
THE HOCHSCHILD COHOMOLOGY RING OF A CYCLIC BLOCK

STEPHEN F. SIEGEL AND SARAH J. WITHERSPOON

Abstract. Suppose B is a block of a group algebra kG with cyclic defect group.

We calculate the Hochschild cohomology ring of B, giving a complete set of gener-

ators and relations. We then show that if B is the principal block, the canonical

map fromH�(G; k) to the Hochschild cohomology ring of B induces an isomorphism

modulo radicals.

1. Introduction

The representation theory of cyclic blocks (that is, blocks with cyclic defect groups)
plays an important role in the representation theory of �nite groups. The principal
result states that a cyclic block is a Brauer tree algebra (see Alperin's book [1]
for this and other results from the cyclic theory). These algebras are complicated
enough to be interesting but simple enough so that many aspects of the theory a�ord
an elegant combinatorial description. For this reason, the cyclic theory has provided
an important testing ground for new developments in representation theory.
In this note we calculate the Hochschild cohomology ring of a cyclic block. Specif-

ically, let G be a �nite group, p a prime, and k an algebraically closed �eld of charac-
teristic p. Suppose kG has a cyclic block B. Then Theorem 1 below gives a complete
set of generators and relations for H�(B;B) as a commutative graded k-algebra.
Earlier, T. Holm [6] calculated the even subring of H�(B;B). His approach, which

we share, used the fact that B is derived equivalent to kT , where T is a split extension
of a cyclic p-group by a cyclic p0-group. This follows from a theorem of J. Rickard [7,
Thm. 4.2], which states that two Brauer tree algebras are derived equivalent if, and
only if, the trees have the same number of edges and the same multiplicity. Because
algebras which are derived equivalent have isomorphic Hochschild cohomology rings
([8, Prop. 2.5]), it su�ces to calculate H�(kT; kT ).
At this point we part with the methods of [6] (which involve extensive calculations

in the category of kT -bimodules) and instead exploit the isomorphism of H�(kT; kT )
with H�(T; kT ) ([10, Prop. 3.1]). The latter ring denotes the ordinary cohomology of
T with coe�cients in kT considered as a kT -module by conjugation. The ring struc-
ture is provided by the composition of the cup product with the map on cohomology
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induced by multiplication kT 
 kT ! kT (
 = 
k). It turns out that this ring is
quite easy to describe, using some elementary results from group cohomology.
We should point out that this result is a special case of more recent work by

Erdmann-Holm [4], in which they calculate the Hochschild cohomology of a more
general class of algebras, the self-injective Nakayama algebras. For the cyclic block
case, however, the approach here does have the advantage that the proof, and the
relations arrived at, are particularly simple.
In Section 3, we further prove that in case the principal block B0 is cyclic, the

canonical map fromH�(G; k) to H�(B0; B0) induces an isomorphism modulo radicals.
This question was raised for principal blocks in general in [10] and answered positively
in the cases where G is a p-group, G is Abelian, and in a few other speci�c cases. This
result for cyclic blocks provides further evidence for a positive answer to this question
in general, and so we have elevated the question to the status of \conjecture."
We are grateful to Jeremy Rickard for some very helpful \e-conversations" about

block theory and derived equivalence, and to Thorsten Holm for providing us with
drafts of the preprint [4]. The second author would like to thank NSERC for providing
research support.

2. Generators and Relations

Suppose kG has a block B with defect group cyclic of order pn and inertial index
e. Let m = (pn � 1)=e.

Theorem 1. If e > 1 then H�(B;B) is generated as a commutative k-algebra by

elements z, p1; : : : ; pe�1 of degree 0, and elements y1, y2, y2e�1, y2e, where deg(yr) =
r, subject to the relations

zm+1 = zmy1 = zmy2 = y1y2e�1 = y21 = y22e�1 = 0;

y1y
e�1
2 = zy2e�1; ye2 = zy2e; y2y2e�1 = y1y2e;

zpi = y1pi = y2pi = y2e�1pi = y2epi = 0 (1 � i < e);

pipj = 0 (1 � i; j < e):

If e = 1 and pn 6= 2 then

H�(B;B) = k[z; y1; y2 j deg(z) = 0; deg(yr) = r; zp
n

= 0 = y21];

while if e = 1 and pn = 2,

H�(B;B) = k[z; y1 j deg(z) = 0; deg(y1) = 1; z2 = 0]:

The rest of this section is devoted to the proof of Theorem 1. First we note that
by [3, Prop. 62.35], e divides p� 1. We consider the group algebra kT , where

T = ha; b j ap
n

= 1 = be; bab�1 = asi;

and s+pnZ is an element of order e in (Z=pnZ)�, the group of units of Z=pnZ. By [3,
Lemma 60.9], kT has only one block, and so by [1, p. 123], kT is a Brauer tree algebra
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for the star with e edges and exceptional multiplicity m. As we have seen, we may
conclude from this that H�(B;B) is isomorphic as a graded algebra to H�(T; kT ),
where kT is considered a kT -module under conjugation. It is this algebra to which
we now turn.
If e = 1 then T is cyclic of order pn. Since T is Abelian, H�(T; kT ) �= kT
H�(T; k)

([2, Thm. 2.1] or [10, Prop. 3.2]), and H�(T; k) is well-known (see [5, x3.2]). This
�nishes the proof for e = 1. From this point on, we will assume e > 1.
Our �rst task is to understand the conjugacy classes of T . For this we need

Lemma 2. Suppose [r] = r + pnZ is a non-identity element of (Z=pnZ)� of order

dividing p� 1. Then [r � 1] is also a unit.

Proof. We may assume 1 < r < pn. By hypothesis, [r]p�1 = [1]. Hence

[0] = [r � rp] = [r � ((r � 1) + 1)p] =
h
r � 1�

pX
i=1

�
p

i

�
(r � 1)i

i
= [r � 1][u];

where

u = 1�

pX
i=1

�
p

i

�
(r � 1)i�1:

If pj(r � 1) then [u] is a unit, which forces [r] = [1], a contradiction.

Let H = hai and K = hbi. Now if [i] 6= [0] then CT (a
i) = H. For if

bjaib�j = ais
j

= ai

then [i][sj � 1] = [0], which, by the Lemma, implies j 2 eZ. Hence H is the union of
the class f1g and m classes each of size e.
We claim that the remaining classes are the sets Hbj, (1 � j < e). Indeed,

aibja�i = ai(1�s
j)bj:

The Lemma implies [1� sj] is a unit, so letting i run from 1 to pn, we see that Hbj

is contained in the conjugacy class of bj. On the other hand, CT (b
j) has order at

least e (as it contains K), so the class can have no more than pn elements, and the
containment is an equality.
From the above remarks, we have a direct sum decomposition of kT -modules (under

the conjugation action)

kT = kH �

e�1M
j=1

kHbj:

Hence as graded k-modules (but not necessarily as rings), we have

H�(T; kT ) = H�(T; kH)�

e�1M
j=1

H�(T; kHbj):
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By the Eckmann-Shapiro Lemma,

H�(T; kHbj) �= H�(T; k"TK)
�= H�(K; k) = k;

concentrated in degree 0, as jKj is relatively prime to p. Using the identi�cation of
H0(T; kT ) with the center Z(kT ), we set

pj =

pnX
i=1

aibj (1 � j < e);

so that H0(T; kHbj) is spanned by pj. It is clear that pipj = 0. Furthermore, if
� 2 Hr(T; kH) with r > 0, then �pj = 0. This is because

Hr(T; kH)H0(T; kHbj) � Hr(T; (kH)(kHbj)) = Hr(T; kHbj) = 0:

We now turn to the kT -module structure of kH. For any integer j, let Vj be
the eigenspace in kH, with eigenvalue sj, for the linear transformation induced by
conjugation by b. First note that the sj (0 � j < e) are distinct as elements of k:
by the Lemma, si � 1 (1 � i < e) is a unit in Z=pnZ, and so cannot be a multiple
of p. We claim that kH is the direct sum of V0; : : : ; Ve�1. To see this, we must
�rst describe the simple kT -modules. As H is a normal subgroup of T , any simple
kT -module restricts to a semisimple kH-module by Cli�ord's Theorem [1, Thm. 3.4],
and as H is a p-group, kH thus acts trivially on any simple kT -module. Therefore the
simple kT -modules are just the simple kK-modules considered as kT -modules with
H acting trivially. Since e is relatively prime to p, the simples are, up to isomorphism,
S0; : : : ; Se�1, where each Sj is one-dimensional and b acts on Sj as multiplication by
sj. Hence to establish our claim we must show that kH is a semisimple kT -module.
But from our analysis of the conjugacy classes we see that kH is isomorphic to the
direct sum of k and m copies of

k"TH
�= kK �= S0 � � � � � Se�1;

and that establishes the claim. It also shows that dim(V0) = m+1, while dim(Vj) = m
for 1 � j < e.
As H is the Sylow p-subgroup of G, restriction from H�(T; kH) to H�(H; kH) is

injective [5, Prop. 4.2.2]. By [5, Cor. 4.2.7], the image is H�(H; kH)K, and therefore
resTH provides an isomorphism of graded algebras

H�(T; kH) �= H�(H; kH)K:

Since H is Abelian, [10, Prop. 3.2] provides an isomorphism of graded algebras

H�(H; kH)
�=
�! kH 
H�(H; k):

This is also a map of kK-modules, where K acts diagonally on the tensor product.
Composing these two isomorphisms, we have an isomorphism of graded algebras

H�(T; kH) �= (kH 
H�(H; k))K;(1)
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where K acts by conjugation on kH. We claim that the action of K on

H�(H; k) = k[x; y j deg(x) = 1; deg(y) = 2; x2 = 0]:

is given by bx = s�1x, by = s�1y. To see this, let P
�
! k be the standard (minimal)

kH-resolution, i.e., each Pn is a free kH-module on one generator and the di�erentials
alternate between multiplication by a�1 and multiplication by

P
h2H h. Let t be the

integer between 1 and pn�1 satisfying [t] = [s]�1 in (Z=pnZ)�. We may de�ne a chain
map � from P to itself, commuting with � and satisfying �(hx) = b�1hb�(x) (h 2 H,
x 2 P), such that in degrees 1 and 2, � multiplies the generator by 1+ a+ � � �+ at�1.
On the level of cocycles, the action of b is given by precomposing with �, so in degrees
1 and 2 this just multiplies the cocycle by t.
It follows from equation (1) that H�(T; kH) is isomorphic to the subring

V0 
 1 �

1M
i=1

Vi 
 hxyi�1; yii:

We now turn to the problem of �nding generators and relations for this subring. Let

w =

e�1X
j=0

s�jas
j

:

Clearly w 2 V1. We will show shortly that w 2 J n J2, where J is the radical of the
algebra kH, that is the ideal generated by 1 � a. It will follow that w = u(1 � a),
where u is an invertible element of kH. Hence wr 2 Jr n Jr+1 for 0 � r < pn. In
particular the wr form a basis for kH. In fact, since VqVr � Vq+r for any integers q
and r, we see that the wei (0 � i � m) form a basis for V0, and the wei+j (0 � i < m)
form a basis for Vj (1 � j < e).
To prove our claim about w, we look at its image in kH=J2. First note that for

any r � 0,

ar � (1 + (a� 1))r � 1 + r(a� 1) � ra+ 1� r mod J2:

Also note that
Pe�1

j=0 s
�j = 0 (multiply by 1� s�1). Hence

w �

e�1X
j=0

s�j(sja+ 1� sj) =

e�1X
j=0

(a� 1 + s�j) � e(a� 1) mod J2;

which establishes the claim that w 2 J n J2.
Now de�ne the remaining generators as follows:

z = we

 1; y1 = w 
 x; y2 = w 
 y; y2e�1 = 1
 xye�1; y2e = 1
 ye:

It is easy to see these generate H�(T; kH). First, the zi (0 � i � m) form a basis

for V0 
 1. Second, if 1 � j < e then the ziy1y
j�1
2 (0 � i < m) form a basis for

Vj 
 xyj�1, and the ziyj2 form a basis for Vj 
 yj. Third, the ziy2e�1 (0 � i � m)
form a basis for Ve 
 xye�1. Finally, multiplication by y2e is an isomorphism from
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Hr(T; kH) to Hr+2e(T; kH) for all r � 0, and using this we obtain an explicit basis
for each homogeneous component of H�(T; kH).
Since w = u(1 � a), it is clear that zpj = 0. The remaining relations are equally

easy to check. We conclude that there is a surjective map of graded algebras from
A� to H�(T; kT ), where A� is the algebra de�ned abstractly by the generators and
relations of the Theorem. We wish to show that this map is an isomorphism, and to
do this it su�ces to show dim(Ar) � dim(Hr(T; kT )) for all r � 0.
Since the product of pj (1 � j < e) with each generator of A� is 0, we have

A� = A1 �A2, where A2 is spanned by the pj and A1 is the subalgebra generated by
the remaining generators. Direct inspection of the relations shows that A1 is spanned
by the same elements described above which form a basis for H�(T; kH). Thus the
dimension inequality is satis�ed, and the proof is complete.

3. The principal block case

Suppose for now that G is any �nite group and let

kG = B0 + � � �+Bs

be the block decomposition of kG, with B0 the principal block. Considering kG as a
module under conjugation, this yields an isomorphism of graded k-algebras

H�(G; kG) �= H�(G;B0)� � � � �H�(G;Bs):

It is not hard to see that H�(G;Bi) �= H�(Bi; Bi) (0 � i � s). Now there are maps
of kG-modules

k �! B0 �! k

whose composite is the identity: the �rst map sends 1 to the principal block idempo-
tent, the second is the restriction of the augmentation map to B0. (If B0 is replaced
by Bi for i > 0 then the restriction of the augmentation map is 0.) Both of these
are also maps of k-algebras and so applying the functor H�(G;�) we obtain maps of
graded algebras

H�(G; k)
f
�! H�(G;B0) �! H�(G; k)

whose composite is the identity. In particular f is injective, so the induced map

H�(G; k)

rad(H�(G; k))

�f
�!

H�(G;B0)

rad(H�(G;B0))
:

is also injective.

Conjecture 1. Let G be a �nite group and k a �eld of characteristic p. Then the

map �f is an isomorphism.

In [10, xx10{11], we showed that this conjecture holds when G is a p-group, when
G is Abelian, when G = A4 and p = 2, and when G = S3 and p is 2 or 3. We now
show that it holds whenever B0 is cyclic:
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Theorem 3. Suppose G has cyclic Sylow p-subgroups. Then Conjecture 1 holds.

Proof. Let P be a Sylow p-subgroup of G, and let pn be the order of P . Let N =
NG(P ), so N is the semidirect product of P and a p0-group Q. Let Q1 = CQ(P ), so
�Q = Q=Q1 acts faithfully on P . Let e = j �Qj. Then e divides p � 1 and �Q = hbi is
cyclic of order e. This is because �Q is isomorphic to a p0-subgroup of Aut(P ), and
Aut(P ) is the product of a p-group and a cyclic group of order p� 1. In fact, e is the
inertial index of B0, as can be seen from the de�nition [1, p. 123]: In this case the
Brauer correspondent of B0 is the principal block b0 of N , which covers the principal
block b00 of CG(P ) = PCG(P ). The block b

0

0 is stabilized by N , so the index of CG(P )
in the stabilizer of b00 is [N : CG(P )] = [Q : Q1] = e.
Let T = P o �Q. It is clear that b acts on P = hai by sending a to as, where [s]

is a unit in Z=pn of order e, as this is the only way �Q can act faithfully on P . We
have already seen that kT is derived equivalent to B0, but in this case there is a more
direct way to see this: a theorem of Rouquier [9, Thm. 10] implies that B0 is derived
equivalent to the principal block of kN , and since T is the quotient of N by a normal
p0-subgroup, the principal block of kN is actually isomorphic to kT .
Suppose pn > 2. We claim

H�(G; k) = k[u; v j deg(u) = 2e� 1; deg(v) = 2e; u2 = 0]:

To see this, consider the restriction map

H�(G; k)! H�(P; k) = k[x; y j deg(x) = 1; deg(y) = 2; x2 = 0]:

This map is injective and since P is Abelian, the image is the set of �xed points
under the action of N ([5, Thm. 4.2.8]). This is the same as the �xed points under
the action of b, and it is not hard to see that u = xye�1 and v = ye generate the
�xed point subring. Now from Theorem 1 we see that H�(B0; B0) modulo its radical
is a polynomial algebra in one generator in degree 2e. The same is true for H�(G; k)
modulo its radical. Since �f is injective, it must therefore be an isomorphism.
If pn = 2 then both algebras modulo their radicals are polynomial algebras in one

generator in degree 1, so �f is an isomorphism in this case as well.
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