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Abstract. In a previous paper we derived an expression for the di�erentials in

the Lyndon-Hochschild-Serre spectral sequence of a split extension G = HoQ

of �nite groups with coe�cients in a �eld. Here we apply that result to the

case where H and Q are elementary abelian 2-groups and char k = 2. We then

work out a special case, in which H has rank 4 and Q has rank 2, from a

class of examples constructed by Burt Totaro. Totaro proved that the spectral

sequence arising from this extension could not collapse, but using our methods

we are able to obtain complete information on the spectral sequence.

1. Introduction

1.1. Background. Most spectral sequences that have been used in group coho-
mology calculations arise from central group extensions. Recently, however, there
has been growing interest in spectral sequences arising from non-central exten-
sions. Benson-Feshbach [3], for example, raised some questions about the vanishing
of di�erentials in split extensions with abelian kernel. (See also [8].) Burt Totaro
[11] then constructed an interesting family of counterexamples to answer all of these
questions negatively. In particular, for each prime p, Totaro constructs a split group
extension in which both kernel and quotient are elementary abelian p-groups, such
that the di�erential dp in the Lyndon-Hochschild-Serre (LHS) spectral sequence
with mod-p coe�cients is non-zero. To our knowledge, this was the �rst example
of that phenomenon, at any prime.

Totaro's argument is simple and elegant, and manages to show dp 6= 0 for very
general reasons. Yet it gives almost no other information about the spectral se-
quence, and in particular it does not show what dp, or any other di�erential, ac-
tually is. It therefore might be interesting to examine one of these examples in
greater detail, in the hopes of gaining greater insight into the mystery of p-group
cohomology.

We do this for the smallest of Totaro's examples, in which p = 2 and the split
extension is an elementary abelian 2-group of rank 2 acting on one of rank 4. We
calculate the E2-page (which has a very rich structure), and the di�erentials d2.
We then show that d3 = 0, and, by the position of the generators, it follows that
E3 = E1.

The calculation of the di�erentials is achieved by applying the main theorem of
Siegel [9]. In that paper, we gave a general method for calculating di�erentials in
the case of a split extension of �nite groups. As we show in Section 2, that method
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works out particularly elegantly in the case where p = 2 and the quotient group
is an elementary abelian 2-group. Section 3 deals with the E2-page of Totaro's
extension, and Section 4 applies the method of Section 2 to this case. That method
requires the calculation of a certain twisting cochain, and an algorithm for doing
this in the case where both quotient and kernel are elementary abelian 2-groups is
explained in Section 5. The output of that algorithm for our example is given in
Figures 2 and 3. Though it is on the borderline of something which can be carried
out by hand, we used a computer to implement the algorithm.

1.2. Preliminaries. For this paper, by a complex of modules over a ring R we will
mean a left Z-graded R-module C =

L
n2ZCn together with an endomorphism @

satisfying @(Cn) � Cn�1 and @2 = 0. Hom and tensor products of complexes
are de�ned as in Brown [4, Ch. I x0]. By bigraded complex we will mean an R-
module E =

L
r;s2ZE

r;s together with an endomorphism � satisfying �(Er;s) �P
i�r E

i;r+s�i+1. The bigraded complex yields a spectral sequence arising from

the �ltration F pE =
P

r�p;s2ZE
r;s.

Let k be a �eld. If V is a k-module then hv1; : : : ; vni denotes the subspace
spanned by v1; : : : ; vn 2 V . An unlabeled tensor product will always mean \
k".
If U and V are graded k-submodules of a graded k-algebra A, then UV denotes
the graded k-submodule spanned by all uv, u 2 U , v 2 V . If W = UV and the
natural map U 
 V ! W is an isomorphism then we will also write W = U 
 V

(in analogy with an internal direct sum). If G is a group, � an automorphism of
G, and U and V are kG-modules, then we let Hom�

kG(U; V ) denote the set of f in
Homk(U; V ) satisfying f(gx) = �(g)f(x) for all g 2 G, x 2 U . Finally, we use the
notation common in computer science, where for a proposition P , (P) = 1 if P ,
else (P) = 0.

2. Elementary abelian 2-groups

2.1. Notation. Let E = hg1; : : : ; gri be an elementary abelian 2-group of rank r,
and k a �eld of characteristic 2. Let Xi = gi+1 2 kE for each i. We construct the
minimal resolution P ! k as follows. Let P = kE[x1; : : : ; xr], the polynomial alge-
bra in r indeterminates over the commutative ring kE. The grading determined by
degree gives P the structure of a graded kE-module which is �nitely-generated and
free in each degree. Now for any r-tuple � = (�1; : : : ; �r) 2 N

r (N = f0; 1; 2; : : :g),
let j�j =

Pr

i=1 �i, g
� = g�11 � � � g�r

r , and x
� = x

�1
1 � � � x�r

r . Let "(i) 2 N
r be the

r-tuple which is 1 in position i and 0 elsewhere. De�ne the di�erential on P by
@(x�) =

P
Xix

��"(i), where the sum is taken over all 1 � i � r such that �i 6= 0,
and de�ne the augmentation by �(1) = 1, and �(x�) = 0 if x� 6= 1.

Now suppose A is a graded commutative k-algebra on which E acts as graded al-
gebra automorphisms. As a graded k-module, the cochainsC(E;A) = HomkE(P;A)
may be identi�ed with A[x1; : : : ; xr], where ax

� corresponds to the map which takes
x
� to a and vanishes on x

� for � 6= �. Now the action of kE on A induces an action
of kE[x1; : : : ; xr ] on A[x1; : : : ; xr ], and it is not di�cult to see that the di�erential
in C(E;A) is given by multiplication by

Pr

i=1Xixi. Moreover,

Lemma 2.1. The cup product in H�(E;A) is induced by the associative product

on A[x1; : : : ; xr] de�ned by ax� ^ bx� = ag�(b)x�+� .

Proof. There is a diagonal approximation map P ! P 
 P de�ned by x
� 7!P

�+=� x
� 
 g�(x). One can see this by checking the case r = 1 and then using



COHOMOLOGY OF SPLIT EXTENSIONS OF ELEMENTARY ABELIAN 2-GROUPS 3

the fact that the tensor product of chain maps is again a chain map. By applying
HomkE(P;�) one obtains the product described in the lemma.

2.2. Di�erentials. Let G = H o Q be a split group extension, where for now H

is any �nite group, and Q = hg1; : : : ; gsi is an elementary abelian 2-group of rank
s. Let Y = kQ[y1; : : : ; ys] be the minimal kQ-resolution, and P the minimal kH-
resolution. Our method for calculating di�erentials will require us to �nd a twisting
system for the extension, which is a collection of maps f� 2 Hom�

kH (P; P )j�j�1,
where � is the automorphism of kH induced by g�, (0 6= � 2 Ns ) satisfying

(i) � � f� = � if j�j = 1

(ii) @ � f� + f� � @ = 1(� = 2"(i) for some i) +
X

�+=�

f� � f :(2.1)

Now in the LHS spectral sequence fEr; drg we have

E1 = HomkQ(Y;HomkH (P; k)) � H�(H; k)[y1; : : : ; ys]:

For  2 Ns with r = jj � 1, let f̂ = HomkH (f ; k) 2 Endk(H
�(H; k))1�r , and set

�r =
P

jj=r f̂y
 2 Endk(H

�(H; k))[y1; : : : ; ys]. This last ring acts on E1, and we

let �r : E
p;q
1 ! E

p+r;q�r+1
1 denote multiplication by �r.

Theorem 2.2. There exists a twisting system for the extension G = HoQ. More-

over, given a twisting system, set � =
P

r�1 �r; we then have �2 = 0, and the spectral

sequence arising from the bigraded complex (E1; �) equals the LHS spectral sequence.

Proof. De�ne t : k 
kQ Y ! HomkG(P"
G
H ; P"

G
H) �

L
�2Q � 
Hom�

kH (P; P ) by

t(y�) = 1(j�j = 1) + g� 
 f�:

The conditions on the f� are seen to be exactly equivalent to the condition that t
be a twisting cochain for the group extension 1! H ! G! Q! 1, as de�ned in
[9, Section 5]. So existence follows from [9, Theorem 5.1] and the spectral sequence
statement follows from [9, Theorem 8.1].

3. Totaro's example: E2-page

Let Q = hg1; g2i, H = hh1; : : : ; h4i be elementary abelian 2-groups of ranks 2
and 4, respectively. Let Q act on H according to

T1 =

0
BB@
1 0 0 0
0 1 0 0
1 1 1 0
0 1 0 1

1
CCA ; T2 =

0
BB@
1 0 0 0
0 1 0 0
1 0 1 0
1 1 0 1

1
CCA ;

where Tj is the matrix of the linear transformation induced by gj on the F2 -vector-
space H with respect to the basis h1; : : : ; h4. We let G be the semidirect product
of H and Q de�ned by this action; this is the smallest of the class of examples
considered by Totaro in [11]. We continue with the notation of the previous section;
in particular P = F2H [x1; : : : ; x4] and Y = F2Q[y1; y2] are the minimal resolutions
of F2 over F2H and F2Q, respectively. Let x1; : : : ; x4 2 H1(H; F2 ) = Hom(H; F2 )
denote the dual basis to h1; : : : ; h4. Let A = H�(H; F2 ) = F2 [x1; : : : ; x4]. As a
graded kQ-module, A = Sym(M), where M is spanned by the xi and the action of
Q is given by the transposes of T1 and T2. Let fEr; drg denote the LHS spectral
sequence of the split extension.
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We seek to describe E2. But �rst we note that, though M is an indecomposable
F2Q-module, if we let k = F4 then k 
F2 M = M1 �M2, where M1 = hv1; v2i,
M2 = hv3; v4i, and

v1 = !x1 + x2; v2 = �!x3 + x4; v3 = �!x1 + x2; v4 = !x3 + x4:

Q �xes v1 and v3, and g1v2 = !v1+v2, g1v4 = �!v3+v4, g2v2 = v1+v2, g2v4 = v3+v4.
The Frobenius automorphism � 7! � of k over F2 extends to a ring-automorphism
of A, de�ned by �x� = �x�, which is of order 2 and commutes with the action of
Q. This automorphism exchanges M1 and M2; speci�cally, v1 = v3 and v2 = v4.
Setting S = k[v1; v2] = Sym(M1), we therefore have k 
A = S 
 S. Hence we will

deal primarily with k 
F2 E2 instead of E2. Let i = [yi] 2 E
1;0
2 (i = 1; 2).

Proposition 3.1. The following hold:

(i) For each indecomposable F2Q-module U let pU (t) =
P

n�0 ant
n, where an is

the multiplicity of U as a summand of Hn(H; F2 ). Then

pF2(t) =
1

(1� t4)2
; pM (t) =

t+ t3

(1� t4)2
; p
F2 (t) =

2t2

(1� t4)2
;

p
2F2
(t) =

t4

(1� t4)2
; p

F2Q
(t) =

t2(1 + 2t+ 2t3 � t4)

(1� t)2(1� t4)2
;

and pU = 0 for U not isomorphic to one of the �ve modules above.

(ii) H�(H; F2 )
Q is generated by x1, x2,

q1 = x21x3 + x1x
2
3 + x21x4 + x1x

2
4 + x22x4 + x2x

2
4;

q2 = x21x3 + x1x
2
3 + x22x3 + x2x

2
3 + x22x4 + x2x

2
4;

z1 = x4(x
2
1x2 + x21x4 + x1x

2
2 + x1x2x4 + x22x4 + x34) =

Y
�2Q

�(x4);

z2 = x3(x
2
1x2 + x21x3 + x1x

2
2 + x1x2x3 + x22x3 + x33) =

Y
�2Q

�(x3);

subject to the relations

0 = q21 + x21z1 + x21z2 + x22z1 + x21x2q1 + x1x
2
2q1;

0 = q22 + x21z2 + x22z1 + x22z2 + x21x2q2 + x1x
2
2q2;

and has Poincar�e series (1 + t3)2=(1� t)2(1� t4)2.
(iii) H�(H; k)Q is generated by v, �v, u, �u, s, �s, where v = v1, u = v1v

2
4 + v2v

2
3 ,

and s = v31v2 + v42 =
Q

�2Q �(v2), subject to the relations

0 = !u2 + �u2 + !v2�s+ �v2s+ v3u+ !�v3�u;

0 = u2 + !�u2 + v2�s+ !�v2s+ !v3u+ �v3�u:

(iv) As a bigraded k-module we have k 
F2 E2 = k[s; �s]
 ~E2, where

~E2 = k[v; �v]
 h1; u; �u; u�ui � k[1; 2]
 h2; �; ��; � ��i �

k[1]
 h1; 1v; 1�v; 1u; 1�ui � h1vui;

where � = [(�!v1v2 + !v22)y1 + (v1v2 + v22)y2].

Note. ~E2 is depicted in Figure 1. In the leftmost column we give the kQ-module
structure of (WW )q , and at each point (p; q) we give the dimension of and a basis

for ~Ep;q
2 .
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Figure 1. ~Ep;q
2 = Hp(Q; (WW )q)

The remainder of this section will consist of a proof of this proposition. We begin
by analyzing the structure of S. The following is well-known:

Lemma 3.2. Let k be a �eld of characteristic 2 and let � be the algebra automor-

phisms of k[x; y] de�ned by �(x) = x, �(y) = x+ y. Then k[x; y]� is a polynomial

ring in the two generators x and y(x+ y).
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By Lemma 3.2, Sg2 = k[v1; w], where w = v2(v1 + v2). We have g1w = v21 +
w. Now multiplication by v1 : (S

2n)g2 ! (S2n+1)g2 is an isomorphism of khg1i-
modules, so Sg2 = (S2�)g2�v1(S

2�)g2 . Again, Lemma 3.2 implies (S2�)Q = k[v21 ; s],
where s = w(v21 +w), so has Poincar�e series 1=(1� t2)(1� t4). By multiplying this
by 1 + t we see that the Poincar�e series of SQ is 1=(1 � t)(1 � t4), and hence
SQ = k[v1; s].

We have S0 �= k, S1 �= M1, S
2 �= 
k as it is 3-dimensional with 1-dimensional

socle, and S3 �= kQ as it is 4-dimensional with 1-dimensional socle. Let W =

k[v]
P3

i=0 S
i. We claim that S = k[s] 
 W . To prove this it su�ces to show

that s; v is a regular sequence in S. For then multiplication by v1 induces an
injective kQ-homomorphism from Sn=sSn�4 to Sn+1=sSn�3 for all n � 4. Since
both domain and range have dimension 4 it is therefore an isomorphism. It follows
that S = k[s]W . Hence the natural map k[s] 
 W ! S is surjective, and by
comparing Poincar�e series we see it is an isomorphism. Hence the claim follows
from the following, with R = k[v1] and x = v2:

Lemma 3.3. Let k be a �eld and R = �n�0Rn a graded commutative k-algebra

with R0 = k, and assume that R is an integral domain. Let m = �n>0Rn. Suppose

f is a monic polynomial of positive degree in R[x], and let 0 6= a 2 m. Then f; a is

a regular sequence in R[x].

Proof. Given an element of R[x]=R[x]f we may choose g 2 R[x] representing that
element with deg(g) < deg(f). Thus deg(ag) = deg(g) < deg(f), while every
non-zero element of R[x]f has degree at least deg(f). Hence a + R[x]f is not a
zero-divisor in R[x]=R[x]f .

We thus have the following Poincar�e series for the multiplicities of the 4 inde-
composables which occur as summands of S:

pk(t) =
1

1� t4
; pM1

(t) =
t

1� t4
; p
k(t) =

t2

1� t4
; pkQ(t) =

t3

(1� t)(1� t4)
:

The same statement holds replacing M1 with M2 and S with S . Since k 
F2 A
�=

S 
 S , we need to know the tensor products of these indecomposables. But the
tensor product of a free module with any module is free, and furthermore we claim

M1 
M2
�= kQ; M1 

k �=M1 � kQ; 
k 
 
k �= 
2k � kQ:

The �rst isomorphism can be seen using varieties (cf. Evens [7, Theorem 10.1.1]),
as

VQ(~k 
M1 
M2) = VQ(~k 
M1) \ VQ(~k 
M2)

= V ((y1 + !y2)) \ V ((y1 + �!y2)) = f0g;

where ~k is an algebraic closure of k, so ~k 
M1 
M2, and therefore M1 
M2, is
free. The other two follow from the facts that for any f.g. kQ-module U , 
k
U is
isomorphic to the direct sum of 
U and a projective module (cf. [1, Corollary 3.1.6]),
and 
Mi

�=Mi because Mi is periodic and hence has period 1, by Benson-Carlson
[2, Proposition 2.2]. From this we can determine the kQ-module structure of k
F2A.
To obtain the F2Q-module structure of A, use the Noether-Deuring Theorem [6,
Theorem 29.7], which says that for any f.g. F2Q-modules U; V , U �= V , k
F2U

�=
k 
F2 V . So the multiplicities of F2 , 
F2 , 


2
F2 , F2Q, and M in A equal the
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respective multiplicities of k, 
k, 
2k, kQ, and M1 in k 
F2 A. Hence

p
F2

= p2k; pM = pkpM1
+ p
kpM1

; p
F2 = 2pkp
k; p
2F2
= p2
k;

p
F2Q

= 2pkpkQ + p2M1
+ 2p
kpM1

+ 4pM1
pkQ + p
2k + 6p
kpk + 4p2kQ;

from which we obtain part (i) of the proposition.
We now turn to (ii). The Poincar�e series for AQ is as claimed since it equalsP
U dimk(U

Q)pU (t), the sum taken over representatives U of the isomorphism
classes of indecomposable kQ-modules. We must next check the elements are in-
variant and satisfy the relations. One is helped here by the automorphism � of M
of order 3, de�ned by x1 7! x2, x2 7! x1 + x2, x3 7! x3 + x4, x4 7! x3. We have
�(q1) = q2, �(q2) = q1+q2, and similarly for zi replacing qi. So if q1 is invariant, so
is q2. Since z1 is a norm, it is invariant, and therefore z2 is as well, since the norm
commutes with �. Finally � takes the �rst relation to the second, so only the �rst
must be checked.

Let B be the subring of AQ generated by the xi, qi, zi. We will show that
B = AQ. First we claim that the subring T of B generated by x1; x2; z1; z2 is a
polynomial ring in those 4 generators. That follows from the following lemma (with
R = k[x1; x2], S = R[x4; x3]), the proof of which is an easy exercise:

Lemma 3.4. Let R be an integral domain, n and d positive integers, and S =
R[w1; : : : ; wn], the polynomial ring in n variables. Suppose z1; : : : ; zn 2 S and for

each i there exists 0 6= ri 2 R such that deg(zi � riw
d
i ) < d. Then z1; : : : ; zn are

algebraically independent over R.

In particular, T has Poincar�e series 1=(1�t)2(1�t4)2. Now consider the subspace
T + q1T + q2T + q1q2T of B. We claim that this sum is direct. To see this, suppose

f0 + q1f1 + q2f2 + q1q2f3 = 0 fi 2 T(3.1)

Consider these as polynomials in x4 with coe�cients in F2 [x1; x2; x3]. Write qi =P2
j=0 ai;jx

j
4, q1q2 =

P4
j=0 bjx

j
4, with ai;j ; bj of degree 0. We have a1;1 = x21 + x22,

a1;2 = x1 + x2, a2;1 = x22, a2;2 = x2, b3 6= 0, b4 6= 0. For each i such that fi 6= 0,

write fi =
Pmi

j=0 ci;jz
j
1 = ci;mi

x4mi

4 + gi, where deg(fi) = 4mi, deg(ci;j) = 0 and

deg(gi) � 4mi�2. We may do this since the coe�cient of x34 in z4 is 0. Assuming not
all the fi are 0, let n be the maximum degree of f0; q1f1; q2f2; q1q2f3. There are two
possibilities: either n = deg(f0) = deg(q1q2f3) � 0 (mod 4), or n = deg(q1f1) =
deg(q2f2) � 2 (mod 4). In the �rst case, say n = 4m. Consideration of the xn4 -

and xn�14 -terms of (3.1) yields

c0;mx
n
4 + 0xn�14 = b4c3;m�1x

n
4 + b3c3;m�1x

n�1
4 ;

which implies c3;m�1 = 0, contradicting n = deg(q1q2f3). In the second case,
say n = 4m+ 2. A similar consideration shows (x1 + x2)c1;m = x2c2;m and (x21 +
x22)c1;m = x22c2;m, from which it is easy to see c2;m = 0, contradicting n = deg(q2f2).
Hence all the fi are 0, so the sum is direct and therefore has Poincar�e series (1 +
2t3+ t6)=(1� t)2(1� t4)2, which equals the Poincar�e series of AQ. Hence B = AQ.

We now turn to the relations. Let ~B = F2 [~x1; ~x2; ~q1; ~q2; ~z1; ~z2]. We have a map

of F2 -algebras ~B � B which has kernel containing (r1; r2), where the ri are de�ned
as in (ii), and we wish to show this is exactly the kernel. But Lemma 3.3 (with
R = F2 [~x1; ~x2; ~q2; ~z1; ~z2], x = ~q1) shows that r1; r2 is a regular sequence, so the

Poincar�e series of ~B=(r1; r2) is (1� t6)2=(1� t)2(1� t3)2(1� t4)2, which equals the
Poincar�e series of B. So (r1; r2) is the kernel, proving (ii).
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Now for (iii). We have x1 = v + �v, x2 = �!v + !�v, q1 = !u+ �!�u, q2 = �!u+ !�u,
z1 = !s+ �!�s+ �!�uv + !u�v, z2 = s+ �s+ �uv + u�v. So by (ii), the alleged generators
do generate k 
F2 B. The relations are the same as those in (ii) multiplied by �!,
proving (iii).

To prove (iv), recall that S = k[s] 
W . Applying the Frobenius, we have S =

k[�s]
W , so k
F2A = S
S = k[s; �s]
W
W , and therefore k
F2E2 = k[s; �s]
 ~E2,

where ~E2 = H�(Q;WW ). Consider the natural map from k[v; �v] 
 h1; u; �u; u�ui to

(WW )Q. As v; �v; u; �u are algebraically independent (by Lemma 3.4, with R =
k[v; �v], S = R[v4; v2]), the map is certainly injective, and a comparison of the

Poincar�e series shows it is an isomorphism. That describes ~E0�
2 . To get the rest of

~E2 we must describe the cohomology of the relevant indecomposables:

Lemma 3.5. For the following kQ-modules U , we give a presentation for U in

diagram form, B(Q;U) = BHomkQ(Y; U), and a complement ~H(Q;U) of B(Q;U)
in Z(Q;U).

U diagram B(Q;U) ~H(Q;U)

M1
� � � �� � � �a2
� �
� 77
7� � � �� � � �

a1
� � � �� � � �
!a1

k[y1; y2]h!a1y1 + a1y2i k[y1]a1


k � � � �� � � �b
77
7 � � � �� � � �c
� �
�� � � �� � � �

a

k[y1; y2]hay1; ay2i hai � k[y1; y2]hcy1 + by2i


2k � � � �� � � �c3
77
7 � � � �� � � �c4
� �
� 77
7 � � � �� � � �c5
� �
�� � � �� � � �

c1
� � � �� � � �
c2

hc2y1 + c1y2i�
k[y1; y2]hc1y1; c1y

2
2 ; c2y

2
1 ; c2y2i

hc1; c2; c2y1i�
k[y1; y2]hc5y

2
1 + c4y1y2 + c3y

2
2i

In the diagrams,
� � � �� � � � << � � � �� � � � (resp. � � � �� � � �

� �� � � �� � � � ) signi�es the action of g1 + 1 (resp. g2 + 1).
The proofs are routine. Next, we have the following explicit decompositions of the
W iW j , where the action of Q on the basis elements corresponds to the labeling
given in Lemma 3.5:

module summand basis

W 2W 0 
k a = v21 ; b = v1v2 + v22 ; c = �!v1v2 + !v22
W 1W 2 M1 a1 = v1v

2
4 + v2v

2
3 ; a2 = v1v3v4 + v2v

2
4 ;

kQ v1v
2
3 ; v1v3v4; v2v

2
3 ; v2v3v4

W 2W 2 
2k c1 = a�b+ b�a; c2 = a�a+ c�a+ a�c; c3 = b�a+ b�b;
c4 = b�a+ c�b+ b�c; c5 = c�c

kQ a�a; c�a; a�b; c�b

Using this and the Frobenius, we have explicit decompositions of (WW )q for 0 �

q � 4. Hence by Lemma 3.5, ~E�;1
2 = H�(Q;M1�M2) = k[1]
hv; �vi, and therefore

~E+;1
2 = k[1]
 h1v; 1�vi. Similarly,

~E+;2
2 = H+(Q;W 2)�H+(Q;W 2) = k[1; 2]
 h�; ��i;

~E+;3
2 = H+(Q; ha1; a2i)�H+(Q; h�a1; �a2i) = k[1]
 h1u; 1�ui;

~E+;4
2 = H+(Q; hc1; : : : ; c5i) = h1c2i � k[1; 2]�;
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where � = [c5y
2
1 + c4y1y2 + c3y

2
2 ]. It remains to show [1c2] = [1vu] and � = � �� .

The �rst is straightforward, and Lemma 2.1 implies � �� is represented by

(cy1 + by2) ^ (�cy1 +�by2) = cg1(c)y
2
1 + (cg1(b) + bg2(c))y1y2 + bg2(b)y

2
2

= c�cy21 + (c(�a+�b) + b(�a+ �c))y1y2 + b�by22

= c5y
2
1 + (c4 + c�a)y1y2 + (c1 + c3 + a�b)y22

� c5y
2
1 + c4y1y2 + c3y

2
2 ;

as c�a and a�b are in the kQ-summand and c1y
2
2 is a coboundary by Lemma 3.5. This

completes the proof of Proposition 3.1.

4. Totaro's example: differentials

We now apply Theorem 2.2 to �nd the di�erentials in this spectral sequence.
The Theorem requires us to �nd a twisting system ff�g for the group extension,
and the algorithm used for doing this is described in the following section. The

values f̂�(v
�) (for j�j 2 f2; 3g, j�j � 4) appear in Figures 2 and 3. For readability

we have abbreviated v by  in the tables.

Proposition 4.1. We have d2(�) = 31�v, d2(
��) = 31v, and d2 vanishes on 1, 2,

v, �v, u, �u, s, �s. Hence k 
F2 E3 = k[s; �s]
 ~E3, where

~E3 = k[v; �v]
 h1; u; �u; u�ui � k[1; 2]
 h2; �; ��; �i �

k[1]
 h1; 1u; 1�ui � h1v; 1�v; 
2
1v; 

2
1�v; 1vui;

� = � ��, and � = (1 + !2)�. Moreover, E3 = E1, so H�(G; F2 ) has Poincar�e

series

1 + 2t+ t2 + 2t4 + t5 + t7

(1� t4)2(1� t)2
:

Proof. Let b1 = �!v1v2+!v22 , b2 = v1v2+ v22 . By Theorem 2.2, d2(�) is represented
by

(f̂20y
2
1 + f̂11y1y2 + f̂02y

2
2)(b1y1 + b2y2) = v3y

3
1 + �!v3y

2
1y2 + !v3y1y

2
2 + v3y

3
2

� v3y
3
1 ;

which represents 31�v. Here we also used Lemma 3.5, which implies v3y2 � �!v3y1.
Similarly, d2(u) is represented by

f̂20(u)y
2
1 + f̂11(u)y1y2 + f̂02(u)y

2
2 = !ay21 + ay22 � 0:

Applying the Frobenius gives the desired values of d2 on �� and �u. We also know all
di�erentials vanish on s and �s as s = resGH normG

H(v2) by [7, Theorem 6.1.1 (N4)],
where normG

H denotes the Evens norm map. To show that d2(�) = 0 we could use
the fact that d2 is a derivation, but we will do this using Theorem 2.2 as follows.

First, we may choose a representative x2;4 2 ~E2;4
1 of � such that the coe�cients of

x2;4 lie in W 2W 2. From Figure 2, we see that f̂�(W
2W 2) �W 3 �W 3 � hv21v3i �

hv1v
2
3i whenever j�j = 2. In particular, the coe�cients of �2(x

2;4) lie in the sum

of the four kQ-summands of (WW )3, so d2(�) = 0. Finally, d2 vanishes on the
other generators because of their positions and the fact that all di�erentials into
the horizontal edge vanish in the case of a split extension (cf. [7, Proposition 7.3.2]).
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�n� 20 11 02

1
2

0 0 0

12 0 0 0

13 0 0 0

14 0 0 0

2
2

�!3 0 3

23 0 0 0

24 !1 + �!3 !1 + �!3 !1 + �!3

3
2

0 0 0

34 0 0 0

4
2 !1 0 1

1
3

0 0 0

1
2
2 0 0 0

1
2
3 0 0 0

1
2
4 0 0 0

12
2

�!13 0 13

123 0 0 0

124 !12 + �!13 !12 + �!13 !12 + �!13

13
2

0 0 0

134 0 0 0

14
2 !12 0 1

2

2
3

�!23 0 23

2
2
3 �!32 0 3

2

2
2
4 �!34 0 34

23
2

0 0 0

234 !13 + �!32 !13 + �!32 !13 + �!32

24
2 !12 0 12

3
3

0 0 0

3
2
4 0 0 0

34
2 !13 0 13

4
3 !14 0 14

1
4

0 0 0

1
3
2 0 0 0

1
3
3 0 0 0

1
3
4 0 0 0

1
2
2
2

�!123 0 1
2
3

1
2
23 0 0 0

1
2
24 !13 + �!123 !13 + �!123 !13 + �!123

1
2
3
2

0 0 0

1
2
34 0 0 0

1
2
4
2 !13 0 1

3

12
3

�!123 0 123

12
2
3 �!132 0 13

2

12
2
4 �!134 0 134

123
2

0 0 0

1234 !123 + �!132 !123 + �!132 !123 + �!132

124
2 !122 0 1

2
2

13
3

0 0 0

13
2
4 0 0 0

134
2 !123 0 1

2
3

14
3 !124 0 1

2
4

2
4

0 0 0

2
3
3 �!232 0 23

2

2
3
4 !122 + �!223 + �!234 �!13 + 1

2
3 + !122 + �!223 !122 + �!223 + 234

2
2
3
2

�!33 0 3
3

2
2
34 �!324 0 3

2
4

2
2
4
2 !122 + �!342 0 12

2
+ 34

2

23
3

0 0 0

23
2
4 !132 + �!33 !132 + �!33 !132 + �!33

234
2 !123 0 123

24
3 !124 + !142 + �!342 13

2
+ !142 + !33 + �!342 124 + !142 + �!342

3
4

0 0 0

3
3
4 0 0 0

3
2
4
2 !132 0 13

2

34
3 !134 0 134

4
4

0 0 0

Figure 2. f̂�(v
�) for j�j = 2
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�n� 30 21 12 03

1
3

0 0 0 0

1
2
2 0 0 0 0

1
2
3 0 0 0 0

1
2
4 0 0 0 0

12
2

0 0 0 0

123 0 0 0 0

124 0 0 0 0

13
2

0 0 0 0

134 0 0 0 0

14
2

0 0 0 0

2
3 !1 + �!3 1 + !3 �!1 + 3 !1 + �!3

2
2
3 0 0 0 0

2
2
4 !1 �!1 �!1 1

23
2

0 0 0 0

234 0 0 0 0

24
2

�!3 !3 !3 3

3
3

0 0 0 0

3
2
4 0 0 0 0

34
2

0 0 0 0

4
3 !1 + �!3 �!1 + 3 1 + !3 !1 + �!3

1
4

0 0 0 0

1
3
2 0 0 0 0

1
3
3 0 0 0 0

1
3
4 0 0 0 0

1
2
2
2

0 0 0 0

1
2
23 0 0 0 0

1
2
24 0 0 0 0

1
2
3
2

0 0 0 0

1
2
34 0 0 0 0

1
2
4
2

0 0 0 0

12
3 !12 + �!13 1

2
+ !13 �!12 + 13 !12 + �!13

12
2
3 0 0 0 0

12
2
4 !12 �!12 �!12 1

2

123
2

0 0 0 0

1234 0 0 0 0

124
2

�!13 !13 !13 13

13
3

0 0 0 0

13
2
4 0 0 0 0

134
2

0 0 0 0

14
3 !12 + �!13 �!12 + 13 1

2
+ !13 !12 + �!13

2
4

0 0 0 0

2
3
3 !13 + �!32 13 + !32 �!13 + 3

2 !13 + �!32

2
3
4

�!12 + !12 + 13

+!14 + !32 + �!34
�!12 + �!12 + 13

+14 + !32 + !34
1
2
+ �!12 + !13

+�!14 + �!32 + 34

1
2
+ 12 + !13

+!14 + �!32 + �!34

2
2
3
2

0 0 0 0

2
2
34 !13 �!13 �!13 13

2
2
4
2

0 0 0 0

23
3

0 0 0 0

23
2
4 0 0 0 0

234
2

�!32 !32 !32 3
2

24
3 �!12 + !12 + 13

+�!23 + !32 + �!34
�!12 + �!12 + 13

+23 + !32 + !34
!12 + 12 + �!13
+!23 + 3

2
+ !34

!12 + !12 + �!13
+�!23 + 3

2
+ 34

3
4

0 0 0 0

3
3
4 0 0 0 0

3
2
4
2

0 0 0 0

34
3 !13 + �!32 �!13 + 3

2
13 + !32 !13 + �!32

4
4

0 0 0 0

Figure 3. f̂�(v
�) for j�j = 3

It is straightforward to obtain the description of E3. Since E
p;1
3 = 0 for p � 3,

it remains only to show that d3(�) = 0. Let N denote the kQ summand of W 1W 2

speci�ed in Section 3, and let J = rad(kQ). Since J2N = hv1v
2
3i, it is not di�cult

to see we may choose x3;3 2 ~E3;3
1 such that �1(x

3;3) = �2(x
2;4) and the coe�cients of

x3;3 are in the spaceW 3�W 3�JN�JN (note JN = hv1v
2
3 ; v1v3v4; v2v

2
3i). Using

Figure 2, we observe that each f̂� with j�j = 2 takes this space into W 1W 1. Simi-

larly, Figure 3 shows that f̂�(W
2W 2) �W 1W 1 whenever j�j = 3. By Theorem 2.2,
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d3(�) is represented by �2(x
3;3) + �3(x

2;4), which has coe�cients in W 1W 1 �= kQ;
hence d3(�) = 0.

5. How to calculate a twisting cochain

5.1. An algorithm. We return to the notation of Section 2. Viewing (2.1), one
sees that the problem of calculating a twisting system for the extension G = HoQ

reduces to the following two problems: (1) given � 2 Aut(H), construct a map f 2
Z0Hom

�
kH (P; P ) satisfying ��f = �, and (2) given d � 0 and f 2 BdHom

�
kH(P; P ),

construct a map g 2 Hom�
kH (P; P )d+1 satisfying @g + g@ = f .

To solve these problems we now de�ne the standard contracting homotopy s 2
Homk(P; P )1. For any S � f1; 2; : : : ; rg, let XS =

Q
i2S Xi. De�ne m(S) to be

min(S) or 1 if S = ;, and de�ne M(S) to be max(S) or �1 if S = ;. (Here 1
is just a �xed integer greater than r.) Given � 2 N

r , de�ne m(�) to be the least
i such that �i 6= 0, or 1 if � = 0, and de�ne M(�) to be the greatest i such that
�i 6= 0, or �1 if � = 0. Now set

s(XSx
�) = XS�fm(S)gxm(S)x

�(S 6= ; and m(S) � m(�))

Then @s+ s@ = 1 + ��, where � : k ! P is the unit map, as required. So if n � 1,
x 2 Pn, and @(x) = 0, then @s(x) = x.

Problem (1) can now be solved as follows. De�ne f(1) = 1, and extend this in
the unique way on P0. Suppose f has been de�ned through degree n. Then de�ne
f(x�) = sf@(x�) for j�j = n+ 1, and extend to Pn+1. Then @f(x

�) = f@(x�), and
since the x

� form a kH-basis of Pn+1 we have @f = f@ on all of Pn+1, as required.
The solution for Problem (2) is similar. First de�ne g(1) = sf(1), and extend

on P0. If d = 0 then since f � 0 we have � � f = 0, so @g(1) = @sf(1) = f(1) +
��(f(1)) = f(1), as required. If d > 0 then @f(1) = f@(1) = 0 so @g(1) = f(1) in
this case as well. Now suppose g has been constructed through degree n to satisfy
@g+g@ = f . Then @f�@g@ vanishes on Pn+1. So de�ne g(x

�) = s(f(x�)�g@(x�))
for j�j = n+ 1, and extend to Pn+1, and we have @g + g@ = f on Pn+1.

We call the result of this algorithm the standard twisting system. Of course, it
depends on the choice of generators for H and Q, but after �xing those it is well-
de�ned. We implemented this algorithm in MIT Scheme, and executed it on a Sun
SparcStation 20 (see [10] for source code and output). For the Burt Group of order
64, the program also converted from the x�-basis of H�(H; k) to the v�-basis, and

produced f̂� from f�; those algorithms are completely standard.

5.2. Properties. It appears that much (if not all) of the data produced by the
algorithm described above can be expressed by explicit, closed formulas. We will
show how to do this for the f� where j�j = 1 here. Finding similar formulas for
j�j > 1 is one of the important open problems in the �eld, and would greatly reduce
the amount of calculation required.

We will need two additional kH-algebra structures on the graded kH-module
kH [x1; : : : ; xr]. The �rst of these we denote by u
 v 7! u � v and is de�ned by

x
� � x� =

�
�+ �

�

�
x
�+� =

�
�1 + �1

�1

�
: : :

�
�r + �r

�r

�
x
�+� ;

where �; � 2 N
r . This is just the \divided polynomial algebra" structure, and is

associative and commutative. It also satis�es @(u � v) = @(u) � v + u � @(v), which
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means (P; @; �) is a di�erential graded kH-algebra (cf. [5, Ch. XII x7]). The second
we denote by u
 v 7! u � v and is de�ned by

x
� � x� = x

�+�(M(�) � m(�))

It is associative, but not commutative (unless r = 1). Both algebras have unit 1.

Lemma 5.1. Let s be the standard contracting homotopy for P .

(i) Ker s = Im s [ k � 1 =
P

kXSx
�, where the sum is taken over all subsets

S � f1; 2; : : : ; rg and � 2 Nr such that m(S) > m(�).
(ii) s(u � v) = s(u) � v for u 2 P , v 2 Im s

(iii) u; v 2 Im s ) u � v 2 Im s

Proof. Each basis element XSx
� of Pn such that S 6= ; and m(S) � m(�) is taken

under s to a distinct basis element XS�fm(S)gxm(S)x
� of Pn+1. That is all that is

needed to prove (i). It su�ces to prove (ii) when u and v are basis elements, since
� is bilinear and s is linear. So let u = XSx

�, v = XT x
� , with m(�) < m(T ). The

de�nitions show

s(u) � v = XS[T�fm(S)gxm(S)x
�+�(P)

s(u � v) = XS[T�fm(S[T )gxm(S[T )x
�+�(Q);

where

P = S 6= ; and m(S) � m(�) and m(S) � m(�) and (S � fm(S)g) \ T = ;

and M(�) � m(�);

Q = S [ T 6= ; and m(S [ T ) � m(�+ �) and S \ T = ; and M(�) � m(�).

But P and Q are easily seen to be equivalent, and if they hold then m(S) =
m(S [ T ), establishing (ii). Finally, if m(S) > m(�) and m(T ) > m(�) then
m(S [ T ) > m(�+ �), and (iii) follows.

Proposition 5.2. Let ff�g be the standard twisting system for the extension G =

H oQ. Then for j�j = 1 we have f�(x
i1
1 : : : xirr ) = f�(x1)

�i1 � � � � � f�(xr)
�ir .

Proof. Let f = f�, and let � be the automorphism induced on kH by g�. Suppose
1 � i � r. We show by induction on n that f(xni ) = f(xi)

�n for n � 1. This is
empty for n = 1, so suppose it holds for n. By construction, f(xni ) 2 Im s. So by
Lemma 5.1(ii),

f(xn+1i ) = sf@(xn+1i ) = sf(Xix
n
i ) = s(�(Xi)f(x

n
i )) = s(�(Xi)) � f(x

n
i )

= f(xi)
�(n+1):

We next show that f(u�v) = f(u)�f(v) for all u; v 2 P , completing the proof. We
do this by induction on deg(u)+deg(v) for homogeneous u; v. The statement being
trivial in total degree 0, we need only show the inductive step. By kH-linearity, we
may assume u = x

� and v = x
 . Then

f(u � v) = sf@(u � v) = sf(@(u) � v + u � @(v))

= s(f@(u) � f(v) + f(u) � f@(v))

= s(@f(u) � f(v) + f(u) � @f(v))

= s@(f(u) � f(v))

= f(u) � f(v):
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The last step follows because s@(w) = w�@s(w) for w of positive degree, but since
f(u); f(v) 2 Im s, Lemma 5.1(iii) implies w = f(u) � f(v) 2 Im s, hence s(w) = 0
by Lemma 5.1(i).
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