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1 Introduction

Let k be an algebraically closed �eld of characteristic 3, and A9 the alternating
group on 9 letters. The main result of this paper is

Theorem 1 The Loewy structures of the principal indecomposable modules

(PIM's) of kA9 are:

A
BEF

AAABDEFF
AABBBDEEFF
AAABDEFF

BEF
A

,

B
ADEF

ABBBDEFF
AAABBDDEEFF

ABBBDEFF
ADEF
B

,

D
BDF

ABDDEF
ABBDEFF
ABDDEF

BDF
D

,

E
ABF

ABDEEF
AABBDFF
ABDEEF
ABF
E

,

F
ABDEF

AABBDEFFF
AABBDDEEFFF
AABBDEFFF

ABDEF
F

,
C
H
C

,
H
C
H

, and G.

Here, the simple kA9 modules are labeled as in the Brauer character table

given in the Appendix. This table is easily computed from the Brauer character
table of the symmetric group S9 at the prime 3 given in [6]. The ordinary
character table of A9 is well known, and can be found in [5]. Notice that
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there are three blocks of kA9: the principal block, a block of defect zero, and

a block of defect one. The non-principal blocks are easy to describe, so we

restrict ourselves here to the principal block.

The Loewy structures of the PIM's of kA6 are well known and appear in

[3]; their module diagrams can be found in [4]. The PIM structures for kA7

and kA8 have been calculated by J. Scopes ([8]). The structures for A8 and A9

have also been done in characteristic two in [1] and [2] respectively. We shall

use the results of Scopes extensively, as well as some details from her proofs.

The method employed in this paper is largely diagramatic. These diagrams,

the most important being the L-�ltrations, are de�ned in Section 2. The

structure of the proof can then be summarised as follows: we begin with the

Loewy structures of the PIM's of kA8. By inducing these to kA9, we obtain
L-�ltrations of the PIM's of kA9. By manipulating these diagrams, we �nally

prove Theorem 1.

2 Diagrams

Let G be a �nite group, p a prime, and k an algebraically closed �eld of

characteristic p. By `kG-module' we will always mean a left kG-module which
is �nite dimensional over k.

Given a kG-module M , we will use various diagrams D to describe some
aspect of the structure of M , and say \D describesM", \M has Loewy struc-
ture D", or \M has L-�ltration D", as the case may be, and in any case write

M � D. Each of these diagrams consists of symbols representing the com-
position factors of M (with multiplicities), arranged in horizontal rows, and
possibly some other symbols. By the i-th row of D we will mean the module
that is the direct sum of the simple modules occuring in the i-th row from the
top of D. We now de�ne these diagrams precisely.

First, the Loewy structure of M is considered a diagram. Its i-th row is

Li(M) = radi�1(M)=radi(M):

The socle structure of M is also a diagram; its i-th row is

socn�i+1(M)=socn�i(M);

where n is the Loewy length of M . However, all structures considered in this

paper will be Loewy structures, unless explicity stated otherwise.
Secondly, if M �= U � V , and DU and DV are diagrams describing U and

V , respectively, then DU �DV is a diagram describingM , and the i-th row of
DU �DV is just the direct sum of the i-th row of DU and the i-th row of DV .
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Finally, if U is a submodule of radn(M), for a non-negative integer n, then

an L-�ltration of M (through U) is a diagram

D = DM=U g (n)
DU

(1)

describing M , where DM=U and DU are diagrams describing M=U and U ,

respectively, and DU is shifted down n rows. Hence the (n + i)-th row of D,

for i � 1, is the direct sum of the (n+ i)-th row of DM=U and the i-th row of

DU , while the i-th row, for i � n, is just the i-th row of DM=U .

The question of associativity of L-�ltrations arises naturally. It is clear

from the de�nition that

M �
DM=U g (n)�

DU=V g (m)
DV

�

implies

M �

�
DM=U g (n)

DU=V

� �
(m+ n)

DV

However, the opposite implication does not necessarily hold. For example,

take any M with Loewy structure A
BC : Then

M � (AjB)
C

but M 6� A
�
B

C

�
:

In view of this, if there are no parentheses appearing in an L-�ltration, this
will mean that all the parentheses are to be considered concentrated to the
right.

Part of the motivation for this notation is that if DM=U is the Loewy
structure of M=U in (1), then the �rst n Loewy layers of M are just the �rst

n rows of D, since U � radn(M). The following is a sort of converse to this:

Lemma 2 Suppose U � M and Li(M=rad(U)) �= Li(M=U) for i = 1; : : : ; n.
Then U � radn(M).

Proof The hypothesis implies that for 1 � i � n,

M=rad(U)

radi(M) + rad(U)=rad(U)
�=

M=U

radi(M) + U=U
:

Hence
radi(M) + rad(U) = radi(M) + U:

We prove by induction on i that U � radi(M) for i = 0; : : : ; n. The case i = 0

is trivial. Suppose i < n and U � radi(M). Then rad(U) � radi+1(M), and

since i+ 1 � n,

radi+1(M) + U = radi+1(M) + rad(U) = radi+1(M);
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which implies U � radi+1(M), and the proof is complete. 2

Let H be a subgroup of G, and B a block of kG with block idempotent e.

We are interested in the relationship between L-�ltrations and induction from

H to G under the following hypothesis:

Hypothesis 1 If S is a simple kG-module lying in B then S#H is semisimple.

The following useful observation is due to Benson([1, Lemma 4.1.1]).

Lemma 3 (Benson's Lemma) Assume Hypothesis 1. If M is a kH-module

then

1. (rad M)":e � rad(M"):e

2. N"=radn(N"):e �= M"=radn(M"):e, where N =M=radn(M)

Corollary 4 Assume Hypothesis 1. If M is a kH-module, U is a submodule

of M , and

M � DM=U g (n)
DU

then

M"G:e �
D

(M=U)"G:e g (n)
DU"G:e

;

where we are assuming, in each case, that DX is a diagram for the module X.

Finally, we will occasionally use a Benson-Carlson module diagram to de-
scribe a kG-module M . This is a �nite directed graph, with vertices labeled
by simple modules, while an edge from a vertex S to a vertex T corresponds to

a non-zero element of Ext1kG(S; T ). The graph must satisfy several additional

properties to represent M . For a precise de�nition, see [4].

3 Simple Modules

For the balance of this paper, we let k be an algebraically closed �eld of
characteristic 3, and A8 the subgroup of A9 �xing a point. We also let e0 denote
the principal block idempotent of kA9 and f0 the principal block idempotent of

kA8. We will abbreviate the symbols `"A9

A8
' and `#A9

A8
' as `"' and `#', respectively.

We label the simple kA8-modules by their dimensions, with indices when

there is more than one of a given dimension. Finally, we denote the projective

cover of a module M by PM .
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Theorem 5 (Restriction)

A# �= 1 B# �= 7 C# �
7
13
7

D# �= 21 E# �= 28� 13

F# �= 35 G# �= P28 H# � 451 � 452 �
35
1 28
35

Proof These follow easily from characters and Frobenius reciprocity. (See

the Appendix for induction and restriction of characters.) We also used the

fact that Ext1kA8
(28; 13) = f0g, and that HomkA9

(C; 7") �= k, as C is a block

summand of 7".2

Corollary 6 With G = A9, H = A8, k an algebraically closed �eld of char-

acteristic three, and B = B0, Hypothesis 1 is satis�ed.

Theorem 7 (Induction)

1" �
A
B
A

7" � C �
B
AD
B

13" �
E
F
E

35" � H �
F
DF
F

28" � G�
E
AB
E

21" �

D
BF
AED
BF
D

After we have proved the theorem, it will follow from Corollary 4 that we have
the following L-�ltrations of the PIM's of kA9:

PA �= P1":e0 �

A
B E F
A F �DF A A B E
E F B �B �AD �AB E F

A A B E F �DF A
E F B

A

(2)

PB �= P7":e0 �

B
AD E F
B F �DF B B A E

E F AD �AD �B �AB E F
B B A E F �DF B

E F AD
B

(3)
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PD �= P21":e0 �

D
BF D
AED BF D
BF AED BF
D BF AED

D BF
D

(4)

PE �= P28":e0 �

E
AB F
E DF A B E

F B �AD �AB F
A B E DF E

F AB
E

(5)

PE �= P13":e0 �

E
F A B
E B �AD E F
A B F �DF A B

E F B �AD E
A B F

E

(6)

PF �= P35":e0 �

F
DF A B E
F B �AD �AB E F F

A B E F �DF �DF A B E
E F F B �AD �AB F

A B E DF
F

(7)

Interestingly enough, these also turn out to be the Loewy structures of
the projectives, in the sense that the i-th row in each of these diagrams is
actually the i-th Loewy layer of the module it describes, though we know of
no explanation for this phenomenon.

Proof of Theorem 7 The only di�culty arises in the case of 21". We now
turn our attention to that case, and will freely use the above L-�ltrations,

except for that of PD.

Let M = B 
D. (See the Appendix for the composition factors of tensor

products of simples.) We'll show M has Loewy structure
BF
AED
BF

. Then since

21" �= (D# 
 1)" �= D
 1" has a �ltration with successive quotients D;M;D,
and head and socle isomorphic to D, the Loewy structure of 21" follows.

The characters of B 
B, B 
F , and B
E show that the head and socle

of M each contain one B and one F , while A and E do not occur. If D were

in the head, then we would have M �= X �D, where X has a head and socle

isomorphic to B � F . This would imply the dimension of the endomorphism

ring of M is at least 4. However,

HomkA9
(M;M) �= HomkA9

(B 
B;D 
D)
�= HomkA9

(A�C �D;D 
D)
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has dimension less than or equal to three. Hence the head of M is B � F ,

and the Loewy length is 3; 4; 5; or 6. It's easy to see the length is 3 by

eliminating the other cases. For example, if the length is 4, then rad2(M) ,!
(M=rad2(M))�, which implies A;E; and D must occur in the second layer,

leaving rad2(M) uniserial with composition factors B and F , which contradicts

the self-duality of M . The other cases are handled similarly.

This leaves three possibilities for the Loewy structure of B 
D, which, as

above, correspond to the following three possible Loewy structures of 21": the
one claimed,

(i)

D
BF

AEDF
B
D

or (ii)

D
BF

AEDB
F
D

.

Suppose (i) is the case. It follows that 21" has a quotient with Loewy

structure
D
BF
F

and hence a submodule U with Loewy/socle structure given

by one of the following Benson-Carlson module diagrams:

(a)

F
= n

B F
n =
D

(b)

F
=

B F
n =
D

(c)

F
n

B F
n =
D

In each case, there are two linearly independent homomorphisms from PF to
U , and by considering L-�ltration (7), each of these factors to give a homo-

morphism from V " to U , where V = 35
7 . But

HomkA9
(V "; U) � HomkA9

(V "; 21")
�= HomkA8

(V; 21"#)
�= HomkA8

(V; 21 � 21#A7
"A8)

�= HomkA8
(V; 6"A8

A7
� 15"A8

A7
)

is one-dimensional, a contradiction.

Case (ii) is handled similarly, only one ends up with a submodule con-
taining two B's, and obtains a contradiction since HomkA9

(V �"; 21") �= k,
completing the proof of the theorem.2

4 Two-step Modules

In this section we will calculate the Loewy structures of the induced modules
of two-step kA8-modules lying in the principal block. A two-step module is

a module with two composition factors and Loewy length two. We will also
compute dimk Ext

1

kA9
(S; T ) for each pair (S; T ) of simple kA9-modules.
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Theorem 8 (i) The second Loewy layers of the PIM's of kA9 are as stated in

Theorem 1.

(ii) The following are Loewy and socle structures:

13
1 ":e0 �

E
FA
EB
A

7
35 ":e0 �

B
ADF
BDF
F

7
13 ":e0 �

B
ADE
BF
E

1
35 ":e0 �

A
BF
ADF
F

35
28 ":e0 �

F
DFE
FAB
E

Proof The L-�ltrations of the PIM's of kA9 give an upper bound on the

multiplicities of simples in the second Loewy layers (only simples in the second
row of the L-�ltration have a possibility of being in the second Loewy layer),
while the Loewy structures of the modules in Theorem 7 provide some lower
bounds. Putting these together, there remain only three facts to be proved to
establish (i):

dimk Ext
1

kA9
(A;F ) � 1 (8)

dimk Ext
1

kA9
(B;F ) � 1 (9)

dimk Ext
1

kA9
(D;D) � 1 (10)

We get (8) from the long exact sequence in cohomology and the facts that
Ext1kA9

(A; 35") �= k and that Ext1kA9
(A;D) = f0g. We now turn our attention

to the proof of (9).

Let N = 13
1 ":e0. From (6) we have an L-�ltration of PE:

PE �

0
B@
E
F A
E B

A

1
CA  

B
AD � � �
B

!
:

The quotient represented by this L-�ltration is isomorphic to N . Since there

is an A in the second Loewy layer of E, A must be in the second Loewy layer

of N . The only question is whether B is in the third or fourth layer of N .
However, a similar argument shows that E is in the second Loewy layer of

N�. Hence there can not be a uniserial submodule of N of length three with
head isomorphic to E, so B must be in the third layer of N , and we have

determined the Loewy structures of N and N�.

Now consider the L-�ltration of PE arising from (5):

PE �

E
AB
E

0
B@

F
DF B
F AD

B

1
CA AE

BAB
AE

� � � :
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If Ext1kA9
(B;F ) = f0g, then B must be in the third layer of 35

7 ":e0, and there

would be no B in the third layer of PE, contradicting the Loewy structure of

N , and we have established (9).

Now let M = 7
35 ":e0. Examining (3), we see that F must be in the

second layer of M . Similarly, B is in the second layer of M�, so M has no

submodule of Loewy length three with head isomorphic to B. Moreover, M

has no uniserial submodule with series D;F;F or F;D;F (if so, then the

inclusion of this submodule followed by projection onto 7":e0 is zero, so it

would be a submodule of 35":e0). The reader can now check this leaves only

one possibility for the Loewy and socle structure of M .

We now go on to prove (10), completing the proof of the �rst part of
the Theorem. Suppose Ext1kA9

(D;D) = f0g. Examining (4), we see this
implies there is no F in the third layer of PD. By Landrock's Lemma ([7,
Lemma 1.9.10]), the multiplicity of F in the third Loewy layer of PD equals
the multiplicity of D� �= D in the third Loewy layer of PF �

�= PF . But the
Loewy structure of M shows this is at least 1, a contradicton.

We proceed with the calculation of the Loewy structures of the induced
two-step modules from the principal block of kA8. We see that

U � 13
7 ":e0 �

E
F B
E AD

B

�

E
FB
E AD

B

�

E
FB
ED A

B

�

E
FB
EDA
B

:

The second �ltration follows from (6) and the fact that Ext1kA9
(B;E) �= k,

while the third follows because Ext1kA9
(D;E) = f0g. The fourth is obtained

by considering the L-�ltration of U�: there is no E or D in the third Loewy
layer of U�, and so the Loewy structures of U , and U�, follow easily. The
others are done in exactly the same way, so we leave them as an exercise. 2

Corollary 9 Suppose M is a kA8-module of Loewy length two lying in the

principal block of kA8. Then for i � 1,

Li(M":e0) �= Li((M=rad(M))":e0)� Li�1((rad(M))":e0);

where we interpret L0 to be f0g.

Proof We �rst show that M":e0 has Loewy length 4; it su�ces to show

rad4(M":e0) = f0g. We can express M as a sum (not necessarily direct) of
submodules, each with a simple head. If U is one such summand, then U�

can be written as a sum of two-step and simple modules, so Theorems 8 and

7 show rad4(U�":e0) = f0g. It follows that rad4(M":e0) = f0g.
Now let rad(M) �= �s

i=1Ui be an expression of rad(M) as a direct sum

of simples. The proof is by induction on s, the case s = 0 being trivial
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(the inductive step does take us from M semisimple to s = 1). Suppose the

Corollary holds for s� 1. Let U 0 = U1� � � � �Us�1. Our inductive hypothesis

says we have the following L-�ltration:

M":e0 �

L1(V ":e0)
L2(V ":e0)� L1(U

0":e0) L1(Us":e0)
L3(V ":e0)� L2(U

0":e0) L2(Us":e0)
L3(U

0":e0) L3(Us":e0)

;

where V = M=rad(M). By Theorem 7, the Loewy and socle structure of

Us":e0 is of the form
X
Y
X

or
X
Y Z
X

for some simples X;Y; and Z where Y 6�= Z. In the �rst case, the result
follows immediately from the fact that rad4(M":e0) = f0g. In the second
case, this fact still forces X to pass to layer 2. If we then let Y pass to the

quotient, the resulting submodule has Loewy structure Z
X , and again the

length consideration forces Z to go to the third Loewy layer. By the same
reasoning, Y must go to the third layer, and the �rst three Loewy layers of
M":e0 are as claimed, and the Corollary is proved. 2

5 Projective Indecomposable Modules

In this section, we prove Theorem 1. We will often use Corollary 9 tacitly
throughout the proof.

We begin with the Loewy structure of PE. Let M = (P28=rad
3(P28))":e0.

We claim

M �

E
AB F
E DFABE

FBADAB
ABE

�

E
ABF

EDFABE
FBADAB
ABE

�

E
ABF

EDFABE
FBADAB
ABE

:

To see this, consider the modules of Theorem 7. It remains only to show

that there are two E's in the third layer, and this follows from the fact that

Ext1kA9
(E;E) = f0g. We remark that by Lemma 3, this determines the �rst

three Loewy layers of PE .

Next, we compute

rad(P28)=rad
4(P28)":e0 �

F
DF ABE
F BADABF

ABEDF
F

�

F
DFABE

FBADABF
ABEDF

F

: (11)
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This follows in the same way; we need only show that there are two F 's in the

third layer of this module. However, by considering L-�ltration (6) and the

�rst three Loewy layers of PE, we see there are two F 's in the fourth layer of

PE, and the Loewy series of this module follows. We conclude that

(P28=soc(P28))":e0 �

E
AB F
E DFABE

FBADABF
ABEDF

F

�

E
ABF

EDFABE
FBADABF
ABEDF

F

;

and we have determined the �rst four Loewy layers of PE.

Next, observe that

(rad2(P28))":e0 �

ABE
BADABF
ABEDF E

F AB
E

�

ABE
BADABF
ABEDFE
FAB
E

:

This follows easily from the fact that this module is dual to (P28=rad
3(P28))":e0.

Using this, we see that

PE �= P28":e0 �

E
ABF
EDF ABE
F BADABF

ABEDFE
FAB
E

;

and the Loewy structure of PE follows from our knowledge of its �rst four
Loewy layers.

The Loewy structure of PB o�ers a more challenging problem, because the

structure of P7 is much more complicated than that of P28. Hence we begin

by analyzing the structure of P7 a bit further.

Lemma 10 Let Z be the submodule of rad2(P7) containing rad
3(P7) with com-

position factors 1; 13; 35; 7. Then Z has Loewy and socle structure
1

13 35
7

.

To prove the Lemma, it su�ces to show there exists a kA8-module with such a

structure{the Lemma then follows from the existence of an injective homom-

morphism into P7. To this end, let U =

�
C
H

�
#A8

:f0. A quick check with

Frobenius reciprocity shows that soc(U) �= 35 and the head of U is isomorphic

to 7, so

U �
7
13 35
7 1 28

35

�
7

13 35
7 1 28
35

:
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We claim it su�ces to show that the subquotient of U with composition factors

f13; 1g has Loewy structure 13
1 . (Hence the Benson-Carlson module diagram

for U is
7

= n
13 35
j n = j
7 1 28
n j =
35

:)

Indeed, if that is the case, just consider the dual of the quotient of U by the

submodule 7 28
35 .

Consider the kA8 module

V =

 
101
1
13

!
"A8

A7
:f0 �

35
1� 7 13 � 28

35
28

�

35
1 7 28
13 35
28

:

(The fact that such a uniserial kA7-module exists is proved by Lemma 3.3.8

of [8].) A Frobenius reciprocity argument between A8 and A7 shows that
1
13

and 7
13 are isomorphic to submodules of V . (Use 13#A7

�= 13A7
, 7#A7

�=

1A7
� 6A7

to show 13 is a submodule of V while 1 and 7 are not. Then show
1
13 #A7

�= 1
13 and 7

13 #A7

�= 6 � 1
13 . )

If we now let W be the dual of the quotient of V by the submodule K =
28
35
28

, we see that 1
13 and 7

13 are isomorphic to submodules of W �. This

follows from the fact that 1
13 \K = 0, so the composition

1
13 ,! V ! V=K �= W �

is injective, and the same argument works for 7
13 . This shows that W has

Loewy and socle structure
13
1 7
35

.

We now prove that W is isomorphic to a submodule of U . Indeed, an

easy calculation shows that the B1 component of W" is isomorphic to

�
C
H

�
,

so Frobenius reciprocity shows there exists a non-zero kA8-homomorphism

� :W ! U . On the other hand, � must have zero kernel since 35 is the unique

simple submodule of U . This shows that the subquotient with composition
factors 13,1 of U actually is a non-zero extension, and completes the proof of

the Lemma.2
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Lemma 10 implies we have the following L-�ltration:

P7 �

7
13 35

7 7 28 1
13 35

7

:

Inducing, projecting onto B0, and applying Corollary 4, we get

PB �

B
ADEF
BFDF BBE A
EF ADADAB BEF

BBE AFDF B
EF AD

B

(12)

At this point, we know that the third Loewy layer of PB contains at least one
B, oneD, and two F 's, and by Landrock's Lemma, precisely one E. Using this,
and the fact that Ext1kA9

(B;B) = f0g, we evaluate the following L-�ltration:

(P7=rad
3P7)":e0 �

B
AD EF
B FDFBBE A

EFADADAB B
BBE A

�

B
ADEF
B BB FDFE A

EFADADAB B
BBE A

�

B
ADEF

BFDFBBE A
EFADADAB B

BBE A

: (13)

So there are three B's in the third layer of PB, and (12) becomes

PB �

B
ADEF

BFDFBBE A
EFADADAB BEF

BBE AFDF B
EF AD

B

: (14)

By Landrock's Lemma, there are two E's in the fourth layer of PB, so by
Lemma 2, the A must go to the third layer in (14), and we have shown there

is an A in the third layer of PB. This completes the calculation of the third

layer, and shows that the Loewy structure of (P7=rad
3P7)":e0 is obtained by

removing the vertical line from (13).
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Lemma 11 If U is the kA8-module in the proof of Lemma 10, then U":e0 has

Loewy structure

B
ADEF

BFDFBAE
EFADBABF
BAEDF

F

.

Proof We �rst observe that rad(U) is the sum of the two submodules W

(from the proof of Lemma 10) and W 0 = H#:f0, and that

W 0":e0 �

F
DFAE
FBABF
AEDF
F

and W":e0 �

E
FBA

EADBF
BADF
F

:

The structure of W is an easy exercise, using the structure of PE. The only

di�culty arising in the analysis of W 0 is to show there are two F 's in the
third layer. To see this, examine (7) to observe there does not exist a uniserial
kA9-module with series D;F;F , and evaluate the L-�ltration

W 0":e0 �

 
35
1 28
35

!
":e0 �

F
DF AE
F BABF

AEDF
F

�

F
DFAE
FF BAB

AEDF
F

:

It follows that (rad(U))":e0 has Loewy length 5, from which we easily derive
its Loewy structure, and we get an L-�ltration of U":e0 through (rad(U))":e0:

U":e0 �

B
AD EF
B FDFBAE

EFADBABF
BAEDF

F

: (15)

Now P7 = PC#:f0 and PB = P7":e0, so PB has a submodule

 
7
13
7

!
":e0 with

quotient isomorphic to U":e0. This, together with our knowledge of the �rst

three layers of PB, implies the Loewy tructure of U is obtained by removing

the line from the above L-�ltration.2

Now Lemma 11, (14), and Landrock's Lemma show that the fourth Loewy
layer of PB is as claimed. We continue by calculating the Loewy structure of

(rad2 P7)":e0 �

BBAE
ADADBABEF
BBAEFDF B

EF AD
B

:

14



By (13) and duality, this module has Loewy length 5. From this it is easy to

see the Loewy structure is obtained by removing the line. Finally, this gives

us a �ltration of PB:

PB �

B
ADEF
BFDF BBAE
EF ADADBABEF

BBAEFDFB
EFAD
B

:

Since the third row of this L-�ltration is L3(PB) and the fourth row is L4(PB),

we can remove the line to obtain the Loewy structure of PB.

We now proceed with the remaining three projectives. With the momen-
tum generated by Landrock's Lemma, the work is relatively easy.

Using Landrock's Lemma and (11), to determine the third Loewy layer of

PF we need only show it contains three F 's. This is accomplished as follows.
Let R = rad2(P35)=rad

4(P35), and let M be the submodule of R with quotient

13. Then M has Loewy and socle structure 35 35
1 28 7 . Indeed, this is clearly

the socle structure of M . To see that it is the Loewy structure, let W =

rad(P28)=soc(P28), which has Loewy and socle structure
35

1 7 28
35

. An inclusion

from W into its injective hull, P35, induces an inclusion from W=soc(W ) to
M , which shows M has L-�ltration

M � 35 35
1 7 28

and therefore the Loewy structure of M is as claimed.
Let N be the quotient of M by 7. If 35 is a submodule of N then M has

L-�ltration
M � 35 35

1 28 7 :

This su�ces to prove L3(PF ) contains three F 's, since M occurs in an L-

�ltration of P35, which we can then induce to get an L-�ltration of PF . Our
knowledge of the multiplicities of B and E in the fourth layer of PF then forces
both copies of F in this L-�ltration to pass to layer 3.

If 35 is not a submodule of N then N � 35
1 � 35

28 : A similar argument

yields the desired result in this case.

Now we have determined the �rst three Loewy layers of PF , and by our
usual argument L-�ltration (7) becomes

PF �

F
DFABE

FBADABEFF
ABEFDFDF A B E

EFF B � AD � AB F
A B E DF

F

15



Since there are two B's in the �fth layer of PF , the A must go to the fourth

layer, and we have determined L4(PF ). Finally, consider the L-�ltration of PF
through (rad2P35)":e0. Since the third and fourth rows of this L-�ltration are

precisely L3(PF ) and L4(PF ), the stucture of PF follows.

We now look at PA: to get the third layer we need only show there are two

A's, but this follows from the fact that there are two B's in the fourth layer.

This allows us to remove the �rst two lines from L-�ltration (2). It follows

that there are two A's and one D in the fourth layer. This, combined with

Landrock's Lemma, shows L4(PA) is as claimed. We now use the fact that

(rad2P1)":e0 �= ((P1=rad
3P1)":e0)� has Loewy length 5 to get an L-�ltration

PA �

A
BEF
AFDF EAAB
EF ABBBADFE

EAABDFFA
FEB
A

:

Of course, the third and fourth rows are just L3(PA) and L4(PA), so we can
remove the line.

We now know the multiplicity of each simple module in each Loewy layer

of PD, except for the simple module D itself, so we are almost home. Let M
be the submodule of rad2(21") with simple head D. Since the Loewy series
of 21" is also its socle series, we see M must have Loewy length 3, so M has
Loewy series D;BF;D; D;B;D; or D;F;D. Say, for example, the �rst case
holds. Then, since there are a B and an F in the �fth layer of PD, Lemma 2

forces the D to go to the fourth layer in the following L-�ltration:

�
21
21

�
" �

D
BF D
AED BF
BF AED
D BF

D

�

D
BFD

AEDBF
BFAE D
D BF

D

:

Of course, the same argument works for the other two cases. This shows that

the Loewy structure of
�
21
21

�
" is obtained by removing the line. Since there

are a B and an F in the sixth layer of PD, exactly the same argument works
to show there is a D in the �fth layer. Hence the Loewy structure of PD is as

claimed, and Theorem 1 is, at long last, proved.
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Appendix

Irreducible Brauer Characters of A7 mod 3

1A 2A 4A 5A 7A 7B
1 1 1 1 1 1 1

101 10 �2 0 0 b7 ��
102 10 �2 0 0 �� b7
13 13 1 �1 �2 �1 �1
6 6 2 0 1 �1 �1
15 15 �1 �1 0 1 1

b7 = 1

2
(�1 + i

p
7)

** = 1

2
(�1� i

p
7)

Loewy Structure of PIM's of A7 mod 3

1
101 102 13 13
1 1 1 1 1

101 102 13 13
1

101
1

102 13
1
101

102
1

101 13
1
102

13
1 1

101 102 13
1 1
13

6
15
6

15
6
15

Decomposition Matrix of A8 mod 3

1 7 13 28 35 21 451 452
�1 1
�2 1
�3 1 1
�4 1 1
�8 1
�9 1
�12 1 1 1 1
�13 1 1 1
�14 1 1 1
�5 1
�6 1
�7 1
�10 1
�11 1

Decomposition Matrix of A9 mod 3

A B D E F C H G
1 1
8 1 1

211 1
212 1
28 1 1
351 1
352 1
42 1 1
48 1 1
56 1 1
84 1 1 1 1
105 1 1 1 1 1
120 2 1 1 2
168 1 2 2 1 2
27 1
189 1
216 1 1
162 1

Irreducible Brauer Characters of A8 mod 3

1A 2A 2B 4A 4B 5A 7A 7B
1 1 1 1 1 1 1 1 1
7 7 �1 3 �1 1 2 0 0
13 13 5 1 1 �1 �2 �1 �1
21 21 �3 1 1 �1 1 0 0
28 28 �4 4 0 0 �2 0 0
35 35 3 �5 �1 �1 0 0 0
451 45 �3 �3 1 1 0 b7 ��
452 45 �3 �3 1 1 0 �� b7

Loewy Structure of PIM's of A8 mod 3

1
13 35

1 1 7 28
13 35
1

7
13 35

1 7 7 28
13 35
7

13
1 7
13 35
1 7
13

28
35

1 7 28
35
28

35
1 28 7
13 35 35
1 28 7
35

21
21
21

451 452

17



Irreducible Brauer Characters of A9 mod 3

1A 2A 2B 4A 4B 5A 7A 10A
A 1 1 1 1 1 1 1 1
B 7 3 �1 1 �1 2 0 �2
C 27 7 3 1 �1 2 �1 2
D 21 1 �3 �1 1 1 0 1
E 41 5 1 �1 1 �4 �1 0
F 35 �5 3 �1 �1 0 0 0
G 162 6 �6 0 �2 �3 1 1
H 189 �11 �3 1 1 �1 0 �1

Induction and Restriction

Here we list how the simple modules induce and restrict between kA7 and kA8 (as

modules, from [8]), and kA8 and kA9 (only as characters).

1A8
#A7

�= 1
7A8

#A7

�= 1� 6
13A8

#A7

�= 13
21A8

#A7

�= 6� 15

28A8
#A7

�
13
1 1
13

35A8
#A7

�= 101 � 102 � 15
451;A8

#A7

�= P101
452;A8

#A7

�= P102

1A7
"
A8 �= 1� 7

6A7
"
A8 �

7
13
7

� 21

101;A7
"A8 �= 35� 451

102;A7
"
A8 �= 35� 452

13A7
"A8 �

28
35
28

� 13

15A7
"A8 �

35
1 28
35

� 21

A#A8
= 1

B#A8
= 7

C#A8
= 7 + 7 + 13

D#A8
= 21

E#A8
= 13 + 28

F#A8
= 35

G#A8
= P28 = 3(28) + 2(35) + 1 + 7

H#A8
= 451 + 452 + 35 + 35 + 1 + 28

1A8
"A9 = 2A+ B

7A8
"A9 = A+ 2B + C +D

13A8
"
A9 = 2E + F

21A8
"
A9 = A+ 2B + 3D+ E + 2F

28A8
"A9 = A+ B + 2E +G

35A8
"A9 = D + 3F +H

45i;A8
"
A9 = C + 2H

Tensor Products

The following is a list of the decomposition of the tensor products of some of the

irreducible Brauer characters of kA9. For the tensor squares, we have written the

decomposition in two parts{the �rst part is the character of the symmetric square,

the second part is the character of the alternating square.

B 
B = (A+ C) +D
C 
 C = (A+ 2B + 3D + 2F +E + G) + (6A+ 4B + 2C +D + 3F + 4E)
D 
D = (D +H) + (3A+ 2B + C + 3F + 2E)
E 
 E = (A+ 3B + C + 6D + 3F +G+H)

+(8A+ 8B + 2C + 3D + 6E + 7F +H)
F 
 F = (B + C +D +G+ 2H) + (7A+ 6B + 3D + C + 7F + 6E)

18



B 
 C = 2A+ 4B + 2D + 2E + F
B 
D = A+ 2B +D + E + 2F
B 
E = A+ B + 2E + F +G
B 
 F = D + F +H

C 
D = A+ 2B + C + 3D+ E + 2F +G+H
C 
E = 6A+ 6B + C + 3D+ 6E + 6F + 2G+H
C 
 F = 3A+ 2B + C + 2D + 2E + 6F + 3H

D 
E = 3A+ 3B + C + 2D + 3E + 3F +G+ 2H
D 
 F = A + 2B + C + 2D + E + 2F +G+ 2H

E 
 F = 4A+ 4B + 2C + 3D + 3E + 7F + G+ 4H

Acknowledgments

I would like to thank Michael Collins, who was my advisor for this work.
I am also grateful to David Benson for all his many suggestions and lively
discussions, and to Jon Carlson, for his suggestions on improving this paper.

References

[1] D. J. Benson, The Loewy Structure of the Projective Indecomposable Mod-

ules for A8 in Characteristic 2, Comm. Algebra, 11 (1983), 1395-1432.

[2] D. J. Benson, The Loewy Structure of the Projective Indecomposable Mod-

ules for A9 in Characteristic 2, Comm. Algebra, 11 (1983), 1433-1453.

[3] D. J. Benson, Modular Representation Theory: New Trends and Methods,
Lecture Notes in Mathematics, Springer-Verlag, 1984.

[4] D. J. Benson and J. F. Carlson, Diagrammatic Methods for Modular Rep-

resentations and Cohomology, Comm. Algebra, 15 (1987), 53-121.

[5] J. H. Conway et al., Atlas of Finite Groups, Clarendon Press, Oxford,
1985.

[6] G. James and A. Kerber, The Representation Theory of the Symmet-

ric Group, Encyclopedia of Mathematics and its Applications, vol. 16,
Addison-Wesley Publishing Company, 1981.

[7] P. Landrock, Finite Group Algebras and Their Modules, London Mathe-
matical Lecture Note Series 84, Cambridge University Press, 1983.

[8] J. C. Scopes, The Loewy Structure of the Projective Indecomposable Mod-

ules of A6, A7, and A8 in Characteristic Three, a dissertation submitted

for transfer of status at Oxford University, 1988.

19


