
1

Improving the Precision of INCA by Eliminating
Solutions with Spurious Cycles

Stephen F. Siegel and George S. Avrunin

Abstract— The Inequality Necessary Condition Analyzer
(INCA) is a finite-state verification tool that has been able to check
properties of some very large concurrent systems. INCA checks
a property of a concurrent system by generating a system of in-
equalities that must have integer solutions if the property can be
violated. There may, however, be integer solutions to the inequali-
ties that do not correspond to an execution violating the property.
INCA thus accepts the possibility of an inconclusive result in ex-
change for greater tractability. We describe here a method for
eliminating one of the two main sources of these inconclusive re-
sults.

Index Terms— INCA, finite-state verification, cycles, integer
programming

I. I

Finite-state verification tools deduce properties of finite-state
models of computer systems. They can be used to check such
properties as freedom from deadlock, mutually exclusive use of
a resource, and eventual response to a request. If the model rep-
resents all the executions of a system (perhaps by making use
of some abstraction), a finite-state verification tool can take into
account all the executions of the system. Moreover, finite-state
verification tools can be applied at any stage of system develop-
ment at which an appropriate model can be constructed. Such
tools thus represent an important complement to testing, espe-
cially for concurrent systems where nondeterministic behavior
can lead to very different executions arising from the same input
data.

The main obstacle to finite-state verification of concurrent
systems is thestate explosion problem:the number of states a
concurrent system can reach is, in general, exponential in the
number of concurrent processes in the system. This problem
confronts the analyst immediately—even for small systems,
the number of reachable states can be large enough so that a
straightforward approach that examines each state is completely
intractable—and complexity results tell us that there is no way
to avoid it completely. Every method for finite-state verifica-
tion of concurrent systems must pay some price, in accuracy or
range of application, for practicality.

The Inequality Necessary Conditions Analyser (INCA) is a
finite-state verification tool that has been used to check proper-
ties of some systems with very large state spaces. The INCA
approach is to formulate a set of necessary conditions for the
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existence of an execution of the program that violates the prop-
erty. If the conditions are inconsistent, no execution can violate
the property. If the conditions are consistent, the analysis is
inconclusive; since the conditions are necessary but not suffi-
cient, it may still be the case that no execution of the program
can violate the property. INCA thus accepts the possibility of
an inconclusive result in exchange for greater tractability. There
are two main sources of inconclusive results. In this paper, we
show how one of these, caused by cycles in finite state automata
representing the components of the concurrent system, can be
eliminated at what seems to be only moderate cost.

In the next section, we describe the INCA approach. Sec-
tion III explains our technique for improving INCA’s precision,
and the fourth section presents some preliminary data on its ap-
plication. The fifth section discusses some related work, and
the final section summarizes the paper and discusses other is-
sues related to the precision of INCA.

II. INCA

A complete discussion of the INCA approach, along with a
careful analysis of its expressive power, is contained in [1]. In
this section, we will use a small (and quite contrived) example
to sketch the basic INCA approach and show how certain cycles
in the automata corresponding to the components of a concur-
rent system can lead to imprecision in the INCA analysis. We
refer readers who want more detail to [1].

A. Basic Approach

The basic INCA approach is to regard a concurrent system
as a collection of communicating finite state automata (FSAs).
Transitions between states in these FSAs correspond to events
in an execution of the system. INCA treats each FSA as a net-
work with flow, and regards each occurrence of a transition
from states to statet, corresponding to an evente, as a unit
of flow from nodes to nodet. The sequence of transitions in a
particular FSA corresponding to events in a portion of an exe-
cution of the system thus represents a flow from one state of the
FSA to another.

To check a property of a concurrent system using INCA, an
analyst specifies the ways that an execution might violate the
property in terms of a sequence of intervals, or segments, of an
execution. Consider a system in which eventa can occur re-
peatedly and eventb can occur at most once. Suppose that an
analyst wants to show that an occurrence of eventb can never
be preceded by an occurrence of eventa in any execution of the
system. A violation of this property is an execution in which
a occurs and thenb occurs. In INCA this could be specified
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package simple is
task t1 is task t2 is
entry a; end t2;
entry b;
entry c; task t3 is

end t1; end t3;
end simple;

package body simple is
task body t1 is task body t2 is
begin begin
accept c; t1.c;
loop loop
select t1.a;
accept a; end loop;
loop end t2;
select
accept a;

or
accept c;
exit; task body t3 is

end select; begin
end loop; t1.b;

or end t3;
accept b;
loop
accept a;

end loop;
end select;

end loop;
end t1;

end simple;

Fig. 1. A small example

as a single interval running from the start of the execution until
the occurrence ofb, with the requirement that ana occur some-
where in the interval. (It could also be specified as a sequence
of two intervals, the first running from the start of the execution
until an occurrence ofa, and the second starting immediately
after the first and ending withb. The first type of specification
is generally more efficient, but the second type may provide ad-
ditional precision in some cases. This issue is discussed in more
detail below.) INCA provides a query language allowing the
analyst to specify various aspects of the intervals of execution.
Standard INCA queries for a variety of common types of re-
quirements are given at the Specification Patterns web site [2,3].

By generating the equations describing flow within each FSA
(requiring that the flow into a node equal the flow out) accord-
ing to the specified sequence of intervals of a system execution,
and adding equations and inequalities relating certain transi-
tions in different FSAs according to the semantics of communi-
cation in the system, INCA produces a system of equations and
inequalities. Any execution that satisfies the analyst’s specifi-
cation (and therefore violates the property being checked) cor-
responds to an integer solution of this system of equations and
inequalities. INCA then uses standard integer linear program-
ming (ILP) methods to determine whether there is an integer
solution. If no integer solution exists, no execution can violate
the property, and the property holds for all executions of the
concurrent system. If there is an integer solution, however, we
do not know that the property can be violated. The system of
equations and inequalities represents onlynecessaryconditions
for the existence of an execution violating the property, and it
is possible for a solution to exist that does not correspond to a
real execution.

To see more concretely how this works, consider the Ada
program shown in Figure 1. This program describes three con-
current processes (tasks). Taskt1 starts with a rendezvous with
taskt2 at the entryc. It then enters a loop. At the select state-
ment,t1 nondeterministically chooses to rendezvous witht2
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Fig. 2. FSAs for example

at entrya or with t3 at entryb, if both are ready to communi-
cate at the appropriate entries. Ift1 accepts a communication
from t2 at entrya, it then enters a loop in which it accepts ren-
dezvous at entrya until it accepts one at entryc. If t1 instead
accepts a communication fromt3 at entryb, it then tries forever
to repeatedly rendezvous witht2 at entrya. Taskt2 begins by
calling entryc, and then enters a loop in which it calls entrya.
Taskt3 simply calls entryb once and then exits.

Figure 2 shows the FSAs constructed by INCA for this pro-
gram. The states and transitions are numbered for reference.
Each transition in this example represents the occurrence of a
rendezvous between two tasks; in the figure, each transition is
labeled with the entry at which the corresponding rendezvous
takes place. (For this example, it is sufficient to label the transi-
tions by the entry name. In practice, INCA identifies transitions
representing rendezvous with the names of the calling and ac-
cepting tasks, the entry called, and the values of any parameters
passed in the rendezvous. Note that we do not need to distin-
guish here between the “call” and the “accept”; we view the
transition as representing the actual rendezvous involving both
tasks. As will be seen below, INCA ensures the number of oc-
currences of transitions representing a given rendezvous is the
same in the two tasks participating in that rendezvous.)

Suppose that we wish to check that an occurrence of a ren-
dezvous at entryb cannot be preceded by a rendezvous at entry
a. As described earlier, we may specify the violation as an inter-
val of an execution running from the start of execution until the
occurrence of a rendezvous atb and containing a rendezvous at
a. The flow equations for each task will then describe the pos-
sible flows from the initial state of the task to one of the states
in which that task could be at the end of the interval.

Since the interval ends with a rendezvous at entryb, repre-
sented by the transition numbered 2 in the FSA corresponding
to taskt1 and the transition numbered 9 in the FSA correspond-
ing to taskt3, we know that the FSAt1 must be in state 3 and
the FSAt3 must be in state 8 at the end of the interval. Our
flow equations fort1 therefore describe flow starting in state 1
and ending in state 3, while the flow equations fort3 describe
flow starting in state 7 and ending in state 8. Fort2, the fact
that a rendezvous ata occurs in the interval implies that that
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FSA must be in state 6 at the end of the interval, so the flow
equations fort2 describe flow from state 5 to state 6.

To produce these flow equations, letxi be a variable measur-
ing the flow along the transition numberedi. At each state, we
generate an equation setting the flow in equal to the flow out.
We must, however, take into account the implicit flow of 1 into
the initial state of each FSA and the implicit flow of 1 out of the
end state of the flow. Thus, for example, the equation for state
1 is

1 = x1 (1)

since the flow in is 1 because state 1 is the initial state and the
only flow out is on transition 1. Similarly, the equation for state
8 is

x9 = 1 (2)

since the only flow in is on transition 9 and there is implicit flow
out of 1 since the flow in this FSA ends in state 8.

To complete the system of equations and inequalities, we
must add equations to reflect the fact that the two tasks par-
ticipating in a rendezvous must agree on the number of times it
occurs. For instance, we need the equation

x3 + x4 + x5 = x8 (3)

saying that the number of occurrences of the rendezvous at en-
try a in the FSA fort1 is the same as in the FSA fort2. We
also need an inequality to express the requirement that there is
at least one occurrence of a rendezvous ata. We use

x8 ≥ 1 (4)

to state this. The full system of equations and inequalities used
to check the property that a rendezvous at entryb cannot be pre-
ceded by a rendezvous at entrya is shown in Figure 3. (The de-
scription here is actually somewhat oversimplified; INCA per-
forms several optimizations to reduce the size of the system
of inequalities and the real system of inequalities produced by
INCA would be smaller. For example, INCA would observe
that there cannot be flow along transition 3 in a violating execu-
tion (because the interval of execution must end with transition
2), and would eliminate the variablex3 from the system. It
would also do a form of constant propagation to eliminate other
variables and equations.)

Essentially all research on finite-state verification tools can
be viewed as aimed at ameliorating the state explosion prob-
lem for some interesting systems and properties. The approach
taken by INCA avoids enumerating the reachable states of the
system. The size of the system of equations and inequalities
is essentially linear in the number of processes in the system
(assuming the size of each process is bounded). Furthermore,
the use of properly chosen cost functions in solving the prob-
lems can guide the search for a solution. ILP is itself anNP-
hard problem in general, and the standard techniques for solv-
ing ILP problems (branch-and-bound methods) are potentially
exponential. In practice, however, the ILP problems generated
from concurrent systems have large totally unimodular sub-
problems and seem particularly easy to solve. Experience sug-
gests that the time to solve these problems grows approximately

Flow Equations:
State Equation

1 1= x1

2 x1 + x6 = x2 + x4

3 x2 + x3 = x3 + 1
4 x4 + x5 = x5 + x6

5 1= x7

6 x7 + x8 = x8 + 1
7 1= x9

8 x9 = 1

Communication Equations:
Entry Equation
a x3 + x4 + x5 = x8

b x2 = x9

c x1 + x6 = x7

Requirement Inequality:
a occurs x8 ≥ 1

Fig. 3. System of equations and inequalities for example

quadratically with the size of the system of inequalities (and
thus with the number of processes in the system).

Comparisons of this approach [4–7] with other finite-state
verification methods show that the performance of each method
varies considerably with the system and property being verified,
but that INCA frequently performs as well as, or better than,
such tools as S [8] and SMV [9]. The INCA approach has
also been extended to check timing properties of real-time sys-
tems [10, 11] and to prove trace equivalence of certain classes
of systems [12].

B. Sources of Imprecision

The systems of equations and inequalities generated by
INCA represent necessary conditions for there to be a viola-
tion of the property being verified. As noted earlier, however,
these conditions are not, in general, sufficient to guarantee that
the property can actually be violated. A solution of the sys-
tem of equations and inequalities may not correspond to a real
execution.

There are two main reasons for this. The first has to do with
the order in which events occur. Strictly speaking, the equa-
tions and inequalities generated by INCA refer only to the total
number of occurrences of the various events in each interval of
the execution, and do not directly impose restrictions on the or-
der in which those events occur within the interval. In fact, the
flow equations for a single FSA typically imply fairly strong
conditions on order, but the communication equations relating
the occurrence of events in different FSAs do not impose strong
restrictions on the order of occurrence of events from differ-
ent processes. To see why, consider a system comprising two
processes. The first process begins by trying to communicate
with the second process on channelA and then, after complet-
ing that communication, tries to communicate with the second
process on channelB. The second process tries to complete
the communications in the reverse order. This system will ob-
viously deadlock, but the equations generated by INCA would
say only that the number of communications on each channel
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Fig. 4. Solution with disconnected cycle

in the first process is equal to the number in the second pro-
cess, allowing a solution in which each communication occurs.
(This is again a slight over-simplification. INCA would actu-
ally detect the deadlock in this case, but not in more compli-
cated examples with several processes.) The only mechanism
INCA provides for directly constraining the order of events in
different processes is the use of additional intervals of the exe-
cution. While this is often enough to eliminate solutions that do
not correspond to real executions of the system, it is expensive
and restricts the range of application of INCA. We will return
to this point later.

The second source of imprecision is the existence of cycles in
the FSAs. Consider the flow equation for state 3 that is shown
in Figure 3. Transition 3 is a self-loop at state 3, and flow along
that transition counts both as flow into state 3 and out of state
3. The equationx2 + x3 = x3 + 1 does not constrain the vari-
ablex3 at all; we can simply cancel thex3 terms. Similarly, the
variablesx5 and x8 are not constrained by the flow equations
in which they appear. These variables are constrained only by
the communication equation that saysx2 + x3 + x5 = x8. Since
three of these variables are otherwise unconstrained, this equa-
tion does not restrict the solution set.

In fact, although the system of Figure 1 has no execution in
which a prefix ending with a rendezvous at entryb contains
a rendezvous at entrya, there is a solution to the system of
equations and inequalities shown in Figure 3 withx1, x2, x5, x7,
x8, andx9 all equal to 1, andx3, x4, andx6 all equal to 0. In this
solution, the requirement that the number of rendezvous ata be
at least 1 is met by setting the unconstrained variablesx5 and
x8 to 1. Figure 4 shows the FSAs with the transitions having
flow indicated by bold arcs. The flow in the FSA fort1 has two
connected components, one from the initial state to state 3, as
expected, and one made up of flow in the cycle at state 4, not
connected to the flow from state 1 to state 3. It is obvious that
the flow in each FSA corresponding to an actual execution must
be connected, so this is a spurious solution, one that does not
correspond to a real execution.

This example illustrates the problem but is not of much in-
dependent interest. The same problem, however, occurs with
some frequency in the analysis of more interesting systems.

For instance, in our recent analysis [4] of the Chiron user in-
terface development system, we encountered solutions with
disconnected cycles in trying to verify 2 of the 10 proper-
ties we checked. In those cases, we were able to verify the
high-level requirements by reformulating the properties being
checked. We subdivided some intervals to force events in dif-
ferent parts of the spurious cycles to occur in different intervals,
verified other properties that allowed us to eliminate some solu-
tions, or chose other events to represent the high-level require-
ment. These modifications, however, represent a considerable
expense in increased analyst effort and verification time, and
made the properties being checked harder to understand and
validate in terms of the high-level requirements. In the next
section, we describe a technique for eliminating these solutions
with more than one component of flow in an FSA.

III. E S C

A. A Straightforward Approach

A related problem is well known in the optimization liter-
ature. When formulating the Traveling Salesman Problem as
an integer programming problem, it is essential to ensure that
the solution represents a single tour visiting all the cities, rather
than a collection of disconnected subtours each visiting a proper
subset of the cities. A standard approach for eliminating so-
lutions with disconnected subtours is to add inequalities that
prevent the solution from visiting cities in a subsetU unless
the solution includes an arc from a city not inU to one inU.
Thus, if the variablexi, j is 1 if the solution represents a tour in
which the salesman goes directly from cityi to city j, and 0
otherwise, the standard formulation of the Traveling Salesman
problem would include, for eachj, the inequality∑

i

xi, j = 1 (5)

to enforce the requirement that each city is entered and left ex-
actly once. To eliminate the possibility of a subtour in the subset
U we would add the inequality∑

i<U, j∈U

xi, j ≥ 1, (6)

which requires that the salesman travel from a city outsideU to
a city inU. (Of course, we need an inequality like (6) for every
subsetU of size at least 2 and at mostN − 2, whereN is the
number of cities.)

In our case, to prevent a solution in which there is flow in a
disconnected cycleC, we can add an inequality requiring that,
when there is flow inC, there must be flow enteringC from
outside. This is a little more complicated than the situation for
the Traveling Salesman Problem. In that case, we know by (5)
that the the solution must enter each city exactly once. In our
case, we do not want to require flow into one of the states mak-
ing upC unlessthere is flow along one of the transitions inC.
For instance, we only want to require flow on transition 4 in
our example when there is flow on transition 5. To do this in
general, we would need a quadratic inequality such as

x4x5 ≥ x5. (7)
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Integer quadratic programming is, however, much harder than
integer linear programming and we would like to avoid intro-
ducing quadratic inequalities. The standard technique is to im-
pose an upper boundB on all the variables (i.e., to assume
that no transition occurs more thanB times), and to replace the
quadratic inequality (7) with the linear inequality

x5 − Bx4 ≤ 0. (8)

The integer solutions of (7) havingx4, x5 ≤ B are exactly the
same as those of (8). (We note that imposing an upper bound on
all the variables would mean that INCA’s analysis is no longer
strictly conservative. If the system of inequalities has no solu-
tions with thexi all less than or equal toB, we only know that
no execution on which each transition occurs at mostB times
can violate the property. SinceB can be taken to be quite large,
such as 10,000 or 100,000, this restriction is unlikely to be a
serious one in practice.)

The problem with these approaches is that they may require
too many extra inequalities. The number of subtours that have
to be eliminated in the Traveling Salesman Problem is essen-
tially the number of subsets of the set of cities and is clearly
exponential in the number of cities. Similarly, the number of
cycles in an FSA can be essentially equal to the number of sub-
sets of its set of states. We have constructed a small concurrent
Ada program with only 90 lines of code in which the FSA for
one task has only 42 states but has 1,160,290,624 distinct sub-
sets of states each forming at least one cycle. An integer pro-
gramming problem with that many inequalities is completely
intractable. A better method is required.

B. A More Practical Method

In this section, we describe a method for preventing spuri-
ous cycles for which the number of additional variables and
inequalities is linear in the size of the program being analyzed.

The basic idea is as follows. Suppose we have a solution
to the system of equations and inequalities originally generated
by INCA. For each FSA, the solution determines a subgraphG′

consisting of the edges with positive flow and the vertices with
flow in or out. If G′ is not connected, i.e., if some vertex is
not reachable from the initial vertex, the solution must involve
a spurious cycle in that FSA. To show thatG′ is connected, it is
sufficient to construct a subgraph ofG′ having the same vertex
set asG′ and such that(i) if there is flow along any edge into a
vertexv in the solution, some edge terminating inv and having
positive flow in the solution must occur in the subgraph, and(ii)
each vertexv of the subgraph can be assigned a “depth”dv in
such a way that the depth of a given vertex is greater than that of
any of its predecessors in the subgraph. The second condition
makes the subgraph acyclic, and then the first condition ensures
that each vertex with incoming flow in the solution has an in-
coming edge in the subgraph and is therefore reachable from
the initial vertex.

If the original solution has no disconnected cycles, we can
choose for our subgraph a spanning tree for the edges with flow
and take the depth of a vertex to be the distance from the root
of the tree to the vertex. If the solution has a disconnected cycle
C, however, we cannot construct such a subgraph. To see why,

suppose we could construct the subgraph, and letv be a vertex
in C for whichdv ≤ du for all u ∈ C. Since there is flow intov in
the solution,v must have some predecessoru in the subgraph.
Since the cycleC is disconnected from the flow starting at the
initial state of the FSA, the stateumust also lie inC. But if u is a
predecessor ofv in the subgraph, we havedv > du, contradicting
the minimality ofdv onC.

Of course, we do not want to consider the possible solutions
to the system of equations and inequalities generated by INCA
one at a time, attempting to construct the subgraph separately
for each solution. Instead, we add new variables and inequali-
ties, leading to an augmented system of equations and inequal-
ities whose integer solutions correspond exactly to the integer
solutions of the original system for which the appropriate sub-
graph can be constructed.

1) The Flowgraph: In general, a query can specify more
than one interval, so the situation is slightly more complicated
than that illustrated in our example. In the general case, INCA
constructs aflowgraphas follows. First, it creates one copy of
each FSA for each interval specified in the query. The FSAs for
each interval can then be optimized independently, removing
unnecessary states or transitions based on the restrictions im-
posed for that interval in the query. As discussed in Section II-
A, INCA can analyze the query to determine the possible states
in which each FSA could be at the end of the interval. Given
such a state in an FSA for a task in an interval (other than the
last one), INCA adds a “connect” edge to the corresponding
state in the FSA for that task in the next interval. These edges,
which do not correspond to events in the execution of the sys-
tem, allow flow to pass from one interval to the next. INCA
adds an initial vertex,vI , with connect edges to the initial states
of the FSAs in the first interval, and a final vertex,vF with in-
coming connect edges from each of the possible end states of
FSAs in the final interval. This flowgraph is the structure that
INCA actually uses to generate the system of equations and in-
equalities. Note that several different edges in this graph may
correspond to a single edge in an FSA, representing flow along
that edge in different intervals.

Figure 5 shows the flowgraph generated from the system of
Figure 2 for a query with two intervals that describes execu-
tions on which a rendezvous ata occurs before the rendezvous
at b does. (This is the two-interval version of the query used
to check the property that ab can never be preceded by ana,
as described in Section II-A.) The query specifies that the first
interval ends as soon as ana occurs and contains nob. The sec-
ond interval ends as soon as theb occurs. The connect edges
are shown with dashed lines. The vertices (other than the ini-
tial and final ones) and edges are labeled the same way as the
corresponding vertices and edges in Figure 2. Since the first
interval ends with the firsta and does not allow ab, INCA can
determine that the last event in taskt1 in the first interval must
be the transition on edge 4 from state 2 to state 4, and the last
event in taskt2must be the transition on edge 8 from state 6 to
itself. Because nob is allowed in the first interval, INCA can
prune edges 2 and 3 from the FSA fort1 and edge 9 from the
FSA fort3 in the first interval.

INCA associates a variablexe to each edgee, and generates
flow equations as follows. For each vertex other than the ini-
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Fig. 5. Flowgraph for example with two-interval query

tial or final vertices, INCA generates the equationflow-in =
flow-out, whereflow-in is the sum of the variables associated
with edges entering the vertex andflow-out is the sum of the
variables associated with edges leaving the vertex. For each
task, INCA generates an equation setting the flow from the ini-
tial node to the start node of that task equal to one, and an equa-
tion setting the sum of the flow along edges from nodes of that
task to the final node equal to one. Communication equations of
the type described in Section II-A are generated for each inter-
val to ensure that the communicating tasks agree on the number
of communications that occur in each interval, and additional
constraints are added to reflect additional requirements or re-
strictions imposed by the query on the possible events occurring
in the different intervals. (The fact that the different edges in the
flowgraph, representing flow in different intervals, correspond
to the same transition in an FSA representing a task makes it
possible to require an event to occur in one interval and forbid
it in another.)

2) The Augmented System of Inequalities:We now describe
precisely the procedure for generating the augmented system
of equations and inequalities that eliminates solutions with dis-
connected cycles.

We will say that anILP problemP is a set of integer vari-
ables with upper and lower bounds specified for each variable,
together with a set of linear equations and inequalities in those
variables such that the all the coefficients are integers. (The

bounds on a variable may be taken to be infinite.) Asolution
to an ILP problemP is an assignment of integers to the vari-
ables such that the value of each variable lies between its upper
and lower bounds and all the equations and inequalities are sat-
isfied. (In standard usage, an ILP problem would also include
a linear function of the variables and the task is to find a so-
lution that maximizes or minimizes this objective function. In
our case, we are primarily interested only in thefeasibilityof the
ILP problem, that is, whether or not there are any solutions, and
in this paper we can ignore the objective function. In applying
INCA, we use the objective function to improve performance
when there are solutions to the ILP problem.)

Let G be a directed graph with a specified initial vertexvI

and a specified final vertexvF such thatvI has no incoming
edges andvF has no outgoing edges. LetP be an ILP problem
containing(i) a variablexe with lower bound of 0 for each edge
e in G, and(ii) the flow equationflow-in = flow-out for each
vertex inG other thanvI and vF . (P may contain additional
variables and constraints, we are just requiring that it contain at
least these.)

Given a solution toP, we say that an edgee has flowif xe >
0, and we say that a vertexv has flowif some edge entering or
leavingv has flow. By theflow subgraph of G corresponding
to the solution, we mean the subgraphG′ of G consisting of all
the vertices and edges with flow. We say that the solution is
connected with respect to Gif G′ is connected, that is, if every
vertex inG′ is reachable from the initial vertexvI . We may
suppress the qualification “with respect toG” if the graphG is
clear from context.

The idea, as described at the beginning of Section III-B, is
to construct a subgraph ofG′ having the same set of vertices
asG′, but possibly fewer edges. We require that(i) for each
vertexv , vI of G′, some edge ofG′ enteringv must be in the
subgraph; and(ii) each vertexv can be assigned a “depth”dv in
such a way that the depth of a given vertex is greater than the
depth of any of its predecessors in the subgraph. Our goal is
to describe an augmented ILP problemP′ such that a solution
of P can be extended to a solution ofP′ if and only if its flow
subgraphG′ has a subgraph satisfying conditions(i) and(ii) .

For each edgee in G, we introduce a new variablese with
bounds

0 ≤ se ≤ 1. (9)

(Note that the imposition of an upper or lower bound on a vari-
able can of course be thought of as adding an inequality, but is
usually handled somewhat differently by ILP packages. In this
discussion, we will separate the imposition of bounds from the
introduction of new inequalities.) This variable will be 1 if the
corresponding edge is in the subgraph, and 0 otherwise.

For each vertexv in G, we introduce a new variabledv with
bounds

0 ≤ dv ≤ N, (10)

whereN is some integer which is at least the maximum length
of any non-self-intersecting path through the graph. For in-
stance,N can be taken to be the number of vertices inG. The
variabledv will be the depth ofv.

We then generate inequalities involving these new variables.
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For each edgee: u→ v, we generate the inequalities

xe ≥ se (11)

dv ≥ du + (N + 1)se − N. (12)

The first inequality says thatse must be 0 ifxe is 0, so that the
corresponding edge can be in the subgraph only if the solution
has positive flow along that edge. The second inequality re-
quires thatdv be greater thandu if the edge fromu to v is in the
subgraph. If the edge is not in the subgraph (i.e., ifse is 0), the
inequality readsdv ≥ du−N, and the bounds ondv anddu make
that vacuous.

Finally, letBbe a fixed positive integer, and impose the upper
boundxe ≤ B for eache. (As noted earlier,B can be taken to be
quite large.) For each vertexv of G, other than the initial vertex,
we generate the inequality

B|In(v)|
∑

e∈In(v)

se ≥
∑

e∈In(v)

xe, (13)

where In(v) denotes the set of edges enteringv. By imposing
the upper bound ofB on thexe, we see that (13) will hold if
xe = 0 for all e ∈ In(v) or if se = 1 for at least one suche. This
is how we enforce the requirement that each vertex with flow
has some incoming edge in the subgraph ofG′.

We have addedV+E new bounded variables andV+ 2E− 1
new constraints, whereV is the number of vertices in the graph
andE is the number of edges. LetP′ be the ILP problem ob-
tained fromP andG by adding the variables and inequalities in
this fashion. We have the following theorem.

Theorem. Let G, P, andP′ be as above. A solution ofP′

assigns values to all the variables inP as well as additional
variables; we thus obtain a solution toP from a solution toP′

by projection. The set of connected solutions ofP with each
xe ≤ B is exactly equal to the set of projections of solutions of
P′.

Proof: There are two things we must show. First, we must
show that, given any connected solution toP with all xe ≤ B,
there are values that can be assigned to the new variables to give
a solution toP′. Second, we must prove that the projection of
any solution forP′ is a connected solution forP. We tackle
these in order.

Suppose we are given a connected solution forP. Then in
the flow-subgraphG′, every vertex is reachable from the initial
vertexvI . SoG′ has a spanning treeT rooted atvI , i.e.,T is a
subgraph ofG′ that is a tree with rootvI and that contains all
the vertices ofG′. For each edgee in G, let

se =

1 if e is in T

0 otherwise.

For each vertexv in G′, letdv be the depth ofv in T. For vertices
v not inG′, dv may be assigned any value between its bounds.

We claim this is a solution forP′. Indeed, inequality (11) fol-
lows from the fact thatT ⊆ G′. To see that (12) holds, suppose
we are given an edgee: u → v. If e is in T, thendv = du + 1,
and (12) reduces to the statementdv ≥ du + 1, which certainly
holds. On the other hand, ife is not in T, then (12) becomes

dv ≥ du−N, which must hold becausedv ≥ 0 anddu ≤ N. Now
consider a vertexv , vI in G. If v does not have flow then (13)
holds trivially as its right hand side is 0. Ifv does have flow,
then it is inT, and thereforese = 1 for some edgee occurring
in the sum. So the left hand side of (13) is at least|In(v)|B. On
the other hand, there are|In(v)| terms in the sum on the right
hand side and eachxe ≤ B, so∑

e

xe ≤ |In(v)|B,

and (13) holds in this case as well.
Now suppose we are given any solution toP′. We wish to

show that the projection of this solution is connected. LetG′ be
the flow subgraph for the projected solution. LetU be the set of
vertices inG′ that are not reachable inG′ from the initial vertex.
To say that the solution is connected is equivalent to saying that
U is empty. So supposeU is not empty, and letv be a vertex
in U for which dv ≤ dw for all w in U. Sincev has flow and
v is not the initial vertex,v has incoming flow (either because
v = vF or by the flow equation forv). This implies that the right
hand side of (13) is at least 1, so for some edgee: u → v we
havese = 1. Now (11) impliesxe ≥ 1. Sinceu has flow out to
v, if u were reachable fromvI , v would also be reachable. But
v ∈ U is not reachable, so we must haveu ∈ U as well. Now
(12) implies

dv ≥ du + 1,

which contradicts the minimality ofdv.
3) Local Application of Cycle Elimination: For systems

generated by INCA, it is often not necessary to apply the cy-
cle elimination algorithm over the entire flowgraph. One reason
for this is the following. As there are no edges from vertices of
one interval to vertices of a previous interval, any cycle must
be contained in a single interval of the flowgraph. Furthermore,
as there are no edges from vertices of one task to vertices of
another task, a cycle must be contained within a single task of
a single interval. Experience has shown us that, as far as cycles
are concerned, these task-interval “sectors” of the flowgraph of-
ten behave independently: existence of spurious cycles in one
sector usually has no bearing on the existence of spurious cycles
in another sector.

Although some of the preliminary experiments described be-
low suggest that the expense of applying our cycle elimination
algorithm routinely may not be excessive, we expect that it will
often be applied only when an attempt to verify a property with-
out using cycle elimination has produced a solution with spuri-
ous cycles. So, once a spurious cycle has been encountered this
way, it would be useful if there were a way to generate cycle
elimination constraints for only the relevant sector of the flow-
graph, and therefore save on the number of new constraints and
variables generated—and probably analysis time and memory
as well.

In fact this requires only a slight modification of the algo-
rithm. Suppose we are given a graphG and an ILP problemP
as in Section III-B.2. LetV′ be a subset of the vertices ofG not
containing the initial or final vertices. We say that a solution to
P is V′-connected with respect to Gif, in the flow subgraphG′

corresponding to that solution, every vertex inV′ is reachable
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from some vertex outsideV′. (A solution has a spurious cycle
entirely contained inV′ if and only if it is not V′-connected.)
Suppose that we want to eliminate solutions toP that are not
V′-connected. We construct a new graph from the vertices inV′

and the edges ofG entering or leaving those vertices, and apply
the augmentation algorithm described above to that graph. This
produces a set of new variables and constraints. Adding those
to P and imposing the upper bound ofB on thexe, we get an
augmented system whose solutions project to the solutions of
P having no disconnected cycles contained inV′.

Let G1 be the subgraph ofG obtained by first deleting all
edges that do not enter or leave a vertex inV′, and then deleting
all vertices outside ofV′ with no incoming or outgoing edges.
The subgraphG1 contains all the vertices inV′ and all the ver-
tices with an edge to or from a vertex inV′, and all the edges of
G that enter or leave vertices inV′.

We add a new initial vertexwI and a final vertexwF to G1.
For any edgee: u → v in G1 from a vertexu not in V′ to a
vertexv in V′, we replaceeby a new edgee′ : wI → v. For any
edge f : v → w from a vertexv in V′ to a vertexw not in V′,
we replacef by a new edgef ′ : v → wF . We then remove all
vertices other thanwI , wF , and those inV′. Let Ĝ be this new
graph. (Another way to think of this process is the following.
Let U be the set of verticesu of G1 that do not belong toV′

but have an outgoing edge to a vertex inV′. Let W be the set
of vertices ofG1 that do not belong toV′ but have an incoming
edge from a vertex inV′. The graphĜ is obtained fromG1 by
collapsing each of the setsU andW to a single vertex.)

Corollary. Given G andP as in Section III-B.2, and a subset
V′ of the vertices of V not containing vI or vF , defineĜ as
above. LetP̂ be the augmented system obtained by applying
the algorithm of Section III-B.2 tôG andP. Then the set of
solutions ofP that are V′-connected and have all xe ≤ B is
exactly equal to the set of projections of solutions ofP̂.

Proof: The graphĜ and the systemP satisfy the hypothe-
ses of the Theorem of Section III-B.2. Moreover, the solutions
of P that are connected with respect toĜ are exactly the solu-
tions that areV′-connected with respect toG.

IV. P E

The current version of INCA consists of about 12,000 lines
of Common Lisp. INCA writes out a file describing the ILP
problem in a standard format (the MPS format), and we use a
commercial package called CPLEX to read this file and solve
the system. (We also use a separate program to translate Ada
programs into the native input language of INCA). The opti-
mizations INCA uses to reduce the number of variables and in-
equalities make the introduction of new variables and inequal-
ities somewhat complicated, and integrating our method into
INCA will involve a substantial programming effort. For our
initial exploration of the effect of applying our method, we have
therefore chosen to proceed by modifying the MPS file pro-
duced by INCA. We have written a Java program that reads this
file, and another file describing the flowgraph, and produces
a new MPS file representing the augmented system of equa-
tions and inequalities. We can then compare the performance
of CPLEX on the original system and the augmented system.

We are not as interested in the time it takes to run the Java pro-
gram because the algorithm which this program implements is
very simple and is clearly linear in the number of nodes and
edges in the graph used for cycle elimination. The algorithms
used for solving ILP problems, on the other hand, are extremely
complex and we have no theoretical way of estimating the time
it takes to solve the ILP systems we produce. If there is a practi-
cal barrier to our cycle elimination technique, it will arise from
solving the ILP systems, not from generating them.

In any case, the times for the Java program ranged from 1 to
22 seconds for the example in Section A, 2 to 14 seconds for
Section B, 2 to 28 seconds for Section C, and 1 to 2 seconds
for Section D. The CPLEX times will be given in more detail
below.

For these experiments, we used INCA version 3.4, Harlequin
Lispworks 4.1.0, Java 2 SDK 1.3.0, and CPLEX version 7.0 on
a Sun Enterprise 3500 with two 336 MHz processors and 2 GB
of memory, running Solaris 2.8. The upper boundB represent-
ing the maximum number of times an edge may be traversed
in a violating execution was taken to be 10,000. We used the
default options on CPLEX, except for the following changes:
MIP EMPHASIS was set to 1, MIP LIMITS TREEMEMORY
to 2000, and MIP LIMITS SOLUTIONS to 1. (The first option
affects choices made in the branch-and-bound algorithm, the
second controls the storage of branch-and-bound nodes, and the
third stops the search as soon as an integer solution is found.)
For each ILP problem, we ran CPLEX five times and took the
average time. The times reported here were collected using the
timex command, and include both user and system time.

A. A Scalable Version of the Example from Section 2

For the first experiment, we created a scalable version of the
simple example described in Section II-A. Given an integer
n ≥ 2, we modified the Ada program in Figure 1 to haven
copies of taskt2 and to haven + 1 alternatives in the select
statement. Each of the new copies of taskt2 calls the same
entries int1. (In detail, we replaced taskt2 with n copies of
itself, calling thesetc1,. . . ,tcn. In the body oft1, we replaced
the firstaccept c line with n copies of itself and replaced the
body of text beginning with the firstaccept a and ending with
the lastor with n copies of itself.)

As before, we wish to verify that one cannot have the ren-
dezvous at entryb preceded by a rendezvous at entrya. Using
the standard 1-interval query, for eachn, INCA finds a spurious
solution involving a disconnected cycle int1. After applying
our cycle elimination algorithm to the sector of the flowgraph
involving t1, we get an ILP problem that CPLEX reports has
no integer solutions, thus verifying the property.

There is another way to get around the cycle problem in this
case. As we mentioned in Section II-A, one can express the
query using two intervals: the first interval begins with the start
of execution, ends with ana, and does not contain ab, and the
second interval ends with ab. Because of the trimming that
INCA performs on each interval of the flowgraph, the oppor-
tunity for a spurious cycle is removed. So using this 2-interval
version of the query, we were also able to verify the property.

At this point we are considering three distinct families of ILP
systems:
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Fig. 6. CPLEX times for scaled simple example

• P1(n): the system produced by INCA for the single-
interval query (which has a spurious solution, so the anal-
ysis is inconclusive),

• P2(n): the system produced by INCA for the two-interval
query (which is inconsistent, so the property is verified),
and

• P3(n): the system obtained by applying cycle elimination
to P1(n) (which is also inconsistent and verifies the prop-
erty).

For n ≥ 3, the number of variables inP1(n) is 4n2 + 2n, and
the number of constraints (equations and inequalities) is 4n+2.
The graphĜ used for cycle elimination has 2n+ 4 vertices and
4n2 + 3 edges; hence the algorithm adds 4n2 + 2n+ 7 variables
and 8n2 + 2n+ 9 constraints to produceP3(n).

The number of variables in systemP2(n) is 5n2 + 7n and the
number of constraints is 11n + 3 (for n ≥ 2). Hence in size
P2(n) falls betweenP1(n) andP3(n).

In Figure 6, we show the time it takes CPLEX to analyze
each of these systems, forn = 1, . . . ,40. All of these times are
very modest—under 15 seconds—and are in fact dwarfed by
the time it takes INCA to generate either ILP system. It is also
clear that for this problem, as far as CPLEX time is concerned,
using the 2-interval query is better than the single-interval query
plus cycle elimination. However, it took INCA approximately
3 hours to generateP1(40), and it took the Java program 23
seconds to apply the cycle elimination algorithm to produce
P3(40), whereas it took INCA approximately 10 hours to gen-
erateP2(40). So when total analysis time is taken into consid-
eration the cycle elimination technique wins hands down. Nev-
ertheless, it does seem that for largen, the substantial increase
in the number of constraints inP3(n) due to the large number
of edges in the FSA fort1, begins to have a significant impact
on the time to solve the ILP problem.

B. Spurious Cycles in Chiron

The second experiment involves the Chiron user interface
system [13]. A Chiron client comprises some abstract data
types to be depicted,artists that maintain mappings between
these ADTs and the visual objects appearing on the screen, and

runtime components that provide coordination. In particular,
certaineventsindicating changes in the state of the ADTs are
defined, and anADT Wrapper task notifies aDispatcher task
whenever an event occurs. TheDispatcher maintains an ar-
ray for each event that records which artists are interested in
being notified of that event. (Artists register and unregister for
an event to indicate their current interest in being notified.) Af-
ter receiving the event from theADT Wrapper, theDispatcher
then loops through the artists in the appropriate array and calls
an entry in each artist to notify it of the event. The Chiron
architecture is highly concurrent and even a toy Chiron inter-
face represents about 1000 lines of Ada code. In [4], we com-
pared the performance of several finite-state verification tools
(FLAVERS [14], INCA, SMV, and S) in checking a num-
ber of properties of a Chiron interface with two artists andn
different kinds of events, forn ranging from 2 to 70.

One of the properties we wish to verify about this system,
called Property 4 in [4], is that theDispatcher notifies the
artists of theright event. For example, if theDispatcher re-
ceives evente1 from theADT Wrapper, we wish to show that
it does not notify any artist of some other event instead. To
formulate this property as an INCA query takes 2 intervals.

We were in fact able to verify this property using INCA, but
only in systems where the number of kinds of events,n, is at
most 5. (FLAVERS and S were able to verify this prop-
erty up to at leastn = 40 andn = 36, respectively.) To scale
the problem further with INCA, we needed to decompose the
Dispatcher task into a subsystem. This entails creating a new
taskDispatch ei, for i = 1, . . . ,n, which maintains the array
for eventei. The Dispatcher task itself is left as an inter-
face which just passes register, unregister, and notification re-
quests on to the appropriateDispatch ei in a way such that
no additional concurrency is introduced. (If the internal com-
munications of the Dispatcher subsystem are hidden, the new
system is observationally equivalent to the original one.) This
decomposed system has the advantage that asn increases, the
size of eachDispatch ei FSA remains constant, although the
number of these tasks increases. In general this decomposition
greatly improves the performance of INCA. For example, we
were now able to verify several of the other properties in sizes
up to n = 70. But attempting to verify Property 4 with the
decomposed Dispatcher task gave an inconclusive result. The
problem is a disconnected cycle in the taskDispatch e1 in the
second interval.

In [4], we got around this problem by reformulating the prop-
erty using different events to represent the high-level require-
ment. This depended on the prior verification of other prop-
erties relating the events used in the original and new formu-
lations and was cumbersome and time-consuming. (Once the
property was reformulated, however, the performance of INCA
on this decomposed system was considerably better than that
of the other tools. Byn = 30 the INCA time was roughly an
order of magnitude better than the times for the other tools and
INCA could verify the property for much larger values ofn.
The differences in performance of the tools on this property,
for the two versions of the Chiron system, are typical of what
we observed on other properties. The implications of this are
discussed in [4].)
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Fig. 7. CPLEX times for Chiron Property 4

Using the cycle elimination algorithm described here, we
were able to verify the original property directly, without re-
formulating it, for 2 ≤ n ≤ 70. In this case, the number of
variables in the original ILP system (forn ≥ 3) is

(262n+ λ(n))/3,

whereλ(n) is 207, 395, or 301, according asn is congruent
modulo 3 to 0, 1, or 2, respectively. (This reflects the way we
chose to have artists register for events as we scaled the number
of events.) The number of constraints in the original system is

(137n+ κ(n))/3,

where similarly the value ofκ(n) is 213, 301, or 257. For eachn
the graphĜ constructed from theDispatch e1-interval 2 sec-
tor of the flowgraph has 23 vertices and 63 edges; hence the
algorithm adds 86 variables and 148 constraints. In this case,
eliminating spurious cycles adds a constant number of variables
and constraints asn increases. The CPLEX times for eachn,
for the original system for which CPLEX found a spurious so-
lution and the result of the analysis was inconclusive, and for
the augmented system for which the property was conclusively
verified, are given in Figure 7. Again, the times are all under 8
seconds and represent a small portion of the total analysis time.
(For n = 70, this was about 64 seconds.) As the figure shows,
there is essentially no cost in additional CPLEX time for cycle
elimination for this example.

C. The Cost of Unnecessarily Preventing Spurious Cycles

We also tried adding the cycle elimination variables and con-
straints to a system which already yielded a conclusive result.
This might yield insight into the marginal cost of having INCA
add cycle elimination by default for any problem.

For this experiment, we used another property from [4]. In
this case, we used Property 1b, which says that an artist never
unregisters for an event unless it is already registered for that
event. As in [4], we restricted ourselves to a single artist and
event. The resulting property requires 2 intervals for its for-
mulation as an INCA query. Using the decomposed dispatcher
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Fig. 8. CPLEX times for Chiron Property 1b

version of the client code, INCA verified this property without
any need for cycle elimination, forn ≤ 70. The number of
variables in the INCA-generated ILP system (forn ≥ 3) is

100n+ α(n),

whereα(n) is 77, 146, or 107 according asn is congruent mod-
ulo 3 to 0, 1, or 2, respectively. The number of constraints is

51n+ β(n),

where similarlyβ(n) is 69, 96, or 81.
We then applied the cycle elimination algorithm to the entire

flowgraph, which consists of 2 intervals ofn+ 6 tasks each. (In
the experiment discussed in the previous section, we only ap-
plied the algorithm to a single task-interval sector of the flow-
graph.) The flowgraph has

(124+ γ(n))/3

vertices, whereγ(n) is 204, 272, or 238, and

111n+ δ(n)

edges, whereδ(n) is 116, 187, or 148. Hence cycle elimination
adds

(457n+ µ(n))/3

new variables to the system, whereµ(n) is 552, 833, or 682, and
adds

(790n+ ν(n))/3

new constraints, whereν(n) is 897, 1391, or 1123. The times
required by CPLEX to find the conclusive result in each case
are graphed in Figure 8.

Although the ILP systems in the augmented case are quite
large (18,087 variables and 22,563 constraints forn = 70) for
the largern, it still appears that CPLEX can determine the in-
consistency of the system in a very short time (less than 3 sec-
onds). For this example, the real cost in introducing cycle elim-
ination in INCA lies in generating the new ILP system, not in
solving it. (Forn = 70, our Java program took about 28 seconds
to generate the augmented ILP problem that eliminates cycles.)
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D. An Example with Many Cycles

For eachn ≥ 2 we describe a concurrent system which we
call Relay(n). This system hasn + 1 tasks. The first task,
resource, has a single variable which can take on any value
from 0 ton − 1, and starts with the initial valuen − 1. Within
an infinite loop, it has entries for both setting the value of the
variable, and getting the value. The remainingn tasks are called
ti, for i = 0, . . . ,n − 1. Taskti does the following within an
infinite loop: it first calls the entry inresource to get the value
of the variable. It then checks to see if this value is equal toi,
and if so, it calls the entry inresource to set the value toi + 1
(if i < n− 1) or 0 (if i = n− 1). The source code for Relay(3) is
given in Figure 9.

package relay is
subtype val is natural range 0..2;
task resource is
entry set (i : in val);
entry get (j : out val);

end resource;
task t0;
task t1;
task t2;

end relay;

package body relay is
task body resource is task body t1 is
x : val := 2; y : val;

begin begin
loop loop
select resource.get (y);
accept set (i : in val) do if y = 1 then
x := i; resource.set (2);

end set; end if;
or end loop;
accept get (j : out val) do end t1;
j := x;

end get; task body t2 is
end select; y : val;

end loop; begin
end a; loop

resource.get (y);
task body t0 is if y = 2 then
y : val; resource.set (0);

begin end if;
loop end loop;
resource.get (y); end t2;
if y = 0 then
resource.set (1);

end if;
end loop;

end t0;
end relay;

Fig. 9. Source code for Relay example

The intended behavior of this system is that the variable
will be set to the following values in order: 0,1,2, ...,n −
1,0,1,2, ...,n−1, ..., and so on. One property we checked is the
following: if the variable is set ton− 1 then it must have previ-
ously been set to 0. LetP be the event in which taskresource
accepts a call toset with parameter 0, and letR be the event
in whichresource accepts a call toset with parametern− 1.
The standard query describing a violation of this property con-
sists of one interval which begins with the start of execution,
ends withR and forbidsP. (This property is an instantiation of
the “Existence ofP beforeR” pattern; see [2].)

The sector of the flowgraph for taskresource has an enor-
mous number of cycles; in fact, there are precisely (2n+1)(n−1)−

1 distinct subsets of the vertex set which form cycles. (For
n = 6, this is 1,160,290,624, and Relay(6) is the example men-
tioned in Section III-A.) It is not surprising, then, that of our
various examples, this one posed the biggest challenge to cycle

elimination.
For n = 2, INCA was able to verify the property in its pre-

processing stage, without calling CPLEX. For 3≤ n ≤ 9,
we obtained a spurious solution with a cycle when we ana-
lyzed the INCA-produced system, and we were able to con-
clusively verify the property after applying cycle elimination
to task resource. For the cycle elimination runs, we told
CPLEX to give higher priority to the newse anddv variables
in its branch-and-bound strategy, and we tightened the integral-
ity tolerance from 1E-05 to 1E-07. The data on the numbers
of variables and constraints, and the time (in seconds) it took
CPLEX to reach the spurious solutions and conclusive results
are given in Figure 10. Note that forn = 9 it took a substantial
amount of time—just under 12 minutes—for CPLEX to reach
the conclusive result, although, as mentioned earlier, the time
to produce the new variables and inequalities was less than 2
seconds.

V. RW

The most common method for detecting faults in computer
systems is testing, that is, executing the system with a particu-
lar set of inputs and comparing that execution with the expected
result. The main problem with testing, of course, is coverage:
it is almost always infeasible to check more than a very small
fraction of the possible executions of the system, and testing
can give no information about executions that are not exam-
ined. Testing can thus miss serious faults. Testing is especially
problematic for concurrent systems because such systems tend
to behave nondeterministically in that the same inputs may lead
to very different executions, depending on the order in which
events occur in the different parts of the system. This can make
it difficult even to reproduce a particular execution, and means
that a test result in which the execution with particular input
data matches the expected behavior does not even imply that
the system will always behave correctly when it receives the
same inputs.

Finite-state verification techniques, such as model check-
ing [15], algorithmically check properties of a finite-state model
of the system. By constructing models that represent all possi-
ble executions of the system, finite-state verification techniques
can check whether a property such as freedom from deadlock,
mutually exclusive use of a resource, or guaranteed response to
a request, holds on all possible executions of a system. When a
property does not hold, most finite-state verification tools can
provide the user with a “counterexample” showing how the
property can be violated. Such counterexamples can be ex-
tremely useful in isolating and understanding the fault.

These techniques vary in the nature of the model, the formal-
ism used to express the properties of interest, and the method
used to determine whether the model satisfies the properties. At
a conceptual level, most finite-state verification tools model the
system as a graph whose nodes represent abstract states of the
system and whose edges represent transitions between system
states corresponding to events in the execution of the system.
Executions correspond to paths through this graph and prop-
erties can be specified in a temporal logic (e.g., LTL [16] or
CTL [17]) or as an automaton accepting sequences of states or
events. Algorithms for determining whether the model satsifies
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original original new new time w/o time with
n variables constraints variables constraints cycle elim cycle elim
3 23 19 28 45 0.03 0.05
4 39 26 52 86 0.03 0.05
5 59 33 84 141 0.04 0.12
6 83 40 124 210 0.04 0.56
7 111 47 172 293 0.04 2.93
8 143 54 228 390 0.04 49.14
9 179 61 292 501 0.05 717.16

Fig. 10. Performance on the Relay Example

the property can be based on methods for walking the graph of
states, computing the intersection of automata, data flow tech-
niques [14] and other approaches.

As noted earlier, the main obstacle to the application of finite-
state verification techniques to concurrent systems is the fact
that the number of reachable states may be exponential in the
number of concurrent processes in the system. A number of ap-
proaches concentrate on constructing a compact model, for in-
stance by taking advantage of symmetries of the system [15] or
using abstraction to collapse states that do not need to be distin-
guished to check a given property. The Bandera toolset [18,19],
for example, provides facilities for slicing to remove parts of a
program that are not relevant to the property to be checked and
for applying a library of safe abstractions to reduce the size of
the model. Bandera is intended to be used to construct com-
pact models for a variety of finite-state verification tools. Other
techniques, such as the partial order methods used in S [8],
avoid constructing or examining states that are not needed to
check a particular property. Symbolic model checkers, such as
SMV [9], check properties using operations on sets of states
which can be represented compactly by special data structures.
As mentioned above, however, most of the questions we want
to ask about concurrent computer systems are at leastNP-hard
(e.g., [20–22]), and no approach will avoid the state explosion
problem completely.

INCA models executions of a computer system that violate
a particular property as solutions to a system of linear equa-
tions and inequalities and uses integer linear programming tech-
niques to determine whether the system of inequalities has any
solutions. This model may overrepresent the set of actual ex-
ecutions, so that some solutions do not correspond to real ex-
ecutions of the program. Thus, if the system of equations and
inequalities has no solutions, no execution exists that violates
the property. If the system of equations and inequalities does
have solutions, however, there need not be any executions of the
computer system that violate the property; the solutions may be
spurious. This approach does not need to explicitly represent
each state of the computer system and can take advantage of
techniques from linear algebra to improve the verification pro-
cess.

Several authors have applied ideas similar to those used in
INCA to systems modeled by Petri nets [23]. For example, Mu-
rata, Shenker, and Shatz [24] used integer programming meth-
ods to compute counts of transition firings that return a net to
its original marking and then try to eliminate “spurious” counts
that do not correspond to real firing sequences. More recently,

Esparza and Melzer [25] show how to representtrapsusing in-
equalities in order to sharpen the basic approach.

Techniques for detecting or removing cycles from graphs are
of considerable importance in a number of areas of computer
science, such as online deadlock detection. We note, however,
that the connections between such techniques and the algorithm
presented in this paper are somewhat limited. In particular, our
algorithm does not determine whether cycles are present in the
flowgraph, and does not modify the flowgraph to remove any
cycles. If we regard the system of equations and inequalities as
a model of certain sets of paths through the FSAs corresponding
to the processes in the program, our algorithm can be viewed as
a way of refining that model so that it does not represent any
collections of paths containing disconnected cycles. It does this
entirely at the level of the system of equations and inequalities,
and thus is only directly applicable in settings where paths in
graphs can be represented as solutions to systems of inequali-
ties.

VI. C  FW

Some finite-state verification tools always provide a conclu-
sive result on any problem they can analyze. A tool that walks a
graph of the reachable states of a concurrent system will never
report that the system might deadlock when in fact the system
is deadlock-free (assuming, of course, that the graph correctly
represents the reachable state space of the system). But such a
tool must be able to store the full set of reachable states, and is
unable to report any results for a system whose reachable state
space exceeds the storage available. Other tools, such as INCA,
deliberately overestimate the collection of possible executions
of the system, and thus accept the possibility of inconclusive
results (or spurious reports of the possible faults), in order to
increase the range of systems to which they can be applied.

For INCA, there are two main sources of imprecision in the
representation of executions of the system. The first of these is
the fact that semantic restrictions on the order of occurrence of
events in different concurrent processes are generally not rep-
resented in the equations and inequalities used by INCA. The
second source of imprecision is the fact that the equations and
inequalities allow solutions in which the flow in the FSA repre-
senting a concurrent process may have cycles not connected to
the initial state. In this paper, we have shown how imprecision
caused by this second source may be eliminated. Although our
method is aimed at improving the precision of INCA, it may
also be relevant to other applications of integer programming
involving flow networks.
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Specific cases of inconclusive results can often be addressed
by careful reformulation of the property being checked, al-
though this may require the verification of additional proper-
ties to justify the reformulation. This process can require very
substantial effort on the part of the human analysts, as well as
considerable costs to carry out the necessary verifications. We
have also sometimes addressed inconclusive results by manu-
ally inserting special inequalities to prevent disconnected flow
on a small number of specific cycles. The problem with gener-
alizing this approach is that the number of cycles may well be
exponential in the size of the concurrent system, and each of the
cycles requires a separate inequality. Even if it were feasible to
automate the generation of these inequalities, the resulting ILP
problems would be far too large to solve. The numbers of new
variables and inequalities introduced by the method presented
in this paper are linear in the number of states and transitions in
the FSAs representing the processes of the concurrent system
being analyzed.

We have reported here the results of some preliminary exper-
iments aimed at assessing the cost, in increased time to solve the
systems of equations and inequalities, of applying our method.
These experiments suggest that the cost is relatively small, es-
pecially when the effort of the human analysts is taken into ac-
count. We plan to carry out additional experiments of the same
type, and to integrate our technique into the INCA toolset so
that we can also evaluate the time needed to generate the addi-
tional variables and inequalities more precisely.

We are also investigating approaches to eliminating some of
the imprecision caused by not representing restrictions on the
order of events in different processes. Fully representing the
restrictions imposed by the semantics of the programming lan-
guage or design notation may not be practical and might limit
the applicability of INCA in the same way that having to store
the full set of reachable states limits the applicability of tools
based on exploring the graph of reachable states. We are there-
fore exploring methods that allow the analyst to control the de-
gree to which restrictions on order are represented. For exam-
ple, one approach that we are considering is to formulate some
of the flow and communication equations in such a way that
they hold at every stage of an execution, not just the end. These
reformulated flow and communication equations therefore en-
force some of the restrictions on the order of events in different
processes. They also determine a region inn-dimensional Eu-
clidean space, wheren is the number of variables in the system
of equations and inequalities. We then look for a point sat-
isfying the full system of equations and inequalities that can
be reached by taking certain integer-sized steps through this re-
gion. Successfully reducing this kind of imprecision will be im-
portant in applying the INCA approach to many systems where
interprocess communication is only through access to shared
data.
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