resGE(H

q
(G, kG)) as these restriction maps are defined compat-

ibly, and so H
q
(E, kG) is finitely generated over resGE(H

q
(G, kG)). Thus φ∗E is a finite

map [7, p. 171]. As Im(φE) is a subalgebra of A
q
(E), φ∗E : YG,E → XG,E is surjec-

tive by the Going-up Theorem [4, Thm. 5.10]. It also follows from finiteness that
dim(XG,E) = dim(YG,E). �

As a consequence of the lemma, we may describe the relationship of the Hochschild
variety XG to the varieties XG,E and YG,E as follows.

Theorem 2.10. The Hochschild variety is a union,

XG =
⋃
E

φ∗E(YG,E) =
⋃
E

XG,E,

taken over a set of representatives E of conjugacy classes of elementary abelian p-
subgroups of G.
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Proof. By Theorem 2.5, the map∏
E

φE : H
q
(G, kG)→

∏
E

A
q
(E)

has nilpotent kernel. Since the product is finite, Lemma 2.9 implies that the target
of the map

∏
E φE is finitely generated as a module over its image. It follows from

these two facts that ⋃
E

φ∗E :
⋃
E

YG,E → XG

is a finite dominant map [7, p. 172]. Again by the Going-up Theorem [4, Thm. 5.10],⋃
E φ

∗
E is surjective. �

3. The varieties XG,E and YG,E

In this section, we work to understand better the varieties XG,E and YG,E appearing
in Theorem 2.10. First, YG,E clearly depends on the block structure of the group
algebra kCG(E), and accordingly we choose some notation.

Definition 3.1. If E is an elementary abelian p-subgroup of G, denote by BE the
set of blocks (that is, block ideals) of kCG(E). Thus kCG(E) = ⊕b∈BE

b as an algebra.
Denote the block idempotent associated to the block b by eb, so that b = kCG(E)eb.
For each block b ∈ BE, let Yb = krk(E), the affine space of dimension equal to the
rank of E.

The following result gives a simple picture of the varieties YG,E.

Lemma 3.2. If E is an elementary abelian p-subgroup of G then

YG,E ∼=
⋃
b∈BE

Yb,

the disjoint union of affine spaces of dimension rk(E), one for each block of kCG(E).

Proof. By definition, YG,E = max(Z(kCG(E)) ⊗k H
q
(E, k)). If we write kCG(E) =

⊕b∈BE
b then Z(kCG(E)) = ⊕b∈BE

Z(b) where Z(b) is the center of the block b. Note
that Z(b)/ rad(Z(b)) ∼= k, generated by the image of eb [9, Prop. 56.16].

Now we may write A
q
(E) = ⊕b∈BE

(Z(b)⊗k H
q
(E, k)). Thus YG,E is the disjoint

union of the maximal ideal spectra of the summands Z(b)⊗k H
q
(E, k). Since Z(b)⊗k

H
q
(E, k) is isomorphic, modulo radicals, to Z(b)/ rad(Z(b))⊗k H

q
(E, k), its maximal

ideal spectrum is

max (Z(b)/ rad(Z(b))⊗k H
q
(E, k)) = max(H

q
(E, k)) ∼= krk(E) = Yb.

�

The picture of the varieties YG,E provided by the lemma gives us some understand-
ing of the subvarieties XG,E of XG, as each φ∗E : YG,E → XG,E is a finite surjective
map. We will work to refine this picture, and to understand how the varieties XG,E



QUILLEN STRATIFICATION FOR HOCHSCHILD COHOMOLOGY 9

are glued together in the union of Theorem 2.10. For this, we will need the Brauer
map. Let F < E be elementary abelian p-subgroups of G, and note that

F < E ≤ CG(E) ≤ CG(F ).

The corresponding Brauer map is the linear function

brEF : Z(kCG(F ))→ Z(kCG(E))

defined by brEF (x) = x if x ∈ CG(E), and brEF (x) = 0 if x ∈ CG(F ) − CG(E).
This is in fact an algebra homomorphism by [1, (2.5)(3)] or [9, Lemma 58.2(v)], as
Z(kCG(F )) = (kCG(F ))CG(F ) ⊂ (kCG(F ))E. We similarly denote by brP1 : kG →
kCG(P ) the Brauer map defined analogously for any p-subgroup P of G.

Cohomologically, the Brauer map brEF is the following composition of maps, where
we identify Z(kCG(F )) with degree 0 Hochschild cohomology:

H0(CG(F ), kCG(F ))
res

CG(F )

E−−−→ H0(E, kCG(F ))→ H
0
(E, kCG(F )) ∼= H0(E, kCG(E)).

Indeed H0(E, kCG(E)) ∼= (kCG(E))E, and the image of the above composition of
maps lies in kCG(E)CG(E) = Z(kCG(E)) since it factors through H0(CG(E), kCG(E)).
Since restriction and reducing modulo the ideal of proper transfers are algebra maps,
we see that brEF : Z(kCG(F ))→ Z(kCG(E)) is also an algebra map.

In case F = 1, we may thus view the Brauer maps as degree 0 components of the
map σ defined in (2.2).

Let

(3.3) A
q
(E,F ) = Z(kCG(E))⊗ H

q
(F, k),

and A
q
(E), A

q
(F ) as defined in (2.6). Let

(3.4) ResEF : A
q
(E)→ A

q
(E,F ) and BrEF : A

q
(F )→ A

q
(E,F )

be defined by ResEF = Id⊗ resEF and BrEF = brEF ⊗ Id. Let

φE,F : H
q
(G, kG)→ A

q
(E,F )

be the composition of resGF and the following sequence of maps, where we note that
the image of resGF is contained in the CG(E)-invariant subalgebra:

H
q
(F, kG)CG(E) → H

q
(F, kCG(E))CG(E) ∼−→ (kCG(E)⊗ H

q
(F, k))CG(E) = A

q
(E,F ).

The first map above is induced by the Brauer map brE1 , and the second is the iso-
morphism of Proposition 2.3(i).
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Lemma 3.5. For elementary abelian p-subgroups F < E of G, φE,F is an algebra
homomorphism, and the following diagram commutes:

A
q
(E)

ResE
F

��
H

q
(G, kG)

φE

88pppppppppp φE,F //

φF

&&NNNNNNNNNN
A

q
(E,F )

A
q
(F )

BrE
F

OO

Proof. The map φE is essentially resGE followed by the map induced by the Brauer
map brE1 . From this it is clear that the top square commutes. The bottom square
also commutes as φE,F is essentially φF followed by the map induced by the Brauer
map brEF . Finally all the maps in the diagram other than φE,F are known to be
algebra maps, and so commutativity of the diagram forces φE,F to be an algebra map
as well. �

We may now restrict the domains of ResEF and BrEF to obtain maps ResEF : Im(φE)→
Im(φE,F ) and BrEF : Im(φF ) → Im(φE,F ). We will next define auxiliary varieties
XG,E,F and YG,E,F that will be related to our previous varieties via these maps.

Definition 3.6. Let YG,E,F = max(A
q
(E,F )) and XG,E,F = max(Im(φE,F )). By the

same arguments as in the proof of Lemma 3.2, we have YG,E,F ∼= ∪B∈BE
krk(F ), a

disjoint union of affine spaces of dimension equal to the rank of F . The map φE,F
induces a map of varieties φ∗E,F : YG,E,F → XG,E,F , ResEF induces (ResEF )∗ : XG,E,F →
XG,E, and BrEF induces (BrEF )∗ : XG,E,F → XG,F .

The following theorem gives the fundamental picture:

Theorem 3.7. If F < E are elementary abelian p-subgroups of G, then the following
diagram of varieties commutes:

XG,E YG,E
φ∗Eoo

XG,E,F

(BrE
F )∗

��

(ResE
F )∗

OO

YG,E,F

(ResE
F )∗

OO

φ∗E,Foo

(BrE
F )∗

��
XG,F YG,F

φ∗Foo

The maps φ∗E, φ
∗
F , φ

∗
E,F are finite surjective maps. The maps (ResEF )∗ are injective.

Proof. The commutativity of the diagram is a consequence of Lemma 3.5 and the
comments in the paragraph following it. The injectivity of (ResEF )∗ follows from the
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surjectivity of ResEF which in turn follows from the surjectivity of resEF : H
q
(E, k) →

H
q
(F, k).
We have already seen that φ∗E and φ∗F are finite maps. Now A

q
(E) is finitely

generated over Im(φE) and ResEF is surjective. Therefore A
q
(E,F ) is finitely generated

over Im(φE,F ). It follows that φE,F is a finite map, and hence surjective as well. �

By Theorem 3.7, we may view XG,E,F as the part of XG,E coming from XG,F .
Notice that YG,E,F has the same number of components as YG,E in general but their
dimension is the same as that of YG,F . The map (ResEF )∗ : YG,E,F → YG,E may be
defined componentwise for the blocks of E, the component associated to a block
B ∈ BE being the map (resEF )∗ : max(H

q
(F, k)) → max(H

q
(E, k)). Thus we have a

reasonably good understanding of the injective map (ResEF )∗.
However we will soon see that (BrEF )∗ is neither injective nor surjective in general.

It can happen that F < E but XG,F does not inject into XG,E, unlike the situation in
the Quillen stratification of H

q
(G, k). We will give a simple example next to illustrate

this.

Example 3.8. Let G = Σ3 and p = 2. Up to conjugacy, the only elementary abelian
2-subgroups are E = {1, (12)} and 1.

We have A
q
(E) = kE⊗H

q
(E, k) and so YG,E = k. Similarly A

q
(1) = Z(kG)⊗k and

so YG,1 consists of two points (as kG has two blocks). By the same reasoning, YG,E,1
consists of exactly one point. It follows that (BrE1 )∗ : YG,E,1 → YG,1 is not surjective.

In fact it will follow from Theorem 4.3, as NG(E) = E, that φ∗1, φ
∗
E, φ

∗
E,1 are

injective and hence homeomorphisms onto their images. Thus we have XG,E = k,
XG,1 consists of two points and XG,E ∩XG,1 consists of one point. Consequently, the
Hochschild variety of G is XG = XG,E ∪XG,1 = k ∪{∗}, where ∗ is an isolated point.
Notice that the trivial elementary abelian group contributed essentially to XG!

In terms of the block decomposition of kG, we have XG = ∪XB where XB =
max(HH∗(B)), and B ranges over the two blocks of kG. The dimension of XB is the
p-rank of a defect group P of B, that is the rank of a maximal elementary abelian
p-subgroup of P (see Theorem 4.2 below or [15, Cor. 4.3(ii)]). Thus our picture
XG = k

∐
{∗} reflects the block structure of kG: It has two blocks, one semisimple

block (whose variety is {∗}) and the principal block having variety k.

Now we work to understand better the map (BrEF )∗ : YG,E,F → YG,F . The be-
haviour of this map is completely determined by (brEF )∗ : max(Z(kCG(E))) →
max(Z(kCG(F ))), so we will study (brEF )∗ first.

By [9, Prop. 56.16], Z(kCG(E))/ rad(Z(kCG(E))) ∼= ⊕b∈BE
k, where the primi-

tive central idempotent eb of kCG(E) projects to zero in all factors except the one
corresponding to B, where it projects to 1. Thus max(Z(kCG(E)) consists of a fi-
nite number of points, one for each block b of E, and in this way we may identify
max(Z(kCG(E)) with the set BE of blocks of kCG(E). Specifically, we associate to
the block b of kCG(E) the maximal ideal Mb of Z(kCG(E)) that does not contain eb.
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The algebra map brEF : Z(kCG(F )) → Z(kCG(E)) induces a map of varieties
(brEF )∗ : max(Z(kCG(E))) → max(Z(kCG(F ))) that may be viewed as a map from
BE to BF by the above comments. In fact (brEF )∗ is the block correspondence of
Alperin and Broué: By [1, Lemma 3.6(1)], if b is a block of kCG(E), there is a unique
block B of kCG(F ) such that brEF (eB)eb = eb. The corresponding statement for the
associated varieties is that (brEF )∗(Mb) does not contain eB, and hence must be MB.
Conversely, since brEF is an algebra map from Z(kCG(F )) to Z(kCG(E)), the image
brEF (eB) is a central idempotent of kCG(E) and hence one of the following occurs:

(i) brEF (eB) = 0, in which case MB is not in the image of (brEF )∗, or
(ii) brEF (eB) =

∑
b∈S eb for some S ⊆ BE, so that (brEF )∗(Mb) = MB for all b ∈ S.

A consequence of (i) is that (brEF )∗ may not be surjective, and a consequence of (ii)
is that (brEF )∗ may not be injective. Therefore (BrEF )∗ is in general neither injective
nor surjective. The following lemma summarizes implications for the relationship
between the varieties YG,E,F and YG,F .

Lemma 3.9. Let F < E be elementary abelian p-subgroups of G. The Brauer map
BrEF induces a map of varieties

(BrEF )∗ : YG,E,F =
⋃

B∈BE

krk(F ) → YG,F =
⋃

B∈BF

krk(F )

which identifies components according to the Alperin-Broué correspondence and is
injective when restricted to any particular component.

At this point, we have some understanding of the maps

YG,E
(ResE

F )∗

←↩ YG,E,F
(BrE

F )∗

−−−→ YG,F

of Theorem 3.7. How well this carries over to the maps

XG,E

(ResE
F )∗

←↩ XG,E,F

(BrE
F )∗

−−−→ XG,F

depends on how far the finite surjective maps φ∗E, φ
∗
F and φ∗E,F are from being injective.

We address this question partially in the next section, and use the auxiliary varieties
XG,E,F to obtain a Quillen stratification of the Hochschild varietyXG. More precisely,
we describe the stratification in terms of the blocks of kG.

4. Quillen stratification and consequences

In this section we will restrict our attention to the summands of H
q
(G, kG) corre-

sponding to the blocks of kG. By standard arguments (see for example [22, §3]),

HH∗(B) = Ext∗B⊗Bop(B,B) ∼= Ext∗kG⊗(kG)op(kG,B) ∼= Ext∗kG(k,B),

that is HH∗(B) ∼= H∗(G,B) where B is a kG-module via conjugation. Let E be an
elementary abelian p-subgroup of G. Recall that in degree 0, the map φE of (2.7) is
essentially the Brauer map brE1 .
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Let B be a block of kG. We may apply φE to H
q
(G,B) via the embedding

H
q
(G,B) ↪→ H

q
(G, kG), and we will denote this map by φB,E. Similarly, let φB,E,F

denote the map φE,F restricted to H
q
(G,B). Now H

q
(G,B) = H

q
(G, kGeB) =

H
q
(G, kG)eB by identifying eB with an element of H0(G, kG) ∼= Z(kG). As φE is an

algebra homomorphism, φB,E(H
q
(G,B)) = φE(H

q
(G, kG))φE(eB) ⊆ (Z(kCG(E)) ⊗

H
q
(E, k))(brE1 (eB)⊗ 1). Thus we have

Im(φB,E) ⊆ brE1 (eB)Z(kCG(E))⊗ H
q
(E, k),

and further the image is an NG(E)-invariant subalgebra.
Let

A
q
B(E) = brE1 (eB)Z(kCG(E))⊗ H

q
(E, k),

and A
q
B(E,F ) = brE1 (eB)Z(kCG(E))⊗ H

q
(F, k).

We next define the corresponding varieties.

Definition 4.1. The Hochschild variety of the block B of kG isXB = max(H
q
(G,B)).

Let YB,E = max(A
q
B(E)) and YB,E,F = max(A

q
B(E,F )). By restricting the domains of

the maps (3.4), we have ResEF : A
q
B(E) → A

q
B(E,F ) and BrEF : A

q
B(F ) → A

q
B(E,F ).

These induce maps on varieties

YB,F
(BrE

F )∗

←− YB,E,F
(ResE

F )∗

↪→ YB,E.

Let
Y +
B,E = YB,E −

⋃
F<E

(ResEF )∗(YB,E,F ).

Similarly, let XB,E = max(Im(φB,E)), XB,E,F = max(Im(φB,E,F )), and

X+
B,E = XB,E −

⋃
F<E

(ResEF )∗(XB,E,F ).

Note that by Theorem 3.7, X+
B,E = φ∗B,E(Y +

B,E).

The above observations and those at the end of the last section allow us to describe
the varieties XB,E in terms of the defect groups of B: These are the maximal p-
subgroups P of G such that brP1 (eB) 6= 0 [1, (2.6)]. They are all conjugate in G, and
if P is any p-subgroup, brP1 (eB) 6= 0 if and only if P is contained in a defect group of
B [1, (2.6)]. Thus XB,E is nonempty if, and only if, E is contained in a defect group
of B. The following theorem is the first part of the Quillen stratification, giving a
more precise description of the Hochschild variety XB of B.

Theorem 4.2. Let B be a block of G and P a defect group of B. Then

XB =
⋃
E

X+
B,E,

a disjoint union of subvarieties, taken over a set of elementary abelian p-subgroups
E of P , one from each G-conjugacy class of elementary abelian p-subgroups of G for
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which at least one member is contained in P . Further there are finite surjective maps
Y +
B,E → X+

B,E, so that dim(X+
B,E) = dim(Y +

B,E) = rk(E), and dim(XB) = rk(P ).

We remark that dim(XB) was already known to be equal to rk(P ), as follows from
[15, Cor. 4.3(ii)].

Proof. We use standard methods, such as in [7, §5.6]. For each E, let

σE =
∏

0 6=ζ∈H1(E,Fp)

β(ζ),

where β is the Bockstein homomorphism, so that σE ∈ H
q
(E, k). By definition of the

map ResEF , we now have Y +
B,E = max

(
A

q
B(E)

[
brE1 (eB)⊗ σ−1

E

])
. Note that Y +

B,E is

empty if brE1 (eB) = 0, which is the case if no G-conjugate of E lies in P .
By [7, Lemma 5.6.2], for each elementary abelian p-subgroup E of G, there is an

element ρE ∈ H
q
(G, k) such that resGE(ρE) = (σE)p

a
for some a. Further, if F is

an elementary abelian p-subgroup that is not contained in a conjugate of E then
resGE(ρF ) = 0. Let ψB : H

q
(G, k) → H

q
(G,B) be the map induced by the inclusion

k ↪→ B that sends 1 to eB. We have φB,E(ψB(ρF )) = brE1 (eB) ⊗ resGE(ρF ) for all
elementary abelian p-subgroups F ≤ E of G, which is nonzero if and only if E is
contained in a conjugate of P and F is contained in a conjugate of E. It follows from
these observations that

X+
B,E = max(φB,E(H

q
(G,B)[ψB(ρE)−1])) = max(Im(φB,E)[(brE1 (eB)⊗ resGE(ρE))−1]).

Now Im(φB,E) is an H
q
(G,B)-module via φB,E, and ψB(ρF ) ∈ H

q
(G,B) acts on

Im(φB,E) as brE1 (eB)⊗ resGE(ρF ) which is zero if no G-conjugate of F is contained in
E. Thus the X+

B,E are disjoint since given a pair of elementary abelian p-subgroups
E and F which are not G-conjugate, at least one of them does not contain the other
up to G-conjugacy.

Also note that the only maximal ideals M removed from XB,E to form X+
B,E are

those which contain brE1 (eB) ⊗ resGE(ρE) or equivalently brE1 (eB) ⊗ (σE)p
a
. Pulling

M back to H∗(G,B), we have an ideal containing Ker(φB,E) and ψB(ρE). This ideal
is in the image (ResEF )∗(XB,E,F ) for some F < E and hence the ideal M contains
Ker(φB,E,F ) and Ker(φB,F ). Thus M will be in XB,F for some F < E. It follows that
the union of X+

B,E, over all elementary abelian p-subgroups E, is still XB. �

We now give a more complete description of the varieties X+
B,E in a special case.

Let WG(E) = NG(E)/CG(E), the Weyl group of E.

Theorem 4.3. Let B be a block of G and E an elementary abelian p-subgroup of
G such that brE1 (eB) = eb for some block b of E. Then φ∗B,E induces an inseparable

isogeny Y +
B,E/WG(E)→ X+

B,E.

The relationship between Y +
B,E and X+

B,E in general appears to be more subtle as
the maps φB,E may be more complicated.



QUILLEN STRATIFICATION FOR HOCHSCHILD COHOMOLOGY 15

Proof. Under the hypothesis, A
q
B(E) = Z(b)⊗H

q
(E, k). Let γB,E : H

q
(G, k)→ A

q
B(E)

be the composition

H
q
(G, k)

ψB−−→ H
q
(G,B)

φB,E−−→ A
q
B(E),

where as above ψB is induced by the inclusion k ↪→ B that sends 1 to eB. Note
that γB,E sends ζ ∈ H

q
(G, k) to brE1 (eB) ⊗ resGE(ζ). As elements of H

q
(G, k) and of

H
q
(G,B) are invariant under conjugation by elements of G, we have the following

containments:

(4.4) Im(γB,E) ⊆ Im(φB,E) ⊆ A
q
B(E)WG(E).

Every element in A
q
B(E)WG(E) may be expressed as eb⊗ζ, for some ζ ∈ H

q
(E, k)WG(E),

plus an element in the radical. (This follows from writing x ∈ A q
B(E)WG(E) as x =∑

i(cieb + ri)⊗ ζi where ci ∈ k and ri ∈ rad(Z(b)).)
By [7, Lemma 5.6.2], there is a nonnegative integer a such that ζp

a
= resGE(ρ−1

E ζ ′)
for some ζ ′ ∈ H

q
(G, k) and ρE ∈ H

q
(G, k) as before with resGE(ρE) = (σE)p

a
. Therefore

(eb⊗ ζ)p
a

= eb⊗ ζp
a

= eb⊗ resGE(ρ−1
E ζ ′) ∈ Im(γB,E) where we have extended γB,E to a

map from H
q
(G, k)[ρ−1

E ] to (A
q
B(E)[eb⊗σ−1

E ])WG(E). Considering the sequence of subal-
gebras (4.4), this shows that (eb⊗ζ)p

a
is also contained in φB,E(H

q
(G,B)[ψB(ρE)−1]).

Thus

((A
q
B(E)[eb ⊗ σ−1

E ])WG(E))p
a ⊆ Im(φB,E)[eb ⊗ σ−1

E ] ⊆ (A
q
B(E)[eb ⊗ σ−1

E ])WG(E).

Hence φB,E induces an inseparable isogeny

max((A
q
B(E)[eb ⊗ σ−1

E ])WG(E)) = Y +
B,E/WG(E)→ X+

B,E.

�

The principal block B0 of G satisfies the hypotheses of Theorem 4.3 for each ele-
mentary abelian p-subgroup E of G, that is the defect groups of B0 are the Sylow
p-subgroups, and brE1 (eB0) = eb0 for every elementary abelian p-subgroup E of G. We
are therefore led to the following corollary, which proves a weak form of the conjecture
[23, Conj. 1].

Corollary 4.5. Let B0 be the principal block of kG. Then max(HH
q
(B0)) is homeo-

morphic to max(H
q
(G, k)).

Proof. First note that all elementary abelian p-subgroups of G are G-conjugate to a
subgroup of the Sylow p-subgroup P , the defect group of B0.

By the proof of Theorem 4.3, the maps φB0,E together give a homomorphism φB0 :
H

q
(G,B0) → limA

q
B0

(E) where this inverse limit is over the category of elementary
abelian p-subgroups of G with morphisms given by inclusions and G-conjugations.
Note that since brE1 (eB0) = eb0 , there is no ambiguity in defining the gluing maps in
this inverse limit.
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The proofs of Theorems 4.2 and 4.3 show that modulo radicals, φB0 induces an
inseparable isogeny. However since brE1 (eB0) = eb0 for every elementary abelian p-
subgroup E, we see that modulo radicals, limA

q
B0

(E) is isomorphic to limH
q
(E, k).

Quillen has shown [7, Thm. 5.6.3] that there is an inseparable isogeny between this lat-
ter inverse limit and H

q
(G, k). It follows that the varieties for H

q
(G, k) and H

q
(G,B0)

are homeomorphic.
�

More generally, Theorem 4.3 applies to a block of principal type, that is a block
B such that for every p-subgroup P of G, brP1 (eB) is either 0 or a unique block
idempotent eb. For such a block B, Theorem 4.3 implies that the Hochschild variety
XB is homeomorphic to the subvariety of max(H

q
(G, k)) obtained by removing those

pieces in the Quillen stratification corresponding to elementary abelian p-subgroups
not contained in a defect group of B.

In the remainder of this section, we will speculate on related potential consequences
of Theorems 4.2 and 4.3. Let (P,BP ) be a Sylow B-subpair of G, unique up to
conjugacy [1], so that P is a defect group of B and BP is a block of kCG(P ). If R is
a subgroup of P , there is a unique block BR of kCG(R) such that (R,BR) ≤ (P,BP ),
where the partial order on subpairs is defined in [1]. Let NG(BR) be the subgroup of
NG(R) fixing BR setwise, under conjugation.

Definition 4.6 (Linckelmann [14, 15]). Let B be a block of kG with defect group
P . The block cohomology ring of B is the subring LH∗(B) of H∗(P, k) consisting of
all ζ ∈ H∗(P, k) satisfying

g resPR(ζ) = resPR(ζ)

for all subgroups R of P , and all g ∈ NG(BR).

If B = B0 is the principal block, then LH∗(B0) ∼= H∗(G, k). Thus Corollary 4.5
shows that max(HH∗(B0)) is homeomorphic to max(LH∗(B0)). We do not know
whether the generalization of this statement to all blocks is true, so we raise it as a
question.

Question 4.7. Let B a block of kG. Are max(HH∗(B)) and max(LH∗(B)) homeo-
morphic?

In fact, the cohomology rings HH∗(B) and LH∗(B) are isomorphic, modulo their
radicals, in many known cases as shown in [17], and the question was raised in that
paper whether this is true in general. We do not know of a counterexample to
either statement. It is possible that a detailed comparison of our stratification of
the Hochschild variety max(HH∗(B)) of a block B with Linckelmann’s stratification
of the block variety max(LH∗(B)) [16] would yield further information, potentially
providing an answer to this question.

In Linckelmann’s paper [16], he also deals more generally with the support varieties
of modules over a block B, defined via the block cohomology LH∗(B). An analogous
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theory defined via the Hochschild cohomology HH∗(B) was developed in unpublished
work of Siegel [21], some of which has now been done in greater generality by Snashall
and Solberg [24] for modules over Artinian algebras. The techniques we have devel-
oped in this paper should lead to a Quillen stratification of these support varieties
of modules over B, defined via the Hochschild cohomology HH∗(B), but we do not
pursue this here.

ACKNOWLEDGMENT. The second author thanks M. Linckelmann for some very
helpful discussions.

5. Appendix: Hochschild cohomology and elementary abelian
subgroups
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Main results. Throughout this section, G is a finite group and k is a (not necessarily
algebraically closed) field of prime characteristic p. All k-algebras are assumed to have
units.

By a G-equivariant k-algebra we mean a k-algebra A on which G acts as algebra
automorphisms. A map of G-equivariant k-algebras is an algebra homomorphism
which is also a kG-homomorphism. By a G-equivariant A-module we mean an A-
module M such that the structure map

µ : A⊗M →M

is a kG-homomorphism, i.e., g(ax) = (ga)(gx) for all g ∈ G, a ∈ A, and x ∈
M . A map of G-equivariant A-modules is an A-homomorphism which is also a kG-
homomorphism.

In this setting, the cup product gives H∗(G,A) the structure of a graded k-algebra,
and H∗(G,M) becomes an H∗(G,A)-module.

The main result is the following Key Lemma:

Lemma 5.1. Let A be a G-equivariant k-algebra, and ζ ∈ H∗(G,A). Let M be a
G-equivariant A-module. Suppose that, for each elementary abelian p-subgroup E of
G, some power of resGE(ζ) ∈ H∗(E,A) annihilates H∗(E,M). Then some power of ζ
annihilates H∗(G,M).

Before proving Lemma 5.1, we look at several consequences. It will be seen that the
Lemma allows one to easily obtain several of the well-known results in ordinary group
cohomology, as well as analogous results for Hochschild cohomology, in a unified way.

The main application is in the following setting. Suppose N is a G-equivariant
k-algebra, and that there is a map of G-equivariant algebras α : A → N . Then we
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may consider N as a G-equivariant A-module via µ(a⊗ x) = α(a)x. In this case we
can say something in both directions.

Theorem 5.2. Let A and ζ be as in Lemma 5.1, and α : A → N as above. Then
some power of ζ annihilates H∗(G,N) if, and only if, for each elementary abelian
p-subgroup E of G, some power of resGE(ζ) annihilates H∗(E,N).

Proof. Since we are dealing with algebras with units, ζn annihilates H∗(E,N) if, and
only if, it annihilates 1 ∈ H0(E,N). Assuming ζn annihilates H∗(G,N), we have

resGE(ζn) · 1 = resGE(ζn) · resGE(1) = resGE(ζn · 1) = 0.

So ζn annihilates H∗(E,N). The other direction follows from the Lemma. �

The special case of Theorem 5.2 in which N = A and α = 1 yields the following:

Corollary 5.3. Let A be a G-equivariant k-algebra, and ζ ∈ H∗(G,A). Then ζ is
nilpotent if, and only if, resGE(ζ) is nilpotent for every elementary abelian subgroup E
of G.

The case A = k is well-known and is a key step in the ordinary Quillen stratification
for H∗(G, k). Another case is where M is a kG-module and N = Endk(M). In that
case there is a natural isomorphism

H∗(G,N) ∼= Ext∗kG(M,M).

So Corollary 5.3 yields the well-known result that an element of Ext∗kG(M,M) is
nilpotent if and only if its restriction to E is nilpotent for every elementary abelian
E.

We may also take A = k and N = Endk(M) and obtain from Theorem 5.2
the weaker well-known result that for ζ ∈ H∗(G, k), some power of ζ annihilates
Ext∗kG(M,M) if and only if for all E, some power of resGE(ζ) annihilates Ext∗kE(M,M).

To see how this applies to Hochschild cohomology, recall that HH∗(kG), the
Hochschild cohomology of kG, may be identified with H∗(G, kG), where kG is con-
sidered a module under conjugation. In this case, Corollary 5.3 yields

Corollary 5.4. Let ζ ∈ HH∗(kG). Then ζ is nilpotent if, and only if, its restriction
to H∗(E, kG) is nilpotent for every elementary abelian p-subgroup E of G.

We also get a module version for Hochschild cohomology, as follows. Let A = kG,
let M be a kG-module and N = Endk(M). We let G act on A by conjugation, and
on N by (gf)(x) = gf(g−1x). Then the map A → N which takes g to the map
(x 7→ gx), is G-equivariant. Hence Theorem 5.2 says the following:

Corollary 5.5. Let M be a kG-module and ζ ∈ HH∗(kG). Then some power of ζ
annihilates Ext∗kG(M,M) if, and only if, for each elementary abelian p-subgroup E
of G, some power of resGE(ζ) annihilates Ext∗kE(M,M).
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Corollary 5.5 has an interpretation in terms of varieties for modules. For consider
XG, the (prime or maximal ideal) spectrum of HH∗(kG). Let XG(M) = V (I), the
subvariety of XG consisting of the (prime or maximal) ideals containing I, where I
is the radical of the annihilator in HH∗(kG) of Ext∗kG(M,M); we call XG(M) the
Hochschild support variety for M (cf. [24]). More generally, for any subgroup H of
G, let XG,H(M) = V (J), where J is the radical of the kernel of the composite

H∗(G, kG)→ Ext∗kG(M,M)→ Ext∗kH(M,M),

in which the second map is restriction. We may think of XG,H(M) as the part of
XG(M) coming from H. Now Corollary 5.5 is easily seen to be equivalent to the
following:

Corollary 5.6. Let M be a kG-module. Then

XG(M) =
⋃
E

XG,E(M),

where the union is taken over all elementary abelian p-subgroups E of G.

The analogous result for ordinary cohomology is the well-known Alperin-Evens
Theorem ([3]).

Results needed for proof. The proof of Lemma 5.1 follows the one for the usual
case (k in place of A) given in [11, Cor. 8.3.4], which uses Serre’s Theorem on the
product of Bocksteins, and the module version of the Quillen-Venkov Lemma. We
just have to make a few adjustments along the way.

The first ingredient is this commutativity lemma.

Lemma 5.7. Let G be a finite group, k a field, A a G-equivariant k-algebra, and
η : k → A the map sending λ to λ1. Then the image of the algebra homomorphism

η∗ : H∗(G, k)→ H∗(G,A)

is contained in the graded-center of H∗(G,A).

Proof. There is a commutative diagram

k ⊗ A
η⊗1 //

η⊗1

��

A⊗ A τ // A⊗ A
µ

��
A⊗ A

µ // A

where τ(x⊗y) = y⊗x and µ(x⊗y) = xy. The lemma then follows from the definition
of the cup product. �

Next, a definition. Suppose P is a p-group and K is a maximal subgroup of P .
Then K is normal and P/K is cyclic of order p, so H1(P/K, k) ∼= k. Let α be a
non-zero element of H1(P/K, k) and define

βK = β(infPP/K(α)) ∈ H2(P, k),
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where β : Hs(P, k) → Hs+1(P, k) (s ≥ 0) is the Bockstein map and infPP/K is the
inflation map [11, §§1.1, 3.3]. Of course βK is only well-defined up to non-zero scalar
multiple, but the particular choice doesn’t matter for what follows.

Theorem 5.8 (Serre, [20]). Let P be a p-group. Then P is not elementary abelian
if, and only if, there exist maximal subgroups K1, . . . , Kr of P such that

βK1 . . . βKr = 0

in H∗(P, k).

For a simple proof, see [11, Thm. 6.4.1]. The statement there differs only in that
it is stated in terms of integral cohomology, but as explained in the proof of [11,
Cor. 6.4.2], this implies the mod-p version.

The other ingredient we need is a lemma of Alperin and Evens ([2, Lemma 4.1]),
which generalizes to arbitrary modules the Quillen-Venkov Lemma ([19]):

Lemma 5.9 (Quillen-Venkov, Alperin-Evens). Let P be a p-group, K a maximal
subgroup of P , and M a kP -module. Then the filtration of H∗(P,M) associated to
the Lyndon-Hochschild-Serre spectral sequence

H∗(P/K,H∗(K,M))⇒ H∗(P,M)

satisfies

F 2H∗(P,M) = βKH
∗(P,M).

Proof of Lemma 5.1. We assume that for each elementary abelian p-subgroup E
of G, some power of resGE(ζ) annihilates H∗(E,M), and we will show that some power
of ζ annihilates H∗(G,M).

Let S be a Sylow p-subgroup of G. It suffices to show that some power of resGS (ζ)
annihilates H∗(S,M), since restriction from H∗(G,M) to H∗(S,M) is injective [6,
Cor. 3.6.18]. We will do this by showing that some power of resGP (ζ) annihilates
H∗(P,M) for every subgroup P of S, by induction on |P |.

If |P | = 1 the result is clear. So suppose |P | > 1 and we have established the
result for every proper subgroup of P . If P is elementary abelian, we are done by
hypothesis. If not, then let K1, . . . , Kr be maximal subgroups of P as in Theorem 5.8,
and let βi = βKi

.
Let K = K1. For any kP -module U , let E(U) denote the Lyndon-Hochschild-Serre

spectral sequence

H∗(P/K,H∗(K,U))⇒ H∗(P,U).

Now E(M) is a module over E(A) and over E(k), and the commutative diagram

k ⊗M //

η⊗1

��

M

1
��

A⊗M
µ // M
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implies the following diagram commutes:

E(k)⊗ E(M) //

η∗⊗1
��

E(M)

1
��

E(A)⊗ E(M) // E(M)

Let χ = resGP (ζ). By induction, for some m = m1, ξ = resPK(χm) ∈ E0,∗
2 (A)

annihilates H∗(K,M), and therefore E2(M). Since ξ is in the image of resPK , ξ lives
to E∞(A), and so it annihilates E∞(M) as well. This means that

χmF iH∗(P,M) ⊆ F i+1H∗(P,M)

for all i ≥ 0. In particular,

χ2m1H∗(P,M) ⊆ F 2H∗(P,M) = β1H
∗(P,M),

by Lemma 5.9.
Applying the same reasoning to K = K2, there is some m2 such that

χ2m2H∗(P,M) ⊆ β2H
∗(P,M).

So

χ2m1+2m2H∗(P,M) ⊆ χ2m2(β1H
∗(P,M))

= (χ2m2η∗(β1))H
∗(P,M)

= (η∗(β1)χ
2m2)H∗(P,M)

since, by Lemma 5.7, η∗(β1) is in the center of H∗(P,A). Hence

χ2m1+2m2H∗(P,M) ⊆ β1(χ
2m2H∗(P,M)) ⊆ (β1β2)H

∗(P,M).

Continuing in this way, we see

χ2m1+···+2mrH∗(P,M) ⊆ β1 . . . βrH
∗(P,M) = 0.

That completes the inductive step, and the proof of Lemma 5.1.
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