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1. Introduction

1.1. Background. This paper deals with the landmark results of Benson and Carl-
son's Projective resolutions and Poincar�e duality complexes [6]. Our goal is to provide
some necessary background for that work, and to prove some of the results of [6] in
a more general setting. In particular, we analyze what happens when we replace
Benson and Carlson's complex C� (in the notation of [6]) with an arbitrary Yoneda
extension representing �.

Let � be a �nite-dimensional cocommutative Hopf algebra over an algebraically
closed �eld k. Because � is cocommutative, H�(�; k) is a graded-commutative k-
algebra (i.e., xy = (�1)deg(x)deg(y)yx for homogeneous x; y). Throughout this pa-
per we will also assume that � has the following �niteness property in cohomol-
ogy: Ext��(k; k) is a �nitely generated k-algebra, and for any �-modules M and N ,
Ext��(M;N) is �nitely generated as an Ext��(k; k)-module. (By �-module we always
mean �nitely generated left �-module.) The second condition is equivalent to requir-
ing H�(�;M) to be �nitely generated over H�(�; k) for any �-module M , because of
the isomorphism Ext�(M;N) �= H�(�;Homk(M;N)).

If � is the group algebra of a �nite group then � certainly has the �niteness property
in cohomology, by a theorem of Evens (cf. [7, Theorem 7.4.1]). The �niteness property
also holds if � is a �nite-dimensional cocommutative connected Hopf algebra, e.g.
the restricted enveloping algebra of a p-restricted Lie algebra (Bajer and Sadofsky
[1, Lemma 6.2], Wilkerson [10]). In fact, at present we know of no example of a
�nite-dimensional Hopf algebra without this property. It is known that any �nite-
dimensional Hopf algebra is a Frobenius algebra (Larson and Sweedler [9]), which
implies that a �-module is projective if and only if it is injective, and this property
is fundamental for the proofs given here.
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1.2. Preliminaries. We use the following notation for chain complexes of modules
over a k-algebra R. If C is a complex of left or right R-modules, let ZnC = Ker(@ :
Cn ! Cn�1), BnC = Im(@ : Cn�1 ! Cn), and HnC = ZnC=BnC. If C;D are
complexes of right, left R-modules respectively, let C 
RD denote the complex with
(C 
R D)n =

L
p+q=n Cp 
R Cq, with di�erential given by @(x 
 y) = @(x) 
 y +

(�1)px 
 @(y) for x 2 Cp; y 2 Cq. If C and D are both complexes of left (resp.
right) R-modules, then let HomR(C;D) denote the complex with HomR(C;D)n =
Q

q=p+nHomR(Cp;Dq), with di�erential given by @(f) = @ � f � (�1)nf � @, for
f 2 HomR(C;D)n. If f � g 2 BnHomR(C;D) we write f ' g (f and g are chain
homotopic). For any integer r, C[r] denotes the complex with C[r]p = Cp�r, and
with di�erential (�1)r@. The dual complex C� is de�ned to be Homk(C; k), where
k is considered to be a complex concentrated in degree 0; if f 2 HomR(C;D)r then
f� 2 HomR(D

�; C�)r is de�ned by f�(�) = (�1)rs� � f for � 2 C�

s . We write CjD if
C is isomorphic to a summand of D (as complexes). Finally, any chain complex may
be considered a cochain complex, and vice-versa, by setting Cn = C�n.
Let C denote the category of complexes of �-modules. Let Cb, bC, C

p, eC de-
note, respectively, the full subcategories of C of complexes bounded below, complexes
bounded above, complexeswhere eachCn is �-projective, and exact complexes. These
adornments on the symbol C may be combined, so that, for example, the objects of
e
bC

p
b are bounded (above and below) exact complexes of projectives. The following

are fundamental; for proofs, see Benson [4, Lemma 1.4.4, Theorem 1.4.3], replacing
\module" with \bounded complex" throughout.

Lemma 1 (Fitting). Let M 2 bCb and f 2 EndC(M). Then M = Im(fn)�Ker(fn)
for n su�ciently large.

Theorem 2 (Krull-Schmidt). Let M 2 bCb and let M =
Lm

i=1M
(i), where each

M (i) is an indecomposable subcomplex of M . If M =
Ln

i=1
~M (i) for some other inde-

composable subcomplexes ~M (i) of M , then n = m, and after renumbering if necessary,
~M (i) �= M (i) for each i.

2. Projective resolutions of complexes

2.1. De�nition and basic properties. Let C 2 Cb. A projective resolution of C
is a complex P 2 Cpb together with a quasi-isomorphism � : P ! C.

Proposition 3. If C 2 Cb then C has a projective resolution.

Proof. We construct Pn and �n by induction on n. These may be taken to be 0 for
n su�ciently small since C is bounded below. So assume that Pm and �m have been
constructed and satisfy @�m = �m�1@ for m � n. We refer to Diagram 1, leaving
o� subscripts of maps whenever this is unambiguous. Let PBn+1 be the pullback of
(�; �) in the diagram, and let �n+1 be a surjection from a projective module Pn+1
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Diagram 1. Construction of a projective resolution.

to PBn+1. By projectivity there is a map �n+1 : Pn+1 ! Cn+1 making the diagram
commute. De�ne @ : Pn+1 ! Pn to be i
�; the diagram shows that @�n+1 = �n@.
To show that (��)n is surjective, let x 2 ZnC. Then �(x) 2 Ker(�), so it follows from

the universal property of the pullback that there exists y 2 PBn such that �(y) = �(x)
and 
(y) = 0. Choose z 2 Pn such that �(z) = y. Then @(z) = �
�(z) = 0, so
z 2 ZnP , and ��n(z) = ��(z) = �(x), so �n(z)� x 2 BnC.
To show that (��)n is injective, let x 2 ZnP and suppose �n(x) is a boundary, say

�n(x) = @(y), y 2 Cn+1. Then �(x) = ��(y), so there is a z 2 PBn+1 such that
�(z) = �(y) and 
(z) = x. Choose w 2 Pn+1 such that �(w) = z; it follows that
@(w) = �
�(w) = x, i.e., x is a boundary.

Remark 1. Any projective resolution of C must �t into a diagram like Diagram 1, for
the universal property of pullbacks implies that there is a map � making the diagram
commute at each stage. We need only check that such an � must be surjective.
To see this, given any x 2 PBn, choose y 2 Cn such that �(y) = �(x). Then by
commutativity, @(y) = ��
(x). Since �� is an isomorphism, this implies �
(x) is a
boundary, say �
(x) = @(w), w 2 Pn. Now 
�(w) = 
(x) and

@�(w) = ��
�(w) = ��
(x) = @(y):

So �(w) � y 2 ZnC, and since �� is an isomorphism, there is a w0 2 ZnP such that
��(w0) = �(�(w) � y) = ��(w) � �(x). Now ��(w � w0) = ��(w � w0) = �(x) and

�(w � w0) = 
�(w) = 
(x), so �(w � w0) = x.

Remark 2. Observe that @(P ) = Ker(�). For �
�@ = @2 = 0, hence 
�@ = 0.
Moreover ��@ = ��@ = �@� = 0. So by the universal property of pullbacks, �@ = 0,
i.e., @(P ) � Ker(�). Conversely, if �(y) = 0 for y 2 P , then y is a cycle and
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Diagram 2. Proof of the existence part of the Comparison Theorem

��(y) = 0, so �(y) is a boundary, and since �� is an isomorphism, y is a boundary;
hence Ker(�) � @(P ).

Theorem 4 (Comparison Theorem). Suppose C;X 2 Cb, P 2 C
p
b , and � : X !

C is a quasi-isomorphism. Then the map

H�(Hom�(P;X)) �! H�(Hom�(P;C))

[f ] 7�! [�f ]

is an isomorphism.

Remark 3. For � = 0, the conclusion of the theoremmay be expressed in the following
form: given any �-chain map g : P ! C, there exists a �-chain map f : P ! X
such that �f ' g; moreover if f 0 : P ! X is another such map, then f ' f 0. In

particular, if X
�
! C and P

~�
! C are both projective resolutions, then there is a

chain map f : P ! X, unique up to chain homotopy, such that �f ' ~�. Notice that
the \comparison" f must also be a quasi-isomorphism since ��f� = ~��, and both ��
and ~�� are isomorphisms.

Proof. Suppose g 2 ZrHom�(P;C). By shifting the indices if necessary we may
assume r = 0. We construct, by induction, maps fi : Pi ! Xi and si : Pi ! Xi+1

satisfying @fi = fi�1@ and �fi�gi = @si+si�1@, for all i � n. For n su�ciently small
these maps may all be taken to be 0, so we may assume that we have constructed
them for i < n and complete the inductive step.

First note that fn�1@(Pn) � Bn�1X. For given x 2 Pn, @fn�1@(x) = fn�2@
2(x) =

0, so fn�1@(x) 2 Zn�1X, and

�fn�1@(x) = gn�1@(x) + @sn�1@(x) = @gn(x) + @sn�1@(x)

is a boundary, so since �� is an isomorphism, fn�1@(x) is also a boundary.
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Hence by the projectivity of Pn, there is a map f 0n : Pn ! Xn such that @f 0n =
fn�1@. Now

@ � (�f 0n � gn) = (�fn�1 � gn�1)@ = @sn�1@;

so �f 0n � gn � sn�1@ has image contained in ZnC. By considering the diagram

Pn

ZnC

ZnX ZnC HnC
wwo o o o o

o o o o o
o o o

�f 0n�gn�sn�1@

��

����

�jZnX

// // //

we see there is a map f 00n : Pn ! Xn with Im(f 00n) � ZnX and

Im(�f 0n + �f 00n � gn � sn�1@) � BnC:(1)

Let fn = f 0n + f 00n . Then @fn = fn�1@, as @f
00 = 0. Moreover, (1) guarantees the

existence of a map sn making

Pn

Cn+1 Cn

sn

||y
y

y
�fn�gn�sn�1@

��

@
//

commute, completing the inductive step.

We must next show that if f : P ! X is a chain map and �f ' 0 then f ' 0.
So suppose �f = @s+ s@, where s 2 Hom�(P;C)1. We show by induction on n that
there are maps ti : Pi ! Xi+1 and wi : Pi ! Ci+2 such that

fi = @ti + ti�1@(2)

�ti � si = @wi + wi�1@:(3)

Assume we have such maps for i < n. Then

@ � (fn � tn�1@) = (fn�1 � @tn�1)@ = (@tn�1 + tn�2@ � @tn�1)@ = 0;

so Im(fn � tn�1@) � ZnX. Moreover,

� � (fn � tn�1@) = @sn + sn�1@ � sn�1@ + @wn�1@ = @ � (sn + wn�1@);

hence Im(fn � tn�1@) � BnX, as �� is an isomorphism. So by the projectivity of Pn,
there is a map tn : Pn ! Xn+1 such that (2) holds with i = n.
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Diagram 3. Proof of the uniqueness part of the Comparison Theorem

We must next \adjust" tn to show there is a map wn satisfying (3) with i = n.
Observe

@ � (�tn � sn � wn�1@) = � � (fn � tn�1@)� @sn � @wn�1@

= @sn + sn�1@ � sn�1@ + @wn�1@ + wn�2@
2 � @sn � @wn�1@

= 0;

i.e., Im(�tn � sn � wn�1@) � Zn+1C. So arguing as before, there is a map t0n : Pn !
Zn+1X such that Im(�t0n + �tn � sn � wn�1@) � Bn+1C. Replace tn with tn + t0n
(this does not a�ect (2) as @t0n = 0). We then have, by the projectivity of Pn, a map
wn : Pn ! Cn+2 such that @wn = �tn�sn�wn�1@, completing the inductive step.

2.2. Minimal resolutions. A projective resolution P
�
! C is said to be minimal

if for any projective resolution X
�0

! C of C, P jX.

Theorem 5. Let C 2 Cb. Then

(i) C has a minimal projective resolution.
(ii) Let X ! C be an arbitrary projective resolution of C. Then the following are

equivalent: (a) X ! C is minimal, (b) @(X) � rad(X), and (c) X has no
nontrivial exact summands.

Because of Theorem 5(i), for any C 2 Cb we may let MPR(C) denote a minimal
projective resolution of C. Note that MPR(C) is unique up to isomorphism of com-
plexes, for if P and P 0 are both minimal, we have P jP 0jP , and since each of these
is �nite-dimensional in each degree, P �= P 0. The proof of the theorem requires two
lemmas: the �rst is interesting in its own right, the second is a rather technical fact
from homological algebra.
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Lemma 6. Let C 2 Cb. Suppose @(C) � rad(C) and f : C ! C is a quasi-
isomorphism. Then f is an isomorphism.

Proof. Show by induction on n that fn is an isomorphism. Since Cn = 0 for n
su�ciently small, the initial step is trivial. So assume fn�1 is an isomorphism. By
Fitting's Lemma there is an m > 0 such that if we set g = fm, A = Ker(g), and
B = Im(g), then Ci = Ai � Bi for i � n + 1. Clearly gn is an isomorphism i� fn
is. Now g induces an automorphism of HnC = HnA � HnB, but g is trivial on A,
hence HnA = 0, i.e., An+1 ! An ! An�1 is exact. But by the inductive hypothesis,
An�1 = 0. Therefore An � @(Cn+1) � rad(Cn). On the other hand, AnjCn. Hence
An = 0.

Lemma 7. Let U , V , X, and Y be �-modules, and f : X ! Y and g : U � V ! Y
maps of �-modules. Let iU : U ! U � V and iV : V ! U � V denote the inclusions.
Suppose V is projective and giV (V ) � f(X). Let � : V ! X be a map satisfying

f� = giV , and let

M U

U � V

X Y

�
//

�

��

iU

Oo

��

g

��

f
//

be a pullback of (f; giU). Then

M � V U � V

X Y

��idV //

�+�

��

g

��

f
//

is a pullback of (f; g).

Note that such a map � exists by the de�nition of projective.

Proof. Suppose W is a �-module and � : W ! X and � : W ! U � V are maps
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satisfying f� = g�. Then there is a commutative diagram

W U � V

M U

X Y

����V �

<<<<<<<<<<<<<<<<<
��


M

&&

M
M

M
M

M
M

M

� //

�U

��

�

��

�
//

giU

��

f
//

as

f � (� � ��V �) = g�� f��V � = g�� giV �V �

= g � (idV � iV �V )� = giU�U�:

So by the de�nition of pullback there is a unique map 
M making the diagram com-
mute. Let 
V = �V �, and de�ne 
 : W ! M � V by 
(w) = (
M (w); 
V (w)). We
then have

(� + � )
 = �
M + �
V = � � ��V �+ ��V � = �

and

(�� idV )
(w) = (�
M(w); 
V (w)) = (�U�(w); �V �(w)) = �(w);

as required.
Suppose 
0 : W ! M � V also satis�es (� + � )
0 = � and (�+ idV )


0 = �. Write

0(w) = (
0M (w); 
0V (w)). From

(�+ idV )
 = � = (�+ idV )

0

we get �
M = �
0M and 
0V = 
V . Similarly, from

(� + � )
 = � = (� + � )
0

we get �
M = �
0M . So by the uniqueness of 
M , 
0M = 
M , and therefore 
 = 
0.

Proof of Theorem 5. Let X
�
! C be a projective resolution of C, and �x a diagram

like Diagram 1 for X. We �rst show there is a decomposition X = P �W , with W
exact and @(P ) � rad(P ).
To show this we produce, by induction on n, a decomposition Xn = Pn � Wn

such that @(Wn) = Zn�1W , �(ZnW ) � BnC, �jPn is a projective cover of �(Pn), and
@(Pn) � rad(Pn�1). SinceXn = 0 for n su�ciently small, the initial step is trivial. So
assume decompositions with these properties have been constructed through degree
n � 1.
Now Wn�1 ! � � � ! W0 ! 0 is an exact sequence of projectives, so Zn�1W is

projective. Moreover, Zn�1X = Zn�1P � Zn�1W , and �(Zn�1W ) � �(Cn=BnC) (as
�n�1(Zn�1W ) � Bn�1C). Hence by Lemma 7 and the uniqueness of pullbacks, there
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is a decomposition PBn = PB0

n � V such that 
 = 
0 � 
00 and � = �0 + �, where

00 : V ! Zn�1W is an isomorphism and

PB0

n Zn�1P

Cn

BnC
Zn�1C

�0

��


0
//

�0:=�jZn�1P

��

�
//

is a pullback.

Since � : Xn ! PB0

n�V is surjective, there is a decomposition Xn = Pn�Wn such
that �0 := �jPn is a projective cover of PB

0

n and �(Wn) = V . Hence @(Wn) = Zn�1W .
To see that @(Pn) � rad(Pn�1), recall from the remarks following Proposition 3 that
Ker(�n�1) = @(Xn), so in particular the composite

Pn PB0

n Zn�1P Pn�1 �(Pn�1)
�0n // // 
0 // �0�o //

�0
n�1 // //

is trivial, so it certainly induces the trivial map modulo radicals. But �0n�1 is a
projective cover, and therefore induces an isomorphism modulo radicals, whence we
conclude @(Pn) = �0
0�0(Pn) � rad(Pn�1).
To complete the inductive step we must show �(ZnW ) � BnC. But �


00�(ZnW ) =
@(ZnW ) = 0, so since � and 
00 are monomorphisms, �(ZnW ) = 0. Hence ��(ZnW ) =
��(ZnW ) = 0, as required.

We now claim that P
�jP
! C is a minimal projective resolution. It is certainly a

projective resolution, since H�W = 0. Suppose ~X
~�
! C is any projective resolution of

C. Then we have just shown that ~X = ~P � ~W , where @( ~P ) � rad( ~P ) and ~P
~�j ~P
! C is

a projective resolution. By the Comparison Theorem, there are quasi-isomorphisms
f : P ! ~P and g : ~P ! P . So fg and gf are quasi-isomorphisms, and by Lemma 6,
fg and gf are isomorphisms. Hence f and g are isomorphisms, i.e., P �= ~P . So P j ~X,
establishing the claim, and completing the proof of (i).

The proof of (ii) is now immediate. For if X ! C is minimal then by uniqueness
X �= P , and P has property (b). Hence (a) ) (b). If (b) holds and X = C �D,
with D exact, then X � C ,! X is a quasi-isomorphism, so by Lemma 6 it is an
isomorphism, and thereforeD = 0. Hence (b)) (c). Finally, the statement (c)) (a)
follows directly from the de�nition of minimal.

If D 2 bC, an injective resolution of D is a complex I 2 bC
p together with a quasi-

isomorphism � : D ! I (recall that a �-module is projective i� it is injective). Since
� : D ! I is an injective resolution i� �� : I� ! D� is a projective resolution, all of
the statements above concerning projective resolutions have dual versions concerning
injective resolutions.
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For C 2 Cb;D 2 bC, we now de�ne Ext��(C;D) = H�Hom�(P;D), where P is
any projective resolution of C. By Theorem 4, this is independent of the projective
resolution chosen, in the usual sense. We also have the usual canonical isomorphisms
Ext��(C;D) �= H�Hom�(P; I) �= H�Hom�(C; I), where I is any injective resolution of
D. If P is minimal and D is a complex with trivial di�erential and rad(D) = 0, then
by Theorem 5(ii)(b), Ext��(C;D) = Hom�(P;D), which is one of the advantages of
using minimal resolutions.

2.3. The hypercohomology spectral sequence. Recall that a doubly-indexed
collection of modules E

p;q
0 together with maps d0 : E

p;q
0 ! E

p+1;q
0 ; d00 : E

p;q
0 ! E

p;q+1
0

forms a double complex if (d0)2 = (d00)2 = d0d00 + d00d0 = 0. A double complex yields
a spectral sequence fEr; drg in which the di�erentials are easy to describe explicitly:
x 2 Ep;q

0 lives to Ep;q
n i� there exist xi 2 E

p+i;q�i
0 (0 � i < n) with x0 = x, d00(x0) = 0,

and d0(xi�1) + d00(xi) = 0 for 1 � i < n. If this is the case and x represents � 2 Ep;q
n

then dn(�) is represented by d0(xn�1).

Now let C 2 Cb;D 2 bC, and let ID be an injective resolution of D. The hy-
percohomology spectral sequence arises from the double complex de�ned by E

p;q
0 =

Hom�(Cq; I
p
D); d

0(f) = @ � f; d00(f) = (�1)p+q+1f � @. We have

Ep;q
2
�= Extp�(Hq(C);D)) Extp+q� (C;D):

Moreover, if I is an injective resolution of k then the tensor product induces a map
of double complexes

Hom�(k; ID)
Hom�(C�; I)! Hom�(C�; ID 
 I);

and since ID 
 I is also an injective resolution of D, this map yields a pairing of
spectral sequences

Extp�(k;D) 
 Extp
0

� (Hq(C�); k) Extp+p
0

� (Hq(C�);D)

Extp�(k;D) 
 Extp
0+q
� (C�; k) Extp+p

0+q
� (C�;D):

�����

����� ��

����
����

//

��

����
����

//

We could also start with the double complex Hom�(Pp;D
q), where P is a projective

resolution of C, to obtain the second hypercohomology spectral sequence

Ep;q
2
�= Extp�(C;H

q(D))) Extp+q� (C;D):

As a �rst consequence of these two spectral sequences, we obtain

Lemma 8. Suppose C;D 2 bCb. Then Ext��(C;D) is a �nitely generated Ext��(k; k)-
module.
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Proof. We �rst reduce to the case where C is a module concentrated in degree 0 as
follows. In the hypercohomology spectral sequence we have E2 is a �nite direct sum
L

q Ext
�

�(Hq(C);D), so E2 is �nitely generated over Ext
�

�(k; k). The spectral sequence
stops (it has a �nite number of non-zero rows), so E1 is also �nitely generated over
Ext��(k; k), and this implies that Ext��(C;D) is as well by [7, Lemma 7.4.5]. Now if
C is a module concentrated in degree 0 then apply the second spectral sequence to
reduce to the case where both C and D are modules.

2.4. Complexes of �nite projective dimension. Let C 2 Cb. We say that C has
�nite projective dimension if C has a bounded projective resolution, i.e., a projective
resolution P ! C with P 2 bC

p

b . Dually, for C 2 bC, we say that C has �nite injective
dimension if C has a bounded injective resolution.

Lemma 9. Let C 2 bCb. Then the following are equivalent:

(i) C has �nite projective dimension.
(ii) C has �nite injective dimension.

(iii) Extn�(C;C) = 0 for n su�ciently large.
(iv) C = C 0 � C 00, where C 0 2 bC

p
b , C

00 2 e
bCb , and C

0 has no exact summands.

Note that for such a C it follows from Theorem 5(ii) that the inclusion C 0 ,! C is
a minimal projective resolution of C.

Proof. It is clear that (i))(iii). Conversely, if (iii) holds, then for any simple �-
module S, Lemma 8 implies Ext��(C;S) is �nitely generated over Ext��(k; k), so it
is certainly �nitely generated over Ext��(C;C) (here we are using the fact that the
cup and Yoneda products are compatible, cf. [6, Lemma 2.2]). Hence Ext��(C;S) is
�nite-dimensional, i.e., bounded. Let P ! C be a minimal resolution of C. Since
there are only �nitely many simple �-modules, this means that there is an integer
N such that Hom�(Pn; S) = Extn�(C;S) = 0 for all simples S and n > N . Hence
Pn = 0 for all n > N , i.e. (i) holds. Proceeding dually, we obtain (ii),(iii).
Now suppose (i), (ii), and (iii) hold. Let P

�
! C be a minimal projective resolution

of C, C
�
! I a minimal injective resolution, and let f = ��. Then f : P ! I is a

quasi-isomorphism, and to prove (iv) it su�ces to show that f is an isomorphism. But
one may extend f to a surjective map P �W ! I, for someW 2 e

bC
p
b . Let K be the

kernel of this map. Then K is a bounded complex of projectives, and by considering
the long exact sequence in homology arising from the short exact sequence

0! K ! P �W ! I ! 0;

we conclude that H�K = 0, i.e. K 2 e
bC

p
b . This means that K is isomorphic to the

direct sum of complexes of the form � � � ! 0 ! N
=
! N ! 0 ! � � � , where N is

an injective (i.e. projective) �-module, each of which is easily seen to be an injective
object in C. Hence K is an injective object in C, so the short exact sequence above
splits, and P �W �= K � I. Now K and W contain only exact summands, while P
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and I have no exact summands, so by the Krull-Schmidt Theorem, P �= I. Fix an
isomorphism � : I ! P . Then �f : P ! P is a quasi-isomorphism, so by Lemma 6,
�f , and therefore f , is an isomorphism, and we have (iv). Finally, (iv))(i), as
C 0 ,! C is a (minimal) projective resolution of C.

The following is a direct generalization of Lemma 5.1 of [6].

Proposition 10. Suppose C;D 2 bCb have �nite projective dimension, and f : C !
D is a quasi-isomorphism. Then there are decompositions C = C 0 � C 00 and D =
D0 �D00, with C 0;D0 2 bC

p
b and C 00;D00 2 e

bCb , such that f jC0 is an isomorphism onto

D0.

Proof. Write C = C 0 � C 00;D = D0 �D00 as in Lemma 9 (iv), and let i : C 0 ,! C
denote inclusion and � : D ! D0 the projection. It su�ces to show there exists a
map g : D ! C 0 such that gfi = idC0 (by replacing D0 with fi(C 0) and D00 with
Ker(g)). Now h = �fi : C 0 ! D0 is a quasi-isomorphism. Moreover, C 0 and D0

are both minimal projective resolutions of D, and are therefore isomorphic. So we
may apply Lemma 6 to conclude that h is an isomorphism. Let g = h�1�. Then
gfi = h�1�fi = h�1h = idC0 .

Now suppose C;D 2 bCb. We write C �d D if there is a sequence of quasi-
isomorphisms

C ! X1  X2 ! � � �  Xn ! D

with each Xi 2 bCb. (This just means that C and D are isomorphic objects in the
derived category.) It is clear that �d is an equivalence relation.

Proposition 11. Suppose C;D 2 bCb and C �d D. If C has �nite projective dimen-
sion then so does D, and MPR(C) �= MPR(D).

Proof. If X ! Y is a quasi-isomorphism and P ! X is a bounded projective res-
olution of X then P ! X ! Y is a bounded projective resolution of Y , and by
Proposition 10, MPR(X) �= MPR(Y ). Dually, if X  Y is a quasi-isomorphism
and I  X is a bounded injective resolution of X, then I  X  Y is a bounded
injective resolution of Y , and by Proposition 10, MPR(X) �= MPR(Y ). So the proof
follows by induction on the length n of a chain of quasi-isomorphisms joining C and
D.

3. Generalized Benson-Carlson duality

3.1. The main theorem. Let U and V be �-modules and n a positive integer.
An n-extension of U by V is a complex e 2 e

bCb with e�1 = U; en = V , and er = 0
if r > n or r < �1. If ~e is also an n-extension of U by V we write e  ~e if
there exists f 2 Z0Hom�(e; ~e) with f�1 = idU ; fn = idV . We complete  to an
equivalence relation and let YExtn�(U; V ) denote the set of equivalence classes. There
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is a functorial bijection YExtn�(U; V ) �! Extn�(U; V ) (cf. Hilton and Stammbach [8,
IV.9]).

Let n � 2. A truncated n-extension of U by V is a complex C 2 bCb with Ci = 0 if
i > n � 1 or i < 0, and with Hi(C) isomorphic to U if i = 0, V if i = n � 1, and 0
otherwise. If U and V are simple, then it is easily seen that the bijection referred to
above induces a bijection between equivalence classes of truncated n-extensions of U
by V under �d and P (Extn�(U; V )), the projective space of Ext

n
�(U; V ). This follows

from Schur's Lemma, which states that the endomorphism ring of U or V consists of
scalar multiples of the identity, which implies that a truncated n-extension determines
an n-extension only up to non-0 scalar multiple.

We can now state the main theorem, which generalizes Theorem 5.5 of [6]. Let
D 2 bCb and let R be the quotient of Ext��(k; k) by the annihilator of Ext��(D;D).
Recall that non-zero homogeneous elements of positive degree �1; : : : ; �d 2 Ext��(k; k)
are said to form a homogeneous system of parameters (h.s.o.p.) for Ext��(D;D) if their
images in R generate a subring over which R is �nitely generated as a module.

Theorem 12. Let k be an algebraically closed �eld and � a �nite-dimensional co-
commutative Hopf algebra over k with the �niteness property in cohomology. Let

D 2 bCb, and �1; : : : ; �r a h.s.o.p. for Ext��(D;D). Assume ni = deg(�i) � 2 for all i.
Let C�i be a truncated ni-extension representing [�i], and let C =

N
iC�i 
D. Then

(i) There is a decomposition C = N �Q, where N 2 bC
p
b , Q 2

e
bCb , and N has no

exact summands.
(ii) If D�[t] �d D for an integer t, then N�[s] �= N , where s = t+

Pr
i=1(ni � 1).

(iii) Up to isomorphism of complexes, N is independent of the choices C�i of trun-
cated ni-extension representing [�i]

A key observation is the following Lemma, which is essentially [6, Proposition
5.2]. Given � 2 Extn�(k; k), let e� be an n-extension of k by k representing �. Then
e��[n� 1] is also an n-extension of k by k, and therefore represents some element ��

of Extn�(k; k). Since equivalent extensions are taken to equivalent extensions by this
operation, we have a well-de�ned operation � 7! �� on Extn�(k; k).

Lemma 13. For n � 1 and � 2 Extn�(k; k), �
� = ��. In particular, if C� is a

truncated n-extension representing [�], then (C�)
�[n� 1] �d C�.

Proof. Let P ! k be a projective resolution of k. After identifying P with P �� in
the usual way, there is an endomorphism � of Hom�(P;P

�) de�ned by �(f) = f�.
We claim that for f 2 ZHom�(P;P

�), f ' f�. To see this, reason as follows:
Hom�(P;P

�) �= Hom�(P 
k P; k), and � is induced by the twisting endomorphism �
of P 
k P . By the Comparison Theorem, � is homotopic to the identity on P 
k P ,
hence � is homotopic to the identity on Hom�(P;P

�). Say � � 1 = @s + s@. Then
given f 2 ZHom�(P;P

�), @(f) = 0, hence �(f) � f = @(s(f)), i.e., �(f) ' f .
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Now Ext��(k; k)
�= H�(Hom�(P;P

�)), as k ! P � is an injective resolution of k.
Fix an n-extension e representing �. Then by projectivity and injectivity, there exist
maps fi; gi making the following diagram, in which the middle row is e, commute:

Pn+1 Pn Pn�1 Pn�2 � � � P1 P0 k 0

0 k Mn�1 Mn�2 � � � M1 M0 k 0

0 k P �

0 P �

1 � � � P �

n�2 P �

n�1 P �

n P �

n+1

//

��

//

fn

��

//

fn�1

��

//

fn�2

��

// //

f1

��

� //

f0

��

������

������

//

��
//

��

//
������

������

//

gn�1

��

//

gn�2

��

// //

g1

��

//

g0

��

//

g�1

�� ��
// �� // // // // // // //

Let f = fn; g = g�1. Now ��f 2 ZnHom�(P;P
�) represents �. But the diagram

shows that �g� ' ��f , hence �g� also represents �. Taking the dual diagram, we
see that ��g� represents ���. But as was shown in the previous paragraph, ��g� =
�(g�)� ' g�.

The next lemma involves the hypercohomology spectral sequence (see Section 2.3).
Let n � 2, � 2 Extn�(k; k), and C� a truncated n-extension representing [�]. Extend
C� to an n-extension representing � with maps � : k ! (C�)n�1 and � : (C�)0 ! k.

This yields identi�cations Hn�1(C�) = k and H0(C�) = k and therefore also E0;n�1
2 =

Ext0�(Hn�1(C�); k) = k and E
n;0
2 = Extn�(H0(C�); k) = Extn�(k; k). De�ne

~� 2 E0;n�1
2

to be the element corresponding to 1 2 k.

Lemma 14. Let D 2 bC. Then in the two-row spectral sequence

E
pq
2 (�) = Extp�(Hq(C�);D)) Extp+q� (C�;D)

the di�erential dn is given by

dn(�~�) = ��� 2 E
p+n;0
n (�) = Extp+n� (k;D):

Proof. If we can show that dn(~�) = � in En(k) then we are done, using the fact that
dn is a derivation. So without loss of generality we assume D = k. By injectivity
there are maps fi; �̂ making the following diagram commute:

0 k Cn�1 Cn�2 � � � C1 C0 k 0

0 k I0 I1 � � � In�2 In�1 In In+1 � � �

//
������

������

� //

fn�1

��

//

fn�2

��

// //

f1

��

//

f0

��

� //

�̂

��

//

��
// // // // // // // // //

Now �̂ represents � (this is just the bijection between YExtn�(k; k) and Extn�(k; k))

and ~� is represented in E0;n�1
0 by fn�1. By de�nition of the di�erential, �dn(~�) is

represented by �@ � f0. By commutativity this is �̂ � �, which represents � under the
identi�cation Extn�(k; k) = Extn�(H0(C); k).
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Proof of Theorem 12. To prove (i), show Extn�(C;C) = 0 for n su�ciently large and
apply Lemma 9. To do this proceed as in the proof of Theorem 4.1 of [6] and
show that the E1-term of the appropriate spectral sequence is a �nite module over
Ext��(k; k)=(�1; : : : ; �d), using Lemma 14.

Now if A;A0; B;B0 2 bCb and A �d A0 and B �d B0 then A
B �d A
0 
B0.

So Lemma 13 implies C�[s] �d C. Hence by Proposition 11, the minimal projective
resolutions of C�[s] and C are isomorphic. Now C �= N�Q, so C�[s] �= N�[s]�Q�[s].
On the other hand, C�[s] �= N � Q0, for some Q0 2 e

bCb . So by the Krull-Schmidt
Theorem, N �= N�[s], proving (ii).

If we choose di�erent truncated extensions C 0

�i
representing the [�i], then C

0

�i
�d C�i

for each i, and therefore
N

iC
0

�i
�d C. Hence their minimal projective resolutions are

isomorphic, proving (iii).

Example. Suppose k has characteristic 2, G is the alternating group on 4 letters, and
� = kG. We have (cf. [3, p. 197])

H�(G; k) = k[u; v; w j deg(u) = 2;deg(v) = deg(w) = 3; u3 + v2 + vw + w2 = 0]:

The simple �-modules are k; S; T where S and T also are one-dimensional (corre-
sponding to the third roots of 1 in k) and we have S� �= T . The projective covers of
the simples have Loewy structures

Pk =
k

S T
k

; PS =
S

k T
S

; PT =
T

k S
T

:

For a h.s.o.p. we may take u and v, and these are represented by extensions of the
form

u : 0 ! k !
S
k

!
k
S

! k ! 0

v : 0 ! k !
S T
k

!
T
S
�

S
T
!

k
S T

! k ! 0

One then gets C = Cu
Cv decomposes as a direct sum of a complexN of projectives

Pk ! PS � PT ! PT � PS ! Pk;

which indeed satis�es N�[3] �= N , and an exact complex

T
S
!

T
S
�

T
k
�

k
T
!

T
k
�

k
T
�

S
T
!

S
T
:
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3.2. Further applications. One may also apply the techniques described above to
Benson and Carlson's work on the construction of projective resolutions as tensor
products of periodic complexes [5]. We review this brie
y here.
Let n � 2, � 2 Extn�(k; k), and P ! k the minimal resolution. One constructs a

special n-extension �e� representing � as the bottom row in the commutative diagram

� � � Pn Pn�1 Pn�2 � � � P0 k 0

0 k M� Pn�2 � � � P0 k 0

//

�

��

//

��

//
�����

�����

// //
������

������

//
������

������

//

// // // // // // //

where the square with M� in the bottom right is a pushout. Let �C� denote the

truncated n-extension arising from this, and let �C
(1)

� denote the complex in Cb formed

by splicing together in�nitely many copies of �C�.
Now let M be a �-module and �1; : : : ; �r a h.s.o.p. for Ext��(M;M) with ni =

deg(�i) � 2 for each i. Using variety theory, one can show that M 
M�1 
 � � � 
M�r

is projective. Since the tensor product of a projective �-module with any �-module

is also projective, it follows that �X = M 
 �C
(1)

�1

 � � � 
 �C

(1)

�r
2 C

p
b . Moreover, the

K�unneth Theorem implies that �X is exact in positive degrees, and that �X1 ! �X0 !

M ! 0 is exact (where the map �X0 ! M is formed by tensoring the identity on M

with the augmentations from �C�i ! k). Hence

Theorem 15 (Benson-Carlson). M 
 �C
(1)

�1

 � � � 
 �C

(1)

�r
is a projective resolution

of M .

We can generalize this as follows.

Theorem 16. Let D 2 bCb, �1; : : : ; �r a h.s.o.p. for Ext��(D;D) such that ni =
deg(�i) � 2 for all i, and for each i let C�i be a truncated ni-extension representing

[�i]. Let X = D 
 C
(1)

�1

 � � � 
 C

(1)

�r
. Then there is a decomposition X = Y � Z,

where Y is exact and Z is a projective resolution of D.

Proof. It is easily seen that the special extension �e� has the following property: if e� is
any n-extension representing � then �e�  e�. On the truncated level, this means that
if C� is any truncated n-extension representing [�] then there is a quasi-isomorphism
�C� ! C�. Now let �C� = �C�

� [n � 1]. By Lemma 13, �C� also represents [�], and it is

equally easy to see that �C� enjoys the following dual property: if C� is any truncated

n-extension representing � then there is a quasi-isomorphism C� ! �C�. Clearly,

Theorem 15 remains true if each �C� is replaced by �C�.

Now we may splice together quasi-isomorphisms to get quasi-isomorphisms �C
(1)

�i
!

C
(1)

�i
! �C

(1)

�i
. Tensoring over i yields quasi-isomorphisms �X ! X ! �X . But

both �X and �X are projective resolutions of D, so there exist quasi-isomorphisms
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PD ! �X and �X ! PD, where PD is the minimal resolution of D. Composing, we
have quasi-isomorphisms PD ! X ! PD. By Lemma 6, this composition must be
an isomorphism. Hence PD splits o� of X.
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