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Abstract— The Inequality Necessary Condition Analyzer existence of an execution of the program that violates the prop-
(INCA) is afinite-state verification tool that has been able to check erty. If the conditions are inconsistent, no execution can violate
properties of some very large concurrent systems. INCA checks g hroperty. If the conditions are consistent, the analysis is

a property of a concurrent system by generating a system of in- . LT -,
equalities that must have integer solutions if the property can be Inconclusive; since the conditions are necessary but nféit su

violated. There may, however, be integer solutions to the inequali- Cient, it may still be the case that no execution of the program
ties that do not correspond to an execution violating the property. can violate the property. INCA thus accepts the possibility of
INCA thus accepts the possibility of an inconclusive result in ex- an inconclusive result in exchange for greater tractability. There
change for greater tractability. We describe here a method for - 5r6 tyo main sources of inconclusive results. In this paper, we
eliminating one of the two main sources of these inconclusive re- oo
sults. show how one of these, caused by cycles in finite state automata
representing the components of the concurrent system, can be
Index Terms— INCA, finite-state verification, cycles, integer eliminated at what seems to be only moderate cost.
programming In the next section, we describe the INCA approach. Sec-
tion 11l explains our technique for improving INCA's precision,
and the fourth section presents some preliminary data on its ap-
plication. The fifth section discusses some related work, and
Finite-state verification tools deduce properties of finite-statiee final section summarizes the paper and discusses other is-
models of computer systems. They can be used to check sauks related to the precision of INCA.
properties as freedom from deadlock, mutually exclusive use of
aresource, and eventual response to a request. If the model rep- II. INCA

resents all the executions of a system (perhaps by making usg complete discussion of the INCA approach, along with a

of some abstraction), a finite-state verification tool can take iné%reful analysis of its expressive power, is contained in [1]. In

account all the executions of the system. Moreover, flnlte—st%(?s section, we will use a small (and quite contrived) example

verification _tools can be ap_plied atany stage of system devel Bsketch the basic INCA approach and show how certain cycles
ment at which an appropriate model can be constructed. Sli'mhe automata corresponding to the components of a concur-

tools thus represent an important complement to testing, ©SP&Hit system can lead to imprecision in the INCA analysis. We
cially for concurrent systems where nondeterministic behaviP f

. L 'aVIRlter readers who want more detail to [1].
can lead to very diierent executions arising from the same input
data. ]
The main obstacle to finite-state verification of concurreft: Basic Approach
systems is thetate explosion problenthe number of states a The basic INCA approach is to regard a concurrent system
concurrent system can reach is, in general, exponential in &ga collection of communicating finite state automata (FSAs).
number of concurrent processes in the system. This probldii@nsitions between states in these FSAs correspond to events
confronts the analyst immediately—even for small systemis,an execution of the system. INCA treats each FSA as a net-
the number of reachable states can be large enough so thaogk with flow, and regards each occurrence of a transition
straightforward approach that examines each state is complefe®yn states to statet, corresponding to an evesf as a unit
intractable—and complexity results tell us that there is no w#y flow from nodes to nodet. The sequence of transitions in a
to avoid it completely. Every method for finite-state verificaparticular FSA corresponding to events in a portion of an exe-
tion of concurrent systems must pay some price, in accuracycition of the system thus represents a flow from one state of the
range of application, for practicality. FSA to another.
The Inequality Necessary Conditions Analyser (INCA) is a To check a property of a concurrent system using INCA, an
finite-state verification tool that has been used to check propapalyst specifies the ways that an execution might violate the
ties of some systems with very large state spaces. The IN®PPperty in terms of a sequence of intervals, or segments, of an

approach is to formulate a set of necessary conditions for g¥ecution. Consider a system in which evantan occur re-
peatedly and everlt can occur at most once. Suppose that an
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package simple is +3
task tl is task t2 is
entry a; end t2;
entry b;
entry c; task t3 is a
end tl; end t3;
end simple; 9
b

package body simple is

task body tl is task body t2 is
begin begin
accept c; tl.c; e
loop loop
select tl.a;
accept a; end loop; b
loop end t2;
select
accept a;
or
accept c;
exit; task body t3 is
end select; begin
end loop; tl.b;
or end t3;
accept b; a
loop
accept a; Fig. 2. FSAs for example
end loop;
end select;
end loop;
end tl1;
end simple;

at entrya or with t3 at entryb, if both are ready to communi-
cate at the appropriate entries.tlf accepts a communication
from t2 at entrya, it then enters a loop in which it accepts ren-
dezvous at entry until it accepts one at entry. If t1 instead
as a single interval running from the start of the execution unéiccepts a communication frot3 at entryb, it then tries forever
the occurrence df, with the requirement that amoccur some- to repeatedly rendezvous witl2 at entrya. Taskt2 begins by
where in the interval. (It could also be specified as a sequerfgdling entryc, and then enters a loop in which it calls ensry
of two intervals, the first running from the start of the executiohaskt3 simply calls entryb once and then exits.
until an occurrence o, and the second starting immediately Figure 2 shows the FSAs constructed by INCA for this pro-
after the first and ending with. The first type of specification gram. The states and transitions are numbered for reference.
is generally moreféicient, but the second type may provide adEach transition in this example represents the occurrence of a
ditional precision in some cases. This issue is discussed in meggadezvous between two tasks; in the figure, each transition is
detail below.) INCA provides a query language allowing thiabeled with the entry at which the corresponding rendezvous
analyst to specify various aspects of the intervals of executidakes place. (For this example, it icient to label the transi-
Standard INCA queries for a variety of common types of rdions by the entry name. In practice, INCA identifies transitions
guirements are given at the Specification Patterns web site [2/8presenting rendezvous with the names of the calling and ac-
By generating the equations describing flow within each FSgepting tasks, the entry called, and the values of any parameters
(requiring that the flow into a node equal the flow out) accorgrassed in the rendezvous. Note that we do not need to distin-
ing to the specified sequence of intervals of a system executighjsh here between the “call” and the “accept”; we view the
and adding equations and inequalities relating certain trangansition as representing the actual rendezvous involving both
tions in diferent FSAs according to the semantics of commuriiasks. As will be seen below, INCA ensures the number of oc-
cation in the system, INCA produces a system of equations agigfrences of transitions representing a given rendezvous is the
inequalities. Any execution that satisfies the analyst's speciéiame in the two tasks participating in that rendezvous.)
cation (and therefore violates the property being checked) cor-Suppose that we wish to check that an occurrence of a ren-
responds to an integer solution of this system of equations aigizvous at entriy cannot be preceded by a rendezvous at entry
inequalities. INCA then uses standard integer linear program-As described earlier, we may specify the violation as an inter-
ming (ILP) methods to determine whether there is an integeal of an execution running from the start of execution until the
solution. If no integer solution exists, no execution can violatgccurrence of a rendezvoushe&nd containing a rendezvous at
the property, and the property holds for all executions of the The flow equations for each task will then describe the pos-
concurrent system. If there is an integer solution, however, wible flows from the initial state of the task to one of the states
do not know that the property can be violated. The system infwhich that task could be at the end of the interval.
equations and inequalities represents ardgessargonditions Since the interval ends with a rendezvous at ehtryepre-
for the existence of an execution violating the property, andsented by the transition numbered 2 in the FSA corresponding
is possible for a solution to exist that does not correspond tdataskt 1 and the transition numbered 9 in the FSA correspond-
real execution. ing to taskt3, we know that the FSA1 must be in state 3 and
To see more concretely how this works, consider the Adlae FSAt3 must be in state 8 at the end of the interval. Our
program shown in Figure 1. This program describes three cdlow equations fort 1 therefore describe flow starting in state 1
current processes (tasks). Taskstarts with a rendezvous withand ending in state 3, while the flow equations t8rdescribe
taskt2 at the entryc. It then enters a loop. At the select stateflow starting in state 7 and ending in state 8. E@r the fact
ment, t1 nondeterministically chooses to rendezvous with that a rendezvous at occurs in the interval implies that that

Fig. 1. A small example



FSA must be in state 6 at the end of the interval, so the flow

Flow Equations:

equations fort2 describe flow from state 5 to state 6. State Equation
To produce these flow equations, lgbe a variable measur- 1 1=x
ing the flow along the transition numberedAt each state, we 2 X1+ Xg = Xo + X4
generate an equation setting the flow in equal to the flow out. 3 Xo+X3=X3+1
We must, however, take into account the implicit flow of 1 into 4 Xa4+ X5 = X5 + Xg
the initial state of each FSA and the implicit flow of 1 out of the 5 1=x;
end state of the flow. Thus, for example, the equation for state 6 X7+ Xg=Xg+1
lis 7 1=xg
1=x (1) 8 Xo=1
since the flow in is 1 because state 1 is the initial state and the Communication Equations: .

. iy o . Entry Equation
only flow out is on transition 1. Similarly, the equation for state —_—
8is a X3+ X4 + X5 = Xg

b X2 = X9
=1 2) c Xg + Xg = X7

since the only flow in is on transition 9 and there is implicit flow Requirement Inequality:
out of 1 since the flow in this FSA ends in state 8. a occurs xg > 1

To complete t'he system of equations and inequalities, W. 3. system of equations and inequalities for example
must add equations to reflect the fact that the two tasks par-
ticipating in a rendezvous must agree on the number of times it

occurs. For instance, we need the equation quadratically with the size of the system of inequalities (and

thus with the number of processes in the system).
Comparisons of this approach [4-7] with other finite-state

. verification methods show that the performance of each method
saying that the number of occurrences of the rendezvous at en-.

iy a in the FSA fort1 is the same as in the FSA fa2. We varies considerably with the system and property being verified,
. . : but that INCA frequently performs as well as, or better than,
also need an inequality to express the requirement that there is
sSuch tools as &~ [8] and SMV [9]. The INCA approach has
at least one occurrence of a rendezvous. atle use

also been extended to check timing properties of real-time sys-
4) tems [10, 11] and to prove trace equivalence of certain classes
of systems [12].

to state this. The full system of equations and inequalities used
to check the property that a rendezvous at emrgnnot be pre- B. Sources of Imprecision
ceded by a rendezvous at endris shown in Figure 3. (Thede- The systems of equations and inequalities generated by
scription here is actually somewhat oversimplified; INCA peiltNCA represent necessary conditions for there to be a viola-
forms several optimizations to reduce the size of the systeion of the property being verified. As noted earlier, however,
of inequalities and the real system of inequalities produced these conditions are not, in generalffimient to guarantee that
INCA would be smaller. For example, INCA would observehe property can actually be violated. A solution of the sys-
that there cannot be flow along transition 3 in a violating exectem of equations and inequalities may not correspond to a real
tion (because the interval of execution must end with transiti@xecution.
2), and would eliminate the variabbg from the system. It  There are two main reasons for this. The first has to do with
would also do a form of constant propagation to eliminate oth#ite order in which events occur. Strictly speaking, the equa-
variables and equations.) tions and inequalities generated by INCA refer only to the total
Essentially all research on finite-state verification tools camumber of occurrences of the various events in each interval of
be viewed as aimed at ameliorating the state explosion prdbe execution, and do not directly impose restrictions on the or-
lem for some interesting systems and properties. The approaeh in which those events occur within the interval. In fact, the
taken by INCA avoids enumerating the reachable states of fit@v equations for a single FSA typically imply fairly strong
system. The size of the system of equations and inequaliteenditions on order, but the communication equations relating
is essentially linear in the number of processes in the systéime occurrence of events inflirent FSAs do not impose strong
(assuming the size of each process is bounded). Furthermoestrictions on the order of occurrence of events froffiedi
the use of properly chosen cost functions in solving the probnt processes. To see why, consider a system comprising two
lems can guide the search for a solution. ILP is itself\#h processes. The first process begins by trying to communicate
hard problem in general, and the standard techniques for sokith the second process on chanAeind then, after complet-
ing ILP problems (branch-and-bound methods) are potentiallyg that communication, tries to communicate with the second
exponential. In practice, however, the ILP problems generatebcess on channd. The second process tries to complete
from concurrent systems have large totally unimodular sutite communications in the reverse order. This system will ob-
problems and seem particularly easy to solve. Experience sugpusly deadlock, but the equations generated by INCA would
gests that the time to solve these problems grows approximatsdy only that the number of communications on each channel

X3+ Xq + X5 = Xg (3

Xg =1



£3  For instance, in our recent analysis [4] of the Chiron user in-
terface development system, we encountered solutions with
disconnected cycles in trying to verify 2 of the 10 proper-
ties we checked. In those cases, we were able to verify the
high-level requirements by reformulating the properties being
checked. We subdivided some intervals to force events in dif-
@ ferent parts of the spurious cycles to occur ifietient intervals,
verified other properties that allowed us to eliminate some solu-
tions, or chose other events to represent the high-level require-
ment. These modifications, however, represent a considerable
expense in increased analysfoet and verification time, and
made the properties being checked harder to understand and
validate in terms of the high-level requirements. In the next
section, we describe a technique for eliminating these solutions
with more than one component of flow in an FSA.

)
o

a

Fig. 4. Solution with disconnected cycle
Il. ELmviNaTING Spurtous CYCLES

A. A Straightforward Approach
in the first process is equal to the number in the second pro- g PP

cess, allowing a solution in which each communication occurs. rélated problem is well known in the optimization liter-
(This is again a slight over-simplification. INCA would actyature. When formulating the Traveling Salesman Problem as

ally detect the deadlock in this case, but not in more compf?—n integer programming problem, it is essential to ensure that

cated examples with several processes.) The only mechan@ﬁ]solution rgpresents a single tour visiting all thg pities, rather
INCA provides for directly constraining the order of events if!an @ collection of disconnected subtours each visiting a proper
different processes is the use of additional intervals of the exélPset of the cities. A standard approach for eliminating so-
cution. While this is often enough to eliminate solutions that dgtions with disconnected subtours is to add inequalities that
not correspond to real executions of the system, it is expensR€vent the solution from visiting cities in a subsétunless

and restricts the range of application of INCA. We will returdi€ solution includes an arc from a city notlihto one inU. -
to this point later. Thus, if the variableg j is 1 if the solution represents a tour in

The second source of imprecision is the existence of cyclevalt?'Ch the salesman goes directly from citjo city j, and 0

the FSAs. Consider the flow equation for state 3 that is shofgH'€rWise, the standard formulation of the Traveling Salesman
in Figure 3. Transition 3 is a self-loop at state 3, and flow alorRj°PIem would include, for each the inequality
that transition counts both as flow into state 3 and out of state Z =1
3. The equatiorx; + X3 = X3 + 1 does not constrain the vari- : g
ablexz at all; we can simply cancel the terms. Similarly, the
variablesxs and xg are not constrained by the flow equationto enforce the requirement that each city is entered and left ex-
in which they appear. These variables are constrained only &gtly once. To eliminate the possibility of a subtour in the subset
the communication equation that sags+ xs + Xs = xg. Since U we would add the inequality
three of these variables are otherwise unconstrained, this equa-
tion does not restrict the solution set. Z %jz1, (6)

In fact, although the system of Figure 1 has no execution in 1#U, jeu

which a prefix ending with a rendezvous at errgontains  \hich requires that the salesman travel from a city outside

a rendezvous at entry, there is a solution to the system ofy ¢ty inU. (Of course, we need an inequality like (6) for every
equations and inequalities shown in Figure 3 withxz, Xs, X7, subsetU of size at least 2 and at mokt— 2, whereN is the
Xg, andxg all equal to 1, andks, x4, andxs all equal to 0. Inthis  mper of cities.)

solution, the requirement that the number of rendezvouadat In our case, to prevent a solution in which there is flow in a

at least 1 is met by setting the unconstrained variaildesnd gisconnected cycl€, we can add an inequality requiring that,
Xg to_ 1._ Figure 4 shows the FSAs WIth the transitions havingnen there is flow irC, there must be flow entering from

flow indicated by bold arcs. The flow in the FSA for has two oytside. This is a little more complicated than the situation for
connected components, one from the initial state to state 3,;gs Traveling Salesman Problem. In that case, we know by (5)
expected, and one made up of flow in the cycle at state 4, RRk; the the solution must enter each city exactly once. In our
connected to the flow from state 1 to state 3. Itis obvious thgfse we do not want to require flow into one of the states mak-
the flow in each FSA corresponding to an actual execution mliﬁé upC unlesshere is flow along one of the transitions@

be connected, so this is a spurious solution, one that does ggf instance, we only want to require flow on transition 4 in
correspond to a real execution. our example when there is flow on transition 5. To do this in

This example illustrates the problem but is not of much inyeneral, we would need a quadratic inequality such as
dependent interest. The same problem, however, occurs with

some frequency in the analysis of more interesting systems. X4X5 > Xs. (7)

(%)



Integer quadratic programming is, however, much harder thanppose we could construct the subgraph, and liet a vertex
integer linear programming and we would like to avoid introin C for whichd, < d, for all u € C. Since there is flow intgin
ducing quadratic inequalities. The standard technique is to ithe solutiony must have some predecessadn the subgraph.
pose an upper bounB on all the variables (i.e., to assumeSince the cycleéC is disconnected from the flow starting at the
that no transition occurs more th&times), and to replace theinitial state of the FSA, the statemust also lie irC. Butifuis a

quadratic inequality (7) with the linear inequality predecessor afin the subgraph, we haag > d,, contradicting
the minimality ofd, onC.
X5 — Bx < 0. (8)  Of course, we do not want to consider the possible solutions

The int lut £ (7) havi <B iy th to the sys?em of equations and inequalities generated by INCA
€ integer solutions of (7) aving, xs < b are exactly N ;.o at a time, attempting to construct the subgraph separately
same as those of (8). (We note that |mp93|ng an upper bouno|f8|neach solution. Instead, we add new variables and inequali-
all the variables would mean that INCA's analysis is no Ionge(\iresl leading to an augmented system of equations and inequal-

strictly conservative. If the system of inequalities has no SOIHies whose integer solutions correspond exactly to the integer

tions W'tht.thex‘ all Ihe_si thanhotr equ_?l B, we onIyt l;r{]g\gt;hat solutions of the original system for which the appropriate sub-
no execution on which each transition occurs a es graph can be constructed.

can violate the property. Sindcan be taken to be quite large, 1) The Flowgraph: In general, a query can specify more

such as 10,000 or 100,000, this restriction is unlikely to betﬁlan one interval, so the situation is slightly more complicated

se_rrlcr)]gs (r)gt?lgr]np\:\ifr?(t:ﬁé)se aporoaches is that they may re utpan that illustrated in our example. In the general case, INCA
too maﬂ extra inequalities p'IE)he number of subtgurs t)rllat ﬂa(\glgnstructs dlowgraphas follows. First, it creates one copy of
y q ' W&ch FSA for each interval specified in the query. The FSAs for

to be eliminated in the Traveling Salesman Problem is essepn-_, . o . .
. . . h interv
tially the number of subsets of the set of cities and is clear1aac terval can then be optimized independently, removing

exponential in the number of cities. Similarly. the number Ol?/nnecessary states or transitions based on the restrictions im-
P ' Y. osed for that interval in the query. As discussed in Section II-

cycles inan FSA can be essentially equal to the number of s "INCA can analyze the query to determine the possible states
sets of its set of states. We have constructed a small concurrﬁh\}v . . .
Ada proaram with only 90 lines of code in which the ESA fo} hich each FSA could be at the end of the interval. Given

prog y - s%ch a state in an FSA for a task in an interval (other than the
one task has only 42 states but has 1,160,290,624 distinct 51%5,[ one), INCA adds a “connect” edge to the corresponding
sets of states each forming at least one cycle. An integer p '

gramming problem with that many inequalities is completelg?é.te in the FSA for that task in the next interval._These edges,
intractable. A better method is required Which do not correspond to event; in the execution of the sys-
' ' tem, allow flow to pass from one interval to the next. INCA
adds an initial vertexy,, with connect edges to the initial states
B. A More Practical Method of the FSAs in the first interval, and a final vertex, with in-

In this section, we describe a method for preventing spugeming connect edges from each of the possible end states of
ous cycles for which the number of additional variables arféSAs in the final interval. This flowgraph is the structure that
inequalities is linear in the size of the program being analyzetNCA actually uses to generate the system of equations and in-

The basic idea is as follows. Suppose we have a solutieualities. Note that severalfidirent edges in this graph may
to the system of equations and inequalities originally generatearrespond to a single edge in an FSA, representing flow along
by INCA. For each FSA, the solution determines a subgf@ph that edge in dierent intervals.
consisting of the edges with positive flow and the vertices with Figure 5 shows the flowgraph generated from the system of
flow in or out. If G’ is not connected, i.e., if some vertex igrigure 2 for a query with two intervals that describes execu-
not reachable from the initial vertex, the solution must involviéons on which a rendezvous abccurs before the rendezvous
a spurious cycle in that FSA. To show tl@itis connected, itis atb does. (This is the two-interval version of the query used
suficient to construct a subgraph Gf having the same vertex to check the property thattacan never be preceded by an
set agG’ and such thati) if there is flow along any edge into aas described in Section II-A.) The query specifies that the first
vertexv in the solution, some edge terminatingviand having interval ends as soon as amccurs and contains o The sec-
positive flow in the solution must occur in the subgraph, @igd ond interval ends as soon as theccurs. The connect edges
each vertew of the subgraph can be assigned a “dethin  are shown with dashed lines. The vertices (other than the ini-
such a way that the depth of a given vertex is greater than thatiaf and final ones) and edges are labeled the same way as the
any of its predecessors in the subgraph. The second conditimmnresponding vertices and edges in Figure 2. Since the first
makes the subgraph acyclic, and then the first condition ensuirgerval ends with the firsi and does not allow B, INCA can
that each vertex with incoming flow in the solution has an irdetermine that the last event in tasskin the first interval must
coming edge in the subgraph and is therefore reachable frbmthe transition on edge 4 from state 2 to state 4, and the last
the initial vertex. event in task2 must be the transition on edge 8 from state 6 to

If the original solution has no disconnected cycles, we cdiself. Because nb is allowed in the first interval, INCA can
choose for our subgraph a spanning tree for the edges with flprune edges 2 and 3 from the FSA far and edge 9 from the
and take the depth of a vertex to be the distance from the r&&A for t3 in the first interval.
of the tree to the vertex. If the solution has a disconnected cycldNCA associates a variabbe to each edge, and generates
C, however, we cannot construct such a subgraph. To see wigyw equations as follows. For each vertex other than the ini-



@ bounds on a variable may be taken to be infinite. scution

AN to an ILP problen is an assignment of integers to the vari-
| . ables such that the value of each variable lies between its upper
tl 4 t21V A _t3 and lower bounds and all the equations and inequalities are sat-
@ isfied. (In standard usage, an ILP problem would also include
1 7 a linear function of the variables and the task is to find a so-
C C

| lution that maximizes or minimizes this objective function. In
} our case, we are primarily interested only in thasibilityof the
| ILP problem, that is, whether or not there are any solutions, and
! in this paper we can ignore the objective function. In applying
! INCA, we use the objective function to improve performance
| interval 1 when there are solutions to the ILP problem.)
| Let G be a directed graph with a specified initial vertgx
; and a specified final vertex= such thatv, has no incoming
! edges andr has no outgoing edges. L&tbe an ILP problem
e interval 2 containing(i) a variablex, with lower bound of O for each edge
9
b

ein G, and(ii) the flow equatiorflow-in = flow-outfor each
vertex inG other thanv; andvg. (P may contain additional
variables and constraints, we are just requiring that it contain at

@:‘*D a least these.)
3 Given a solution te?, we say that an edgehas flowf xe >
) 0, and we say that a vertexhas flowif some edge entering or
/ leavingv has flow. By theflow subgraph of G corresponding
/ to the solutionwe mean the subgrag of G consisting of all
/ the vertices and edges with flow. We say that the solution is
’ connected with respect to i6G’ is connected, that is, if every
\@,’ vertex inG’ is reachable from the initial verte. We may
suppress the qualification “with respect@ if the graphG is
clear from context.
Fig. 5. Flowgraph for example with two-interval query The idea, as described at the beginning of Section I1I-B, is
to construct a subgraph &’ having the same set of vertices

: . . . asG’, but possibly fewer edges. We require tiitfor each
tial or final vertices, INCA generates the equatitow-in = | o\, + v of &, some edge o6’ enteringv must be in the

flow-out whereflow-in is the sum of the variables associategubgraph. andii) each vertex can be assigned a “deptt in

with edges entering the vertex afldw-outis the sum of the g,y 4 \vay that the depth of a given vertex is greater than the
variables associated with edge_s Ieavmg the vertex. For eafhtn of any of its predecessors in the subgraph. Our goal is
task, INCA generates an equation setting the flow from the N5 describe an augmented ILP probl@such that a solution

tial node to the start node of that task equal to one, and an €98PP can be extended to a solution®f if and only if its flow

tion setting the sum of the flow along edges from nodes of tk@ﬁbgraplﬁ’ has a subgraph satisfying conditigijsand(ii) .
task to the final node equal to one. Communication equations oﬁzor each edge in G, we introduce a new variablg, with

the type described in Section 1I-A are generated for each int Sunds
val to ensure that the communicating tasks agree on the number

of communications that occur in each interval, and additional O<ss<l ©)

constraints are added to reflect additional requirements or [Riote that the imposition of an upper or lower bound on a vari-
strictions imposed by the query on the possible events occurriyga can of course be thought of as adding an inequality, but is
in the diferent interva_ls. (The fact_that thedeirent edgesinthe usually handled somewhatfBirently by ILP packages. In this
flowgraph, representing flow in @lerent intervals, correspond yiseyssion, we will separate the imposition of bounds from the
to the same transition in an FSA representing a task makeg,itoqyction of new inequalities.) This variable will be 1 if the
possible to require an event to occur in one interval and forbé%rresponding edge is in the subgraph, and 0 otherwise.

itin another.) For each vertex in G, we introduce a new variabld with
2) The Augmented System of Inequaliti&se now describe pounds

precisely the procedure for generating the augmented system 0<d <N (10)
of equations and inequalities that eliminates solutions with dis- e
connected cycles. whereN is some integer which is at least the maximum length

We will say that anlLP problem® is a set of integer vari- of any non-self-intersecting path through the graph. For in-
ables with upper and lower bounds specified for each variab$ance N can be taken to be the number of vertice§&inThe
together with a set of linear equations and inequalities in thogariabled, will be the depth of.
variables such that the all the dbeients are integers. (The We then generate inequalities involving these new variables.



For each edge: u — v, we generate the inequalities dy > dy — N, which must hold becausk > 0 andd, < N. Now
consider a vertex # v, in G. If vdoes not have flow then (13)
Xe > Se (11) holds trivially as its right hand side is 0. ¥does have flow,
dy>dy+ (N+1)s—N. (12) thenitisinT, and therefores, = 1 for some edge occurring
in the sum. So the left hand side of (13) is at Igbgl)|B. On
The first inequality says that must be 0 ifxe is 0, so that the the other hand, there afi®(V)| terms in the sum on the right
corresponding edge can be in the subgraph only if the solutinind side and each < B, so
has positive flow along that edge. The second inequality re-
quires thatl, be greater thad, if the edge fromutovis in the Z Xe < |In(V)|B,
subgraph. If the edge is not in the subgraph (i.es; i 0), the e
Lﬂi?:g!;yofséddv 2 dy—N, andthe bounds a, andd, make and (13) holds in this case as well. _ .
Finally, letB be a fixed positive integer, and impose the upper NOW SUPpose we are given any solutionta We W'S,h to
boundx. < Bfor eache. (As noted earlier can be taken to be show that the projection of this solution is connected. Gebbe

quite large.) For each verteyof G, other than the initial vertex, the ﬂOW ;ula/graph for the projected solution. u?b.e.the set of
we generate the inequality vertices inG’ that are not reachable @ from the initial vertex.

To say that the solution is connected is equivalent to saying that
BlIn(v)| Z S > Z Xe, (13) U is empty.. So supposé is not _empty, gnd let be a vertex
) o2t in U for which d, < dy for all win U. Sincev has flow and
v is not the initial vertexy has incoming flow (either because
where In) denotes the set of edges enteringBy imposing v = v¢ or by the flow equation fov). This implies that the right
the upper bound oB on thex,, we see that (13) will hold if hand side of (13) is at least 1, so for some edge — v we
Xe = 0 foralle e In(v) or if s, = 1 for at least one suak This haves, = 1. Now (11) impliesxe > 1. Sinceu has flow out to
is how we enforce the requirement that each vertex with flow if u were reachable from, v would also be reachable. But

has some incoming edge in the subgrapleof v € U is not reachable, so we must have U as well. Now
We have addel + E new bounded variables aMh+2E -1 (12) implies

new constraints, whené is the number of vertices in the graph dy>dy+1,

andE is the number of edges. L&' be the ILP problem ob-

tained from® andG by adding the variables and inequalities ivhich contradicts the minimality ad,. u

this fashion. We have the fo”owing theorem. 3) Local Application of CyCle Elimination: For SyStemS

. generated by INCA, it is often not necessary to apply the cy-
The_orem. Let G, P, and ¥’ t,)e as above. A S°|Ut'°r‘_df, cle elimination algorithm over the entire flowgraph. One reason
assigns values to all the variables fh as well as additional ¢ i is the following. As there are no edges from vertices of
variables; we thus obtain a solution o from a solution to?” o6 interval to vertices of a previous interval, any cycle must
by projection. The set of connected solutionsPolvith each g contained in a single interval of the flowgraph. Furthermore,
Xe < Bis exactly equal to the set of projections of solutions g there are no edges from vertices of one task to vertices of
P another task, a cycle must be contained within a single task of
Proof: There are two things we must show. First, we mugtsingle interval. Experience has shown us that, as far as cycles
show that, given any connected solutiorawith all x, < B, are concerned, these task-interval “sectors” of the flowgraph of-
there are values that can be assigned to the new variables to givebehave independently: existence of spurious cycles in one
a solution toP’. Second, we must prove that the projection gsector usually has no bearing on the existence of spurious cycles
any solution for®’ is a connected solution f&?. We tackle inanother sector.
these in order. Although some of the preliminary experiments described be-
Suppose we are given a connected solutiororThen in  low suggest that the expense of applying our cycle elimination
the flow-subgrapl@’, every vertex is reachable from the initialalgorithm routinely may not be excessive, we expect that it will
vertexv,. SoG’ has a spanning trée rooted atv;, i.e., T is a often be applied only when an attempt to verify a property with-
subgraph ofc’ that is a tree with root; and that contains all out using cycle elimination has produced a solution with spuri-

the vertices of5’. For each edgein G, let ous cycles. So, once a spurious cycle has been encountered this
way, it would be useful if there were a way to generate cycle
1 ifeisinT elimination constraints for only the relevant sector of the flow-

“10 otherwise. graph, and therefore save on the number of new constraints and

variables generated—and probably analysis time and memory

For each vertexin G’, letd, be the depth ofin T. For vertices as well.
vhnotinG’, d, may be assigned any value between its bounds. In fact this requires only a slight modification of the algo-

We claim this is a solution fof’. Indeed, inequality (11) fol- rithm. Suppose we are given a gra@rand an ILP problen®
lows from the fact thal < G’. To see that (12) holds, supposes in Section 11I-B.2. LeV’ be a subset of the vertices@fnot
we are given an edge u — v. If eisin T, thend, = d, + 1, containing the initial or final vertices. We say that a solution to
and (12) reduces to the statemdpt> d, + 1, which certainly # is V’-connected with respect to i in the flow subgrapi’
holds. On the other hand, &is not inT, then (12) becomes corresponding to that solution, every vertexMhis reachable



from some vertex outsideé’. (A solution has a spurious cycleWe are not as interested in the time it takes to run the Java pro-
entirely contained i’ if and only if it is notV’-connected.) gram because the algorithm which this program implements is
Suppose that we want to eliminate solutiong?that are not very simple and is clearly linear in the number of nodes and
V’-connected. We construct a new graph from the vertic®s in edges in the graph used for cycle elimination. The algorithms
and the edges @ entering or leaving those vertices, and applysed for solving ILP problems, on the other hand, are extremely
the augmentation algorithm described above to that graph. To@nplex and we have no theoretical way of estimating the time
produces a set of new variables and constraints. Adding thasiakes to solve the ILP systems we produce. If there is a practi-
to # and imposing the upper bound Bfon thex., we get an cal barrier to our cycle elimination technique, it will arise from
augmented system whose solutions project to the solutionssofving the ILP systems, not from generating them.
% having no disconnected cycles containe®¥in In any case, the times for the Java program ranged from 1 to
Let G; be the subgraph d& obtained by first deleting all 22 seconds for the example in Section A, 2 to 14 seconds for
edges that do not enter or leave a verte¥inand then deleting Section B, 2 to 28 seconds for Section C, and 1 to 2 seconds
all vertices outside 0¥/ with no incoming or outgoing edges.for Section D. The CPLEX times will be given in more detail
The subgrapit; contains all the vertices i’ and all the ver- below.
tices with an edge to or from a vertex\i, and all the edges of  For these experiments, we used INCA version 3.4, Harlequin
G that enter or leave vertices V. Lispworks 4.1.0, Java 2 SDK 1.3.0, and CPLEX version 7.0 on
We add a new initial vertew; and a final vertexvg to G;. a Sun Enterprise 3500 with two 336 MHz processors and 2 GB
For any edgee: u — vin G; from a vertexu not in V' to a of memory, running Solaris 2.8. The upper bouBtepresent-
vertexvin V’, we replaces by a new edge’: w; — v. For any ing the maximum number of times an edge may be traversed
edgef: v — wfrom a vertexv in V' to a vertexw not inV’, in a violating execution was taken to be 10,000. We used the
we replacef by a new edgd’: v — wg. We then remove all default options on CPLEX, except for the following changes:
vertices other tham;, we, and those inV’. Let G be this new MIP EMPHASIS was set to 1, MIP LIMITS TREEMEMORY
graph. (Another way to think of this process is the followingto 2000, and MIP LIMITS SOLUTIONS to 1. (The first option
Let U be the set of vertices of G; that do not belong t&” affects choices made in the branch-and-bound algorithm, the
but have an outgoing edge to a vertexMh Let W be the set second controls the storage of branch-and-bound nodes, and the
of vertices ofG; that do not belong t&’ but have an incoming third stops the search as soon as an integer solution is found.)
edge from a vertex iv’. The graphG is obtained fronG; by  For each ILP problem, we ran CPLEX five times and took the
collapsing each of the setsandW to a single vertex.) average time. The times reported here were collected using the

Corollary. Given G andP as in Section IlI-B.2, and a subset"1™eX command, and include both user and system time.

V' of the vertices of V not containing or Ve, defineG as labl . fth le f .

above. LetP be the augmented system obtained by applyihog A Scalable Version of the Example from Section 2

the algorithm of Section 111-B.2 t& and®. Then the set of  For the first experiment, we created a scalable version of the
solutions of® that are V-connected and have al,x< Bis Simple example described in Section II-A. Given an integer

exactly equal to the set of projections of solutiongof n > 2, we modified the Ada program in Figure 1 to have
copies of taskt2 and to haven + 1 alternatives in the select

statement. Each of the new copies of tagkcalls the same

Thtries int1. (In detail, we replaced task2 with n copies of

itself, calling thesec1,. .. tcn. In the body oft1, we replaced

the firstaccept c line with n copies of itself and replaced the

body of text beginning with the firsiccept a and ending with
V. PRELIMINARY EXPERIMENTS the lastor with n copies of itself.)

The current version of INCA consists of about 12,000 lines As before, we wish to verify that one cannot have the ren-
of Common Lisp. INCA writes out a file describing the ILPdezvous at entry preceded by a rendezvous at endryUsing
problem in a standard format (the MPS format), and we uset® standard 1-interval query, for eagHNCA finds a spurious
commercial package called CPLEX to read this file and solgelution involving a disconnected cycle ir1. After applying
the system. (We also use a separate program to translate Adecycle elimination algorithm to the sector of the flowgraph
programs into the native input language of INCA). The optinvolving t1, we get an ILP problem that CPLEX reports has
mizations INCA uses to reduce the number of variables and e integer solutions, thus verifying the property.
equalities make the introduction of new variables and inequal-There is another way to get around the cycle problem in this
ities somewhat complicated, and integrating our method intase. As we mentioned in Section II-A, one can express the
INCA will involve a substantial programmingfert. For our query using two intervals: the first interval begins with the start
initial exploration of the &ect of applying our method, we haveof execution, ends with am, and does not containtg and the
therefore chosen to proceed by modifying the MPS file prgecond interval ends withla Because of the trimming that
duced by INCA. We have written a Java program that reads thidéCA performs on each interval of the flowgraph, the oppor-
file, and another file describing the flowgraph, and producemity for a spurious cycle is removed. So using this 2-interval
a new MPS file representing the augmented system of equarsion of the query, we were also able to verify the property.
tions and inequalities. We can then compare the performancét this point we are considering three distinct families of ILP
of CPLEX on the original system and the augmented systegystems:

Proof: The graptG and the systerf satisfy the hypothe-
ses of the Theorem of Section 11I-B.2. Moreover, the solutio
of P that are connected with respectGaare exactly the solu-
tions that are/’-connected with respect .



runtime components that provide coordination. In particular,
certaineventsindicating changes in the state of the ADTs are
defined, and aADT Wrapper task notifies @ispatcher task
whenever an event occurs. Théspatcher maintains an ar-

10} 1 ray for each event that records which artists are interested in
oy being notified of that event. (Artists register and unregister for
g0 Gonchusve resultwihcyoe sminaton >— 1 an event to indicate their current interest in being notified.) Af-
2 Spurous Souon wihout oycle almination - ter receiving the event from th®T _Wirapper, theDispatcher

then loops through the artists in the appropriate array and calls
an entry in each artist to notify it of the event. The Chiron
) architecture is highly concurrent and even a toy Chiron inter-
w7 face represents about 1000 lines of Ada code. In [4], we com-
J—— pared the performance of several finite-state verification tools
ol . sxtiiiseooeseyniosact ) (FLAVERS [14], INCA, SMV, and $n) in checking a num-
n ber of properties of a Chiron interface with two artists and
different kinds of events, farranging from 2 to 70.
One of the properties we wish to verify about this system,
called Property 4 in [4], is that theispatcher notifies the

. P1(n): the system produced by INCA for the Sing|e_artists of theright event. For example, if thBispatcher re-

interval query (which has a spurious solution, so the an&€'Ves evenel from the ADT Wrapper, we wish to show that
ysis is inconclusive), it does not notify any artist of some other event instead. To

. P,(n): the system produced by INCA for the two-intervaformulate th_is property as an_INCA query takes _2 intervals.
query (which is inconsistent, so the property is verified), W& were in fact able to verify this property using INCA, but
and only in systems where the number of kinds of eventss at

. P3(n): the system obtained by applying cycle eliminatiof0St 5. (FLAVERS and &y were able to verify this prop-

to P1(n) (which is also inconsistent and verifies the prope'® Up to at leash = 40 andn = 36, respectively.) To scale
erty). the problem further with INCA, we needed to decompose the

Dispatcher task into a subsystem. This entails creating a new
taskDispatch_ei, fori = 1,...,n, which maintains the array
for eventei. TheDispatcher task itself is left as an inter-
face which just passes register, unregister, and notification re-
quests on to the appropriabd spatch_ei in a way such that
The number of variables in systef(n) is 5n + 7n and the no a_ddit_ional concurrency is introduced. (If the _internal com-
number of constraints is ©l+ 3 (for n > 2). Hence in size munlcat!ons of the.D|spatcher subsystem are hldden, the new
P,(n) falls betweer?, (n) andPs(n). system is observationally equivalent to the orlgmal one.) This
gecomposed system has the advantage thatiasreases, the
size of eactbispatch_ei FSA remains constant, although the
mber of these tasks increases. In general this decomposition

4
4
o
-
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-
ot
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Fig. 6. CPLEX times for scaled simple example

Forn > 3, the number of variables i;(n) is 4n? + 2n, and
the number of constraints (equations and inequalities) is24
The graphG used for cycle elimination has2- 4 vertices and
4r? + 3 edges; hence the algorithm add8 4 2n + 7 variables
and 87 + 2n + 9 constraints to produc@s(n).

In Figure 6, we show the time it takes CPLEX to analyz
each of these systems, for= 1,...,40. All of these times are

very modest—under 15 seconds—and are in fact dwarfed B .
eatly improves the performance of INCA. For example, we

the time it takes INCA to generate either ILP system. ltis al . S
clear that for this problem, as far as CPLEX time is concerned'e Now able to verify several of the other properties in sizes

using the 2-interval query is better than the single-interval queW ton = 70. .BUt attempting to vern‘y Property 4 with the
plus cycle elimination. However, it took INCA approximatelydecormqsed I_I)lspatcher task gave an |n.conclu5|ve Tesu“- The
3 hours to generat®;(40), and it took the Java program 230r0blem_ is a disconnected cycle in the t@dkpatch_el in the
seconds to apply the cycle elimination algorithm to producseecond interval. . .

£4(40), whereas it took INCA approximately 10 hours to gen- " [4]; we gotaround this problem by reformulating the prop-

erate,(40). So when total analysis time is taken into consid® using diferent events to represent the high-level require-

eration the cycle elimination technique wins hands down. Ne{rent. This depended on the prior verification of other prop-

ertheless, it does seem that for largehe substantial increaseert_ies relating the events used in th_e original ar_ld new formu-
in the number of constraints #A5(n) due to the large number lations and was cumbersome and time-consuming. (Once the

of edges in the FSA fot 1, begins to have a significant impactproperty was reformulated, however, the performance of INCA
on the time to solve the ILP problem. on this decomposed system was considerably better than that

of the other tools. By = 30 the INCA time was roughly an
) ) ) order of magnitude better than the times for the other tools and
B. Spurious Cycles in Chiron INCA could verify the property for much larger values mf
The second experiment involves the Chiron user interfa@@e diferences in performance of the tools on this property,
system [13]. A Chiron client comprises some abstract ddfiar the two versions of the Chiron system, are typical of what
types to be depictedrtists that maintain mappings betweerwe observed on other properties. The implications of this are
these ADTs and the visual objects appearing on the screen, distussed in [4].)
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Fig. 7. CPLEX times for Chiron Property 4 Fig. 8. CPLEX times for Chiron Property 1b

Using the cycle elimination algorithm described here, weersion of the client code, INCA verified this property without
were able to verify the original property directly, without reany need for cycle elimination, far < 70. The number of
formulating it, for 2 < n < 70. In this case, the number ofvariables in the INCA-generated ILP system (fog 3) is

variables in the original ILP system (far> 3) is
1000 + a(n),

(2621 + A(n))/3, . . .
wherea(n) is 77, 146, or 107 according ass congruent mod-

where A(n) is 207, 395, or 301, according asis congruent Ulo 3to 0, 1, or 2, respectively. The number of constraints is
modulo 3to 0, 1, or 2, respectively. (This reflects the way we
chose to have artists register for events as we scaled the number 5In+A(n).
of events.) The number of constraints in the original system i§ere similarly(n) is 69, 96, or 81.

We then applied the cycle elimination algorithm to the entire
flowgraph, which consists of 2 intervals of 6 tasks each. (In

where similarly the value of(n) is 213, 301, or 257. For each the experiment discussed in the previous section, we only ap-
the graph® constructed from thispatch _el-interval 2 sec- plied the algorithm to a single task-interval sector of the flow-
tor of the flowgraph has 23 vertices and 63 edges: hence #@Ph-) The flowgraph has

algorithm adds 86 variables and 148 constraints. In this case, (124+ y(n)/3

eliminating spurious cycles adds a constant number of variables
and constraints as increases. The CPLEX times for eagh vertices, where/(n) is 204, 272, or 238, and

for the original system for which CPLEX found a spurious so-

lution and the result of the analysis was inconclusive, and for 111n + 6(n)

the augmented system for which the property was conclusively . o
verified, are given in Figure 7. Again, the times are all under@ges, where(n) is 116, 187, or 148. Hence cycle elimination
seconds and represent a small portion of the total analysis irftdds

(Forn = 70, this was about 64 seconds.) As the figure shows, (45m + p(m)/3

there is essentially no cost in additional CPLEX time for cyclgew variables to the system, whes@) is 552, 833, or 682, and
elimination for this example. adds

(137 + k(n))/3,

(790n + v(n))/3

C. The Cost of Unnecessarily Preventing Spurious Cycles paw constraints, wherg(n) is 897, 1391, or 1123. The times
We also tried adding the cycle elimination variables and corequired by CPLEX to find the conclusive result in each case
straints to a system which already yielded a conclusive resuate graphed in Figure 8.
This might yield insight into the marginal cost of having INCA Although the ILP systems in the augmented case are quite
add cycle elimination by default for any problem. large (18,087 variables and 22,563 constraintafer 70) for
For this experiment, we used another property from [4]. lime largem, it still appears that CPLEX can determine the in-
this case, we used Property 1b, which says that an artist nesensistency of the system in a very short time (less than 3 sec-
unregisters for an event unless it is already registered for thatds). For this example, the real cost in introducing cycle elim-
event. As in [4], we restricted ourselves to a single artist amgation in INCA lies in generating the new ILP system, not in
event. The resulting property requires 2 intervals for its fosolving it. (Forn = 70, our Java program took about 28 seconds
mulation as an INCA query. Using the decomposed dispatchiergenerate the augmented ILP problem that eliminates cycles.)
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D. An Example with Many Cycles elimination.

For eachn > 2 we describe a concurrent system which we FOrn = 2, INCA was able to verify the property in its pre-
call Relay(n). This system has+ 1 tasks. The first task, Processing stage, without calling CPLEX. For3 n < 9,

resource, has a single variable which can take on any valJe obtained a spurious solution with a cycle when we ana-
from 0 ton — 1, and starts with the initial value— 1. Within yZed the INCA-produced system, and we were able to con-

an infinite loop, it has entries for both setting the value of tHadusively verify the property after applying cycle elimination
variable, and getting the value. The remainirigsks are called [0 taskresource. For the cycle elimination runs, we told
ti, fori = 0,...,n— 1. Taskti does the following within an CPLEX to give higher priority to the new andd, variables
infinite loop: it first calls the entry imesource to get the value [N its branch-and-bound strategy, and we tightened the integral-

of the variable. It then checks to see if this value is equaj tolty folerance from 1E-05 to 1E-07. The data on the numbers
and if so, it calls the entry inesource to set the value to+ 1 of variables and constraints, and the time (in seconds) it took

(if i < n—1) or 0 (ifi = n— 1). The source code for Relay(3) isCPLEX to reach the spurious solutions and conclusive results

given in Figure 9.

package relay is

subtype val is natural range 0..2;

task resource is
entry set (i : in val);
entry get (j : out val);

end resource;

task t0;

task tl1;

task t2;

end relay;

package body relay is
task body resource is
x : val := 2;
begin
loop
select
accept set (i : in val) do
X = 1i;
end set;
or
accept get (j : out val) do
joi=x;
end get;
end select;
end loop;
end a;

task body t® is
y : val;
begin
loop
resource.get (y);
if y = 0 then
resource.set (1);
end if;
end loop;
end t0;

task body tl1 is
y : val;
begin
loop
resource.get (y);
if y = 1 then

resource.set (2);

end if;
end loop;
end tl;

task body t2 is
y : val;
begin
loop
resource.get (y);
if y = 2 then

resource.set (0);

end if;
end loop;
end t2;

are given in Figure 10. Note that far= 9 it took a substantial
amount of time—just under 12 minutes—for CPLEX to reach
the conclusive result, although, as mentioned earlier, the time
to produce the new variables and inequalities was less than 2
seconds.

V. REeLatep WORK

The most common method for detecting faults in computer
systems is testing, that is, executing the system with a particu-
lar set of inputs and comparing that execution with the expected
result. The main problem with testing, of course, is coverage:
it is almost always infeasible to check more than a very small
fraction of the possible executions of the system, and testing
can give no information about executions that are not exam-
ined. Testing can thus miss serious faults. Testing is especially
problematic for concurrent systems because such systems tend
to behave nondeterministically in that the same inputs may lead
to very diferent executions, depending on the order in which
events occur in the fferent parts of the system. This can make
it difficult even to reproduce a particular execution, and means
that a test result in which the execution with particular input
data matches the expected behavior does not even imply that
the system will always behave correctly when it receives the
same inputs.

Finite-state verification techniques, such as model check-

end relay;

ing [15], algorithmically check properties of a finite-state model
of the system. By constructing models that represent all possi-
ble executions of the system, finite-state verification techniques
can check whether a property such as freedom from deadlock,
The intended behavior of this system is that the variabfautually exclusive use of a resource, or guaranteed response to
will be set to the following values in order:,02,...,n — arequest, holds on all possible executions of a system. When a
1,0,1,2,...,n-1,.., and so on. One property we checked is theroperty does not hold, most finite-state verification tools can
following: if the variable is set to — 1 then it must have previ- provide the user with a “counterexample” showing how the
ously been setto 0. L& be the event in which taskesource property can be violated. Such counterexamples can be ex-
accepts a call tget with parameter 0, and l&® be the event tremely useful in isolating and understanding the fault.
in which resource accepts a call taet with parameten — 1. These techniques vary in the nature of the model, the formal-
The standard query describing a violation of this property corsm used to express the properties of interest, and the method
sists of one interval which begins with the start of executionsed to determine whether the model satisfies the properties. At
ends withR and forbidsP. (This property is an instantiation of a conceptual level, most finite-state verification tools model the
the “Existence oP beforeR’ pattern; see [2].) system as a graph whose nodes represent abstract states of the
The sector of the flowgraph for tagksource has an enor- system and whose edges represent transitions between system
mous number of cycles; in fact, there are precisel@™ 1 -  states corresponding to events in the execution of the system.
1 distinct subsets of the vertex set which form cycles. (F&xecutions correspond to paths through this graph and prop-
n = 6, this is 1,160,290,624, and Relay(6) is the example meerties can be specified in a temporal logic (e.g., LTL [16] or
tioned in Section IlI-A.) It is not surprising, then, that of outCTL [17]) or as an automaton accepting sequences of states or
various examples, this one posed the biggest challenge to cymlents. Algorithms for determining whether the model satsifies

Fig. 9. Source code for Relay example
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original original new new time yo time with
n variables constraints variables constraints cycle elim  cycle ¢lim
3 23 19 28 45 0.03 0.0%
4 39 26 52 86 0.03 0.0%
5 59 33 84 141 0.04 0.12
6 83 40 124 210 0.04 0.56
7 111 47 172 293 0.04 2.98
8 143 54 228 390 0.04 49.14
9 179 61 292 501 0.05 717.16

Fig. 10. Performance on the Relay Example

the property can be based on methods for walking the graphisparza and Melzer [25] show how to repregesgpsusing in-
states, computing the intersection of automata, data flow te@gualities in order to sharpen the basic approach.
niques [14] and other approaches. Techniques for detecting or removing cycles from graphs are
As noted earlier, the main obstacle to the application of finite@f considerable importance in a number of areas of computer
state verification techniques to concurrent systems is the fagtence, such as online deadlock detection. We note, however,
that the number of reachable states may be exponential in that the connections between such techniques and the algorithm
number of concurrent processes in the system. A number of @esented in this paper are somewhat limited. In particular, our
proaches concentrate on constructing a compact model, foraigorithm does not determine whether cycles are present in the
stance by taking advantage of symmetries of the system [15]ftpwgraph, and does not modify the flowgraph to remove any
using abstraction to collapse states that do not need to be disgyeles. If we regard the system of equations and inequalities as
guished to check a given property. The Bandera toolset [18, 18Jnodel of certain sets of paths through the FSAs corresponding
for example, provides facilities for slicing to remove parts of £ the processes in the program, our algorithm can be viewed as
program that are not relevant to the property to be checked énway of refining that model so that it does not represent any
for applying a library of safe abstractions to reduce the size @®llections of paths containing disconnected cycles. It does this
the model. Bandera is intended to be used to construct co@irely at the level of the system of equations and inequalities,
pact models for a variety of finite-state verification tools. Othé&nd thus is only directly applicable in settings where paths in
techniques, such as the partial order methods usednn[&, graphs can be represented as solutions to systems of inequali-
avoid constructing or examining states that are not neededigs.
check a particular property. Symbolic model checkers, such as
SMV [9], check properties using operations on sets of states VI. ConcLusions aND FuTUuRE WoORK
which can be represented compactly by special data structuressome finite-state verification tools always provide a conclu-
As mentioned above, however, most of the questions we wWaife result on any problem they can analyze. A tool that walks a
to ask about concurrent computer systems are atMstard graph of the reachable states of a concurrent system will never
(e.g., [20-22]), and no approach will avoid the state explosiggport that the system might deadlock when in fact the system
problem completely. is deadlock-free (assuming, of course, that the graph correctly
INCA models executions of a computer system that violatepresents the reachable state space of the system). But such a
a particular property as solutions to a system of linear equaol must be able to store the full set of reachable states, and is
tions and inequalities and uses integer linear programming teglrable to report any results for a system whose reachable state
nigues to determine whether the system of inequalities has apyce exceeds the storage available. Other tools, such as INCA,
solutions. This model may overrepresent the set of actual @eliberately overestimate the collection of possible executions
ecutions, so that some solutions do not correspond to real ekthe system, and thus accept the possibility of inconclusive
ecutions of the program. Thus, if the system of equations afgkults (or spurious reports of the possible faults), in order to
inequalities has no solutions, no execution exists that violati@grease the range of systems to which they can be applied.
the property. If the system of equations and inequalities doesFor INCA, there are two main sources of imprecision in the
have solutions, however, there need not be any executions of igresentation of executions of the system. The first of these is
computer system that violate the property; the solutions may #pg: fact that semantic restrictions on the order of occurrence of
spurious. This approach does not need to explicitly represenents in diferent concurrent processes are generally not rep-
each state of the computer system and can take advantageesénted in the equations and inequalities used by INCA. The
techniques from linear algebra to improve the verification prgecond source of imprecision is the fact that the equations and
cess. inequalities allow solutions in which the flow in the FSA repre-
Several authors have applied ideas similar to those usedsenting a concurrent process may have cycles not connected to
INCA to systems modeled by Petri nets [23]. For example, Mthke initial state. In this paper, we have shown how imprecision
rata, Shenker, and Shatz [24] used integer programming methused by this second source may be eliminated. Although our
ods to compute counts of transition firings that return a net method is aimed at improving the precision of INCA, it may
its original marking and then try to eliminate “spurious” countalso be relevant to other applications of integer programming
that do not correspond to real firing sequences. More recentiwolving flow networks.
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