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Abstract

Hidden Markov models (HMM s)and partially observable
Markov decision processes (POMDPs) form a useful tool
for modeling dynamical systems. They are particularly
useful for representing environments such as road net-
works and office buildings, which are typical for robot
navigation and planning. The work presented here is
concerned withacquiringsuch models. We demonstrate
how domain-specific information and constraints can
be incorporated into the statistical estimation process,
greatly improving the learned models in terms of the
model quality, the number of iterations required for con-
vergence and robustness to reduction in the amount of
available data. We present new initialization heuristics
which can be used even when the data suffers from cu-
mulative rotational error, new update rules for the model
parameters, as an instance of generalizedEM, and a strat-
egy for enforcing complete geometrical consistency in
the model. Experimental results demonstrate the ef-
fectiveness of our approach for both simulated and real
robot data, in traditionally hard-to-learn environments.

1 Introduction

Hidden Markov models (HMMs), as well as their general-
ization to partially observable Markov decision processes
(POMDPs), model a variety of nondeterministic dynamical
systems as probabilistic state-transition systems with dis-
crete states, observations, and possibly actions. In this pa-
per we concentrate on the special case of models in which
states can be associated with points in a metric configura-
tion space. These are appropriate in contexts such as of-
fice building, road network, or sewerage system modeling.
Specifically, suchPOMDP models form a useful basis for
robot navigation in buildings,providing a sound method for
localization and planning [SK95, NPB95, CKK96]. Much
of the previous work on planning assumed that the model is
acquired manually; such manual acquisition can be very te-
dious and it is often difficult to obtain correct probabilities.

Learning such models automatically is an ultimate goal,
both for robustness and in order to cope with new and�This work was supported by the Brown University Graduate Re-
search Fellowship.

changing environments. SincePOMDPmodels are a simple
extension ofHMMs, they can, theoretically, be learned with
a simple extension to the Baum-Welch algorithm [Rab89]
for learningHMMs. However, without a strong prior con-
straint on the structure of the model, the Baum-Welch al-
gorithm does not perform very well: it is slow to converge,
requires a great deal of data, and often becomes stuck in
local maxima.

Our work focuses on showing how weak information about
the metric relationship between states can be used to sig-
nificantly improve model learning. Such information is
usually readily available but is often ignored during the
process of learning topological maps. We have previ-
ously shown [SK97, SK98] that the odometric ability of
the robot, which allows it to roughly measure its geometric
position changes while moving in the environment, can be
very useful when learningtopologicalmodels.

This paper addresses several issues not previously dealt
with: It introduces a “lag-behind” estimation procedure
that enforces geometrical constraints, while being an in-
stance ofgeneralizedEM, new heuristics for choosing an
initial model from which the iterative optimization starts,
and an update strategy that allows the enforcement of the
complete geometrical constraints (additivity), while our
earlier work enforced only part of the constraints (anti-
symmetry of the odometry between points). We conclude
by empirically demonstrating the effectiveness of our algo-
rithms for learning models of environments that are tradi-
tionally considered hard to learn.

2 Related Work
The work presented here is concerned withlearning sta-
tistical modelsin the context ofrobot navigation. In the
robotics domain it is common to distinguish between two
main types of maps:geometricand topological. The
former represent the environment in terms of the objects
placed in it and their positions. For example,grid-based
maps [ME85, Asa91, TBF98] are an instance of the geo-
metric approach. Such maps are the best choice when it
is necessary for a robot to know its location accurately in
terms of metric coordinates. However, in our environments
of interest such as office buildings with corridors and rooms
or networks of roads,topologicalmaps [KB91], specifying



the important locations and their connections, suffice. Such
maps are typically less complex and support much more ef-
ficient planning than metric maps.

We draw an additional distinction, between world-centric1

mapsthat provide an “objective” description of the environ-
ment independent of the agent using the map, and robot-
centric modelswhich capture theinteraction of a partic-
ular “subjective” agent with the environment. An agent
learning amap(such as the grid maps mentioned above),
takes into account its own noisy sensors and actuators and
tries to obtain an objectively correct map that other agents
could use as well; other agents need to compensate for their
own limitations when assessing their position according to
the map. We take the approach of learning amodel that
captures theinteractionof the agent with the environment.
Hence, the noisy sensors and actuators specific to the agent
are reflected in the model; this approach allows robust plan-
ning, taking into account the error in sensing and action,
(although a different model is likely to be needed for differ-
ent agents). Moreover, topological models support a more
general notion of state, possibly including information such
as the robot’s battery voltage or arm position.

The work most closely related to ours is by Koenig and
Simmons [KS96a, KS96b], who learnPOMDP models
(stochastic topological models) of a robot hallway en-
vironment. To overcome the hardship of learning such
a model without initial information they use ahuman-
provided topological map to start from, and further con-
straints on the structure of the model. A modified ver-
sion of the Baum-Welch algorithm learns the parameters
of the model. They also developed an incremental ver-
sion of Baum-Welch that allows it to be used on-line in
certain kinds of environments. Their models contain very
weak metric information, representing hallways as chains
of 1-meter segments and allowing the learning algorithm
to select the most probable chain length. This method is
effective, but results in large models (size is proportional
to hallways’ length). In contrast, we directly incorporate
odometric information into the Baum-Welch algorithm to
learn a probabilistic model with both discrete and continu-
ous probabilities.

Probabilistic models are widely used within the AI com-
munity. Such models may allow continuous probabilities,
as demonstrated in work on Bayesian networks [HG95],
HMMs [GJ97] and stochastic maps [SSC91]. However, that
work significantly differs from ours in several ways. Com-
monly, the continuous distributions used arelinear – that
is – distributions assigning density to each point on the
real line so that the area under the density curve, integrated
over the whole real line, is1, (most often the distribution is
Gaussian). As pointed out in our earlier work [SK98], di-
rectional data is inherentlycyclic, requiring the use ofcir-
cular distributions, where for some period (a real num-1Thanks to Sebastian Thrun for the terminology.

ber), the density of any pointx is the same as that ofx+k ,
for any integerk. In addition, usually the learned statistical
parameters are unconstrained (aside for the obvious con-
straint ofbeing a distribution.) Our approach, which en-
forces geometrical constraints when estimating the param-
eters, requires special precautions to ensure convergenceof
the iterative reestimation procedure, as demonstrated in the
following sections.

3 Models and Assumptions
We describe here the model (and later the algorithms) for
learning anHMM , rather than aPOMDP. The extension to
POMDPs – which we developed and implemented – is tech-
nically straightforward but notationally more cumbersome.

The world is composed of a finite set of states, whose num-
ber is assumed here to be known. The dynamics of the
world are described by state-transition distributions, speci-
fying the probability of transitioning from one state to the
next. A finite set of possible observations is associated
with each state; the observation frequency is described by
a probability distribution and depends only on the current
state. In our model, observations aremulti-dimensional,
hence, an observation is a vector of values, each chosen
from a finite domain. We assume that observation values
are conditionally independent, given the state.

In addition, each state is assumed to be associated with a
(not necessarily unique) point in some metric space. When-
ever a state transition is made, encoders on the robot’s
wheels allow it to record its current pose (position and ori-
entation) relative to its pose in the previous state. It is as-
sumed that the position change (�x, �y) is corrupted with
independent 0-meannormal noise, while the orientation
change, (��), is corrupted with independentvon Mises-
distributed noise. The von Mises distribution is a circular
version of the normal distribution, and its density function
is: f�;�(�) = 12�I0(�) e� 
os(���) ; where� is a concentra-
tion parameter andI0(�) is the modified Bessel function
of the first kind and order0. It is extensively discussed in
former work [GGD53, Mar72, SK98].

In early work [SK97] we assumed perpendicularity of the
corridors that was taken advantage of while the robot col-
lected the data; Odometric readings were recorded with re-
spect to aglobal coordinate system, and the robot could
re-align itself with the origin after each turn. A trajec-
tory of odometry recorded under this assumption by our
robot Ramona, along thex and y axes is given in Fig-
ure 1. In contrast, Figure 2 shows a trajectory of the odome-
try recordedwithoutthe perpendicularity assumption. The
data collected under the latter setting is subjected to cu-
mulative rotational error. In recent work [SK98] we have
shown how such data can be handled throughstate-relative
coordinate systems, as explained later in this section. This
solution is reflected both in the constraints imposed on the
model and in the learning algorithm.

To state the setting formally, a model is a tuple
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Figure 1: Sequence gathered by Ra-
mona, perpendicularity assumed.

Figure 2: Sequence gathered by Ra-
mona, no perpendicularity assumed.

Figure 3: Robot in stateSi, faces in the y-axis direc-
tion; the relationSi,Sj is WRT Si’s coordinate system.� = hS;O;A;B; �;Ri, where� S = fs0; : : : ; sN�1g is a finite set ofN states;� O = Qli=1Oi is a finite set of observation vectors of

lengthl; theith element of an observation vector is cho-
sen from the finite setOi;� A is a stochastic transition matrix, withAi;j=Pr(qt+1=sjjqt = si) ; 0� i; j� N�1; qt is the state at timet;� B is an array ofl stochastic observation matrices, withBi;j;o =Pr(Vt[i℄ = ojqt= sj); 1 � i� l; 0� j � N�1;o 2 Oj; Vt is the observation vector at timet;� � is a stochastic initial probability vector describing the
distribution of the initial state; for simplicity it is as-
sumed here to beh0; : : :0; 1; 0; : : : ; 0i, implying that
the robot always starts in a designated initial statesi;� R is a relation matrix, specifying for each pair of states,si andsj, themeanandvarianceof the metric relation
between them along thex and they dimensions; e.g.�xij def= �(Ri;j[x℄) is the mean of thex component of the

relation betweensi andsj , and(�xij)2 def= �2(Ri;j[x℄),
the variance. As shown in earlier work [SK98]R also
contains themeanandconcentrationof the change in
headingbetween the two states,��ij and��ij. Further-
more,R is geometrically consistent; In a global co-
ordinate system this means that for each componentw 2 fx; y; �g, the relation�wab def= �(Ra;b[w℄) must be
a directed metric, satisfying the following constraints
(referred to asglobal constraintsfrom here on) for all
statesa, b, and
:� �waa = 0;� �wab = ��wba (anti-symmetry); and� �wa
 = �wab + �wb
 (additivity).

In a state-relative coordinate systemthese same con-
straints apply to the� component, but the constraints
over x andy need to be specified with respect to the
explicit coordinate system used. As shown in Figure 3,
each state,si, has its own coordinate system; they axis
is aligned with the robot’s heading in the state (denoted
by bold arrows in the figure), and thex axis is perpen-
dicular to it. The geometric relation fromsi to sj is
expressed with respect to the coordinate system ofsi.
Given a pair of statesa andb, we denote by�hx;yi(a; b)
the vectorh�(Ra;b[x℄); �(Ra;b[y℄)i. Let us defineTab

to be the transformation that maps anhxa; yai point rep-
resented with respect to the coordinate system of statea, to the same point represented with respect to the co-
ordinate system of stateb, hxb; ybi.
More explicitly, let��ab be, as before, the mean change
in heading from statea to stateb. Applying Tab to a
vectorhxaya i results in the vectorhxbyb i as follows:�xbyb� = Tab�xaya� = �xa 
os(��ab)� ya sin(��ab)xa sin(��ab) + ya 
os(��ab)� :
The consistency constraints are then restated as follows
(and referred to asrelative constraintsfrom here on):� �hx;yi(a; a) = h0; 0i;� �hx;yi(a; b) = �Tba[�hx;yi(b; a)℄ (anti-symmetry);� �hx;yi(a; 
) = �hx;yi(a; b) + Tba[�hx;yi(b; 
)℄ (additivity).

The following sections describe the learning algorithm and
the initialization procedure. For clarity and brevity, proofs
and a lot of technical detail are omitted, and we concen-
trate on enforcing the global constraints rather than the rel-
ative ones. The extension is straightforward,and the results
reported in Section 6 were indeed obtained underrelative
coordinate systems. The complete proofs, treatment of the
relative constraints, extension to completePOMDPs and fur-
ther results can be found in [Sha99].

4 Learning the Model
The learning algorithm starts from an initial model�0
and is given a sequence ofexperienceE; it returns a re-
vised model�, with the goal of maximizing the likelihoodP (Ej�). The experience sequenceE is of lengthT ; each
element,Et, is a pairhrt; Vti, wherert is the observed re-
lation vector along thex, y and� dimensions, between the
statesqt�1 andqt andVt is the observation vector at timet.
Our algorithm extends the Baum-Welch algorithm [Rab89]
to deal with the relational information and the factored
observation sets. The Baum-Welch algorithm is an
expectation-maximization (EM) algorithm [DLR77]; it al-
ternates between� theE-stepof computing the state-occupation and state-

transition probabilities,
 and �, at each time in the
sequence givenE and the current model�, and� theM-stepof finding a new model,�, that maximizesP (Ej�; 
; �),

providing monotone convergence of the likelihood functionP (Ej�) to a local maximum.



However, our extension introduces an additional compo-
nent, namely, the relation (R) matrix. It can be viewed as
having two kinds of observations:stateobservations (as the
ordinaryHMM — with the distinction that we observe inte-
ger vectors rather than integers) andtransitionobservations
(the odometry relations between states). The latter must
satisfy geometrical constraints. Hence, an extension of the
standard update formulae, as described below, is required.

4.1 State-Occupation Probabilities
Following Rabiner [Rab89], we first compute the forward
(�) and backward (�) matrices.�t(i) denotes the probabil-
ity density value of observingE0 throughEt andqt = si,
given�; �t(i) is the probability density of observingEt+1
throughET�1 givenqt = si and�.

The forward procedure for calculating the� matrix is ini-
tialized with �0(i) = ( bi0 if �i = 10 otherwise ;
and continued for0 < t � T�1 with�t(j) = N�1Xi=0 �t�1(i)Ai;jf(rtjRi;j)bjt :f(rtjRi;j) denotes thedensityat pointrt according to the
distribution represented by the means and variances in en-
try i; j of the relation matrixR, andbjt is the probability of
observing vectorvt in statesj ; that is,bjt=Qli=0Bi;j;vt[i℄.
The backward procedure for calculating the� matrix is ini-
tialized with �T�1(j) = 1, and continued for0�t<T�1
with �t(i) = N�1Xj=0 �t+1(j)Ai;jf(rt+1jRi;j)bjt+1 :
Given� and�, we now compute the state-occupation and
state-transition probabilities,
 and�. The state-occupation
probabilities are computed as follows:
t(i) = Pr(qt = sijE; �) = �t(i)�t(i)PN�1j=0 �t(j)�t(j) ;
Similarly, the state-transition probabilities are computed
as:�t(i; j) = Pr(qt = si; qt+1 = sj jE; �)= �t(i)Ai;jbjt+1f(rt+1jRi;j)�t+1(j)N�1Xi=0 N�1Xj=0 �t(i)Ai;jbjt+1f(rt+1jRi;j)�t+1(j) :
These are essentially the same formulae appearing in Ra-
biner’s tutorial [Rab89], but they also take into account the
density of the odometric relations.

In the next phase of the algorithm, the goal is to find a new
model,�, that maximizesPr(Ej�; 
; �). Usually, this is
simply done using maximum-likelihood estimation of the
probabilitydistributions inA andB by computing expected
transition and observation frequencies. In our model we
must also compute a new relation matrix,R, under the con-
straint that it remain geometrically consistent. Through the
rest of this section we use the notationv to denote a reesti-
mated value, wherev denotes the current value.

4.2 Updating Transition and Observation
Parameters

The A and B matrices can be straightforwardly reesti-
mated;Ai;j is the expected number of transitions fromsi tosj divided by the expected number of transitions fromsi;Bi;j;o is the expected number of timeso is observed along
theith dimension when in statesj , divided by the expected
number of times of being insj :Ai;j = PT�2t=0 �t(i; j)PT�2t=0 
t(i) ; Bi;j;o = PT�1t=0 I[ Vt[i℄=o ℄
t(j)PT�1t=0 
t(i) ;
whereI[
℄ is an indicator function with value 1 if
 is true
and 0 otherwise.

4.3 Updating Relations Parameters

When reestimating the relation matrix,R, the geometri-
cal constraints induce interdependencies among the opti-
mal mean estimates as well as between optimal variance
estimates and mean estimates. Parameter estimation under
this form of constraints is almost untreated in main-stream
statistics [Bar84] and we found no previous existing solu-
tions to the estimation problem faced here. As an illustra-
tion, consider the following constrained estimation prob-
lem of 2 normal means.
Example 1 Consider two sample sets of pointsP =fp1; p2; : : : ; png and Q = fq1; q2; : : : ; qkg, inde-
pendently drawn from two distinct normal distributions
with means�P ; �Q and variances�2P ; �2Q, respectively.
We are asked to find maximum likelihood estimates for the
two distribution parameters. Moreover, we are told that
the means of the two distributions arerelated, such that�Q = ��P , as illustrated in Figure 4. If not for the latter
constraint, the task is simple [DeG86], and we have:�P = Pni=1 pin ; �2P = Pni=1(pi � �x)2n ;
and similarly for �Q and �2Q. However, the constraint�P =��Q requires finding asingle mean� and setting the
other one to its negated value,��. Intuitively, when choos-
ing such a maximum likelihood single mean, the more con-
centrated sample should have more effect while the more
varied sample should be more “submissive”. Thus, the
overall sample deviation from the means would be mini-
mized and the likelihood of the data – maximized. There-
fore, there existsmutual dependencebetween the estima-
tion of the mean and the estimation of the variance.
Since the samples are independently drawn, by taking the
derivatives of their joint log-likelihood function, with re-
spect to�P , �P and �Q, and equating them to0, while
using the constraint�Q = ��P , we obtain the following
set of mutual equations for maximum likelihood estimators:�P = (�2QPni=1 pi) � (�2P Pkj=1 qj)n�2Q + k�2P ; �Q = ��P ;�2P = Pni=1(pi � �P )2n ; �2Q = Pkj=1(qj + �P )2k :
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Figure 4: Examples of two sets of normally distributed points with constrained means, in 1 and in 2 dimensions.

By substituting the expressions for�P and�Q into the ex-
pression for�P , we obtain a cubic equation which is cum-
bersome, but still solvable (in this simple case). The solu-
tion provides a maximum likelihood estimate for the mean
and variance under the constraint�Q=��P : 2
We now proceed to the actual update of the relation matrix
under constraints. For clarity, we initially discuss only the
first two geometrical constraints, and discuss the additivity
constraint in Section 4.4. Recall that we concentrate here
on the global constraints enforcement, although the same
idea is applied for the state-relative constraints.

Zero distancesbetween states and themselves are trivially
enforced, by setting all the diagonal entries in theR matrix
to 0, with a small variance.
Anti-symmetrywithin a global coordinate system is en-
forced by using the data recorded along the transition fromsj to si as well as fromsi to sj when reestimating�(Ri;j).
As shown in Example 1, the variance has to be taken into
account, leading to the following set of mutual equations:�mi;j = PT�2t=0 h rt[m℄�t(i;j)(�mi;j)2 � rt[m℄�t(j;i)(�mj;i)2 iPT�2t=0 h �t(i;j)(�mi;j)2 + �t(j;i)(�mj;i)2 i ; (1)(�mi;j)2 = PT�2t=0 [�t(i; j)(rt[m℄� �mi;j)2℄PT�2t=0 �t(i; j) : (2)

For thex andy dimensions this amounts to a complicated
but still solvable cubic equation. However, in the more gen-
eral case, when accounting for the orientation of the robot,
and also when complete additivity is enforced, we do not
obtain such closed form reestimation formulae.

To avoid these reestimation hardships, we use alag-behind
update rule; the yet-unupdated estimate of the variance is
used for calculating a new estimate for the mean, and this
new mean estimate is used to update the variance, using
Eq. 2. 2 Thus, the mean is updated using a variance pa-
rameter thatlags behindit in the update process, and the
reestimation formula 1 needs to use�mi;j rather than�mi;j:�mi;j = PT�2t=0 h rt[m℄�t(i;j)(�mi;j)2 � rt[m℄�t(j;i)(�mj;i)2 iPT�2t=0 h �t(i;j)(�mi;j)2 + �t(j;i)(�mj;i)2 i : (3)

This lag-behind policy is an instance of generalized
EM [Sha99], which guarantees monotone convergence to
a local maximum of the likelihood function.2A similar approach, termedone step lateupdate, is taken by
others applyingEM to highly non-linear optimization prob-
lems [MK97].

Similarly, the reestimation formula for the von Mises mean
and concentration parameters of theheading changebe-
tween statessi andsj is the solution to the equations:��i;j = ar
tan0BBBB� T�2Xt=0 [sin(rt[�℄)(�t(i; j)�i;j � �t(j; i)�j;i)℄T�2Xt=0 [
os(rt[�℄)(�t(i; j)�i;j + �t(j; i)�j;i)℄1CCCCAI1[��i;j ℄I0[��i;j ℄ = max"PT�2t=0 [�t(i; j) 
os(rt[�℄� ��i;j)℄PT�2t=0 �t(i; j) ; 0# : (4)

Again, to avoid the need to solve these mutual equations,
we take advantage of the “lag-behind” strategy, updating
the mean using the current estimates of the concentration
parameters,�i;j; �j;i, as follows:��i;j = ar
tan PT�2t=0 [sin(rt[�℄)(�t(i; j)�i;j � �t(j; i)�j;i)℄PT�2t=0 [
os(rt[�℄)(�t(i; j)�i;j + �t(j; i)�j;i)℄! ;
and then calculating the new concentration parameters
based on the newly updated mean, as the solution to equa-
tion 4, through the use of lookup-tables.
A possible alternative to our lag-behind approach is to up-
date the mean as though the assumption�j;i = �i;j holds.
Under this assumption, the variance terms in equation 1
cancel out, and the mean update is independent of the
variance once again. Then the variances are updated as
stated in equation 2,withoutassuming any constraints over
them. This approach was taken in earlier stages of this
work [SK97, SK98]. The lag-behind strategy is superior,
both according to our experiments, and due to its being an
instance of generalizedEM.

4.4 Enforcing Additivity

Note that the additivity constraint implies the other two ge-
ometrical constraints, thus enforcing it results in complete
geometrical consistency. One way to enforce additivity is
by using the iterative anti-symmetric update procedure de-
scribed above, augmenting each iteration with a procedure
for deriving an additive model from the anti-symmetric
one. Our experience with such a technique proved unsatis-
factory, typically converging to poor models or altogether
failing to converge.

We briefly describe here the method for directly enforcing
additivity through the reestimation procedure. As before,
we restrict the discussion to global coordinate systems.



4.4.1 Additivity in the x, y dimensions

The main observation underlying our approach is that the
additivity constraint is a result of the fact that states canbe
embedded in ageometrical space. That is, assuming we
haveN states,s0; : : : ; sN�1, there are points on theX,Y and� axes,x0; : : : ; xN�1, y0; : : : ; yN�1, �0; : : : ; �N�1,
respectively, such that each state,si, is associated with the
coordinateshxi; yi; �ii. Assuming one global coordinate
system, the mean odometric relation from statesi to statesj can be expressed as:hxj � xi; yj � yi; �j � �ii.
During themaximizationphase of theEM iteration, rather
than try to maximize with respect toN2 odometric relation
vectors, h�Xij , �Yij, ��iji, we reparameterizethe problem.
Specifically, we express each odometric relation as a func-
tion of two of theN state positions, and maximize with re-
spect to theunconstrained,N state positions.For instance,
for theX dimension, we find during the maximization stepN 1-dimensional points,x0; : : : ; xN�1, from which we
calculate�xij = xj � xi. Moreover, since all we are inter-
ested in is finding the bestrelationshipsbetweenxi andxj ,
we can fix one of thexi’s at 0 (e.g.x0 = 0), and only find
optimal estimates for the otherN�1 state positions. The
variance reestimation remains as before, and the lag-behind
policy is used to eliminate the interdependency between the
update of the mean and the variance parameters.

4.4.2 Additive Heading Estimation

Unfortunately, the reparameterization described above is
not feasible for heading change estimation, due to the von
Mises distribution assumption over the heading measures;
By reparameterizing��ij as �j � �i and maximizing the
likelihood function with respect to the�’s, we obtain a set
of N �1 trigonometric equationswith terms of the form
os(�j)� sin(�i) which do not enable simple solution.

A possible alternative is to use the anti-symmetric
reestimation procedure, followed by a perpendicu-
lar projection operator, mapping the headings vectorh��00; : : : ; ��ij; : : : ; ��N�1;N�1i, 0 � i; j � N �1, which
does not satisfy additivity, onto a vector of headings within
an additive linear vector space. Simple orthogonal pro-
jection is not satisfactory within our setting, since it sim-
ply looks for the additive vector closest to the non-additive
one, ignoring the fact that some of the entries in the non-
additive vector are based on a lot of observations, while
others are based on hardly any data at all. Intuitively, we
would like to keep the estimates that are well accounted for
intact, and adapt the less accounted for estimates in order
to meet the additivity constraint. More precisely, we would
like to project thenon-additiveheading estimates vector
onto asubspaceof theadditivevector space, in which the
vectors have the same values as the non-additive vector in
the entries that are well-accounted for. The culprit is that
the latter subspace isnota linearvector space (for instance,
it does not satisfy closure under scalar multiplication), and
the projection operator over linear spaces can not be ap-
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plied directly. Still, this set of vectors does form anaffine
vector space, and we can project onto it using a special
technique from linear algebra, as explained below3.

Definition A � Rn is an n-dimensionalaffine
space if for all vectorsva 2 A, the set of vectors:A� va def= fua � vajua 2 Ag is a linearspace.

Hence, we can pick a vector,va1 2 A, and define the
translationTa : A ! V , whereV is a linear space,V = A� va1 . This translation is trivially extended for any
vectorv0 2 Rn, by definingTa(v0) = v0 � va1 . In order
to project a vectorv 2 Rn ontoA, we apply the translationTa to v and projectTa(v) ontoV , which results in a vectorP(Ta(v)) in V . By applying the inverse transformT�1a to
it, we obtain the projection ofv on A, as demonstrated in
Figure 5. The linear space in the figure is the two dimen-
sional vector spacefhx; yij y = �xg, and the affine space
is fhx; yij y = �x + 4g. The transformTa consists of
subtracting the vectorh0; 4i. The solid arrow corresponds
to the direct projection of the vectorv onto the pointP(v)
of the affine space. The dotted arrows represent the projec-
tion via translation ofv toTa(v), the projection of the latter
onto the linear vector space, and the inverse translation of
the result,P(Ta(v)), onto the affine space.

Although the procedure for preserving additivity over
headings is not proven to preserve monotone convergence
of the likelihood function towards a local maximum, our
extensive experiments consisting of hundreds of runs have
shown that monotone convergence is preserved.

5 Choosing an Initial Model
Typically, in instances of the Baum-Welch algorithm, an
initial model is picked uniformly at random from the space
of all possible models, perhaps trying multiple initial mod-
els to find different local likelihood maxima. An alternative
approach we have reported [SK97] was based on clustering
the accumulated odometric information using the simple k-
means algorithm [DH73], taking the clusters to be the states
in which the observations were recorded, to obtain state and
observation counts and estimate the model parameters.

When perpendicularity is assumed, as shown in Figure 1,
the k-means algorithm assigns the same cluster (state) to
odometric readings recorded at close locations, leading to
reasonable initial models. However, when this assump-3Many thanks to John Hughes for introducing this technique.
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Figure 6: The bucket assignment of the example sequence.

tion is dropped, as illustrated in Figure 2, the cumulative
rotational error distorts the odometric location recorded
within a global coordinate system, so that the location as-
signed to the same state during multiplevisits varies greatly
and would not be recognized as “the same” by a simple
location-based clustering algorithm. To overcome this, we
developed an alternative initialization heuristics, based di-
rectlyon the recordedrelationsbetween states – rather than
on absolute states location. For clarity, the description here
is informal, consisting mostly of an illustrative example,
and enforcing global consistency constraints.

Given a sequence of observations and odometric readingsE, we begin by clustering the odometric readings intobuck-
ets.The number of buckets is at most the number of distinct
state transitions recorded in the sequence. The goal at this
stage is to have each bucket contain all the odometric read-
ings that are close to each other along all three dimensions.

To achieve this, we start by fixing a predetermined, small
standard deviation value along thex, y, and� dimensions.
Denote these standard deviation values�x; �y; �� respec-
tively, (typically �x = �y). The first odometric reading
is assigned to bucket0 and the mean of this bucket is set
to be the value of this reading. Through the rest of the
process the subsequent odometric readings are examined.
If the next reading is within1:5 standard deviations along
each of the three dimensions from the mean of some ex-
isting non-empty bucket, add it to the bucket and update
the bucket mean accordingly. If not, assign it to an empty
bucket and set the mean of the bucket to be this reading.

This algorithm guarantees that all the odometric readings in
each bucket are within a range of1:5� h�x; �y; ��i from the
bucket mean. Since the actualsamplestandard deviation
of each bucket can not exceed the fixed deviation used dur-
ing the bucketing process, intuitively, each bucket is tightly
concentrated about its mean. We note that other clustering
algorithms [DH73] could be used at the bucketing stage.

Example 2 We would like to learn a 4-state model from a
sequence whose odometric component is as follows:h2 94 92i; h1994 0 88i; h3 �93 86i; h�1999 1 94i;h�4 102 91i; h1998 �5 90i; h�2 �106 91i; h�2003 7 87i :
As a first stage we place these readings into buckets. Sup-
pose the standard deviation constant is20. The placement
is as shown in Figure 6. The mean value associated with
each bucket is shown as well. 2
The next stage of the algorithm is thestate-taggingphase,
in which each odometric reading,rt, is assigned a pair of

states,si; sj, denoting the origin state (from which the tran-
sition took place) and the destination state (to which the
transition led), respectively. In conjunction, the mean en-
tries,�ij, of the relation matrix,R, are populated.

Example 2 (cont.) Returning to the sequence above, the
process is demonstrated in Figure 7. We assume that the
data recording starts at state0, and that the odometric
change through self transitions is0, with some small stan-
dard deviation (we use20 here as well). This is shown on
part A of the figure.

Since the first element in the sequence,h2 94 92i, is more
than two standard deviations away from the mean�[0℄[0℄
and no other entry in the relation row of state0 is popu-
lated, we pick1 as the next state and populate the mean�[0℄[1℄ to be the same as the mean of bucket1, to whichh2 94 92i belongs. To maintain geometrical consistency
the mean�[1℄[0℄ is set to be��[0℄[1℄, as shown in part B of
the figure. We now have populated 2 off-diagonal entries,
and the state sequence ish0; 1i. The entry[0℄[1℄ in the ma-
trix becomes associated with bucket1, and this information
is recorded for helping with tagging future odometric read-
ings belonging to the same bucket.

The next odometric reading,h1994 0 88i, is a few standard
deviations from any populated mean in row1 (where1 is
the current believed state). Hence, we pick a new state2,
and set the mean�[1℄[2℄ to be�2 — the mean of bucket2 —
to which the reading belongs (Figure 7 C). The entry[1℄[2℄
is recorded as associated with bucket2. To preserve anti-
symmetry and additivity,�[2℄[1℄ is set to��[1℄[2℄. �[0℄[2℄
is set to be the sum�[0℄[1℄ + �[1℄[2℄, and �[2℄[0℄ is set
to ��[0℄[2℄. Similarly, �[2℄[3℄ is updated to be the mean
of bucket3, causing the setting of�[3℄[2℄, �[1℄[3℄, �[0℄[3℄,�[3℄[1℄, and�[3℄[0℄. Bucket3 is associated with�[2℄[3℄.
At this stage the odometric table is fully populated, as
shown in part D of Figure 7. The state sequence at this
point is: h0; 1; 2; 3i. The next reading,h�1999 �1 94i,
is within one standard deviation from�[3℄[0℄ and therefore
the next state is0. Entry [3℄[0℄ is associated with bucket4, (the bucket to which the reading was assigned), and the
state sequence becomes:h0; 1; 2; 3; 0i.
The next reading, being from bucket1, is associated
with the relation from state0 that is tagged by bucket1, namely, state1. By repeating this for the last
two readings, the final state transition sequence becomesh0; 1; 2; 3; 0;1;2; 3; 0i: 2
Once the state-transition sequence is obtained, the rest
of the initialization algorithm is the same as it is for k-
means based initialization, deriving state-transition counts
from the state-transition sequence, assigning the observa-
tions to the states under the assumption that the state se-
quence is correct, and obtaining state-transition and obser-
vation probabilities. The initialization phase does not incur
much computational overhead, and is equivalent time-wise
to performing one additional iteration of theEM procedure.
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Figure 7: Populating the odometric relation matrix and creating a state tagging sequence.

6 Experiments and Results
Our experiments consist of learning models from both real
and simulated robot data (withoutassuming perpendicular-
ity), evaluating the results both visually and statistically.

6.1 Experimental Setting
We ran our robot, Ramona, along aprescribed4 directed
path in the Brown CS department. Low-level routines let
Ramona move forward from one hallway intersection to the
next and to turn90Æ to the left or right. Ultrasonic data in-
terpretation lets her perceive, in three directions – front, left
and right – whether there is an open space, a door, a wall,
or something unknown. Doors and intersections constitute
states. When they are detected, Ramona stops and records
its observations, and its odometric change between the pre-
vious and the current state. All recorded measures as well
as the actions are, of course, subject to error.

The path Ramona followed consists of 4 connected corri-
dors, including 17 states, and is shown as anHMM in Fig-
ure 8. Black dots represent the physical locations of states.
Multiple states (shown as numbers in the plot) associated
with a single location correspond todifferent orientations
of the robot at that location. The larger circle, at the bot-
tom left corner, represents the initial position. Solid arrows
represent the most likely directed transition (corridor tra-
versed) between states and dashed arrows represent transi-
tions that have probability0:2 or higher (if such exist). The
arrow length represents the corridor length,drawn to scale.
The observations associated with each state are omitted for
clarity. A projection of the odometric readings recorded
along thex andy dimensions, was shown in Figure 2.

To statistically evaluate our algorithm, we use a simulated
office environment in which the robot follows a prescribed
path. It is represented as anHMM consisting of 44 states,
and the associated transition, observation, and odometric
distributions. Figure 11 depicts thisHMM . We generated
5 data sequences from the model, each of length 800, us-
ing Monte Carlo sampling. One of these sequences is de-4Hence, no decisions are executed by the robot, and the model is
anHMM and not a completePOMDP.

picted in Figure 12. Again, observations are omitted, and
this is a projection of the odometry readings onto a global
2-dimensional coordinate system. For each sequence we
ran our algorithm 10 times. For comparison, we also ran
the standard Baum-Welch algorithm, not using odometric
information, 10 times on each sequence.

6.2 Results

We used our algorithm, enforcing additivity and using the
initializationprocedure of Section 5, to learn a model of the
environment from the data gathered by Ramona. Figure 9
depicts a typical model learned from that data; the learnedR matrix was used for determining relative state positions.
It is clear that the model corresponds well both topologi-
cally and geometrically to the true environment. The ob-
servation distributions learned are omitted, but they too re-
flect well the walls, doors and openings encountered, while
incorporating the identification error resulting from noisy
sensors. Note that the initial state,0, is not well positioned
geometrically with respect to the rest of the model; due to
the large number of states neighboring the initial state,0,
in the true environment, it was not recognized that we ever
returned to this particular state during the loop. Therefore,
only one expected transition was recognized from state0
to state1 by the algorithm. When projecting the angles to
maintain additivity, the angle from state0 to 1 was conse-
quently compromised, maintaining the rectangular geome-
try among the more regularly visited states.

Note that learning such circular topologies is very challeng-
ing, since their highly symmetric nature makes it difficult
to distinguish separatestates, as well as toidentifywhen
thesamestate is revisited; as far as we know no other topo-
logical approach can learn such models from raw data, and
the only other work which handles them is the grid-based
geometrical approach of Thrun et al [TBF98].

Figure 10 shows the topology of a typicalHMM learned us-
ing the standard Baum-Welch algorithmwithout odomet-
ric information. The bold circle represents the initial state.
The arrows semantics is as before. The loop topology of
the traversed environment is obviouslynot captured.
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Traditionally, in simulation experiments, learned models
are quantitatively compared to the actual model that gener-
ated the data. Each of the models induces a probability dis-
tribution on strings of observations; the Kullback-Leibler
divergence [KL51] between the two distributions is a mea-
sure of how far the learned model is from the true model.
We report our simulation results in terms of a sampled ver-
sion of theKL divergence, as described by Juang and Ra-
biner [JR85]. It is based on generating sequences of suf-
ficient length according to the distribution induced by the
true model, and comparing their likelihoods according to
the learned model, with the true model likelihoods. Odo-
metric information is ignored when applying theKL mea-
sure, thus allowing comparison between purely topological
models that are learned with and without odometry.

Table 1 lists theKL divergence between the true and learned
model, as well as the number of iterations until conver-
gence was reached, for each of the 5 simulation sequences
under the two learning settings, averaged over 10 runs per
sequence. The table demonstrates that theKL divergence
with respect to the true model for models learned using
odometric data, is about8 times smallerthan for models
learned without it. To check the significance of our results
we used the simple two-sample t-test. The models learned
using odometric information have highly statistically sig-
nificantly (p� 0:0005) lower averageKL divergence than
the others. In addition, the number of iterations required
for convergence when learning using odometric informa-
tion is smaller than required when ignoring such informa-
tion. Again, the t-test verifies the significance (p < 0:005)
of this result.

LearningHMMs obviously requires visiting states and tran-

sitioning between them multiple times, to gather sufficient
data for robust statistical modeling. Intuitively, exploiting
odometric data can help reduce the number of visits needed
for obtaining a reliable model. To examine the influence of
reduction in the length of data sequences on the quality of
the learned models, we took one of the 5 sequences and
used its prefixes of length 100 to 800 (the complete se-
quence), in increments of 100, as training sequences. We
ran the two algorithmic settings over each of the 8 prefix
sequences, 10 times repeatedly. TheKL divergence was
then used to evaluate each resulting model with respect to
the true model. For each prefix length we averaged the
KL divergence over the 10 runs. Figure 13 depicts the av-
erageKL divergence as a function of the sequence length
for each of the settings. It demonstrates that , in terms of
the KL divergence, our algorithm, using odometric infor-
mation, is robust in the face of data reduction, (down to 200
data points). In contrast, learning without the use of odom-
etry quickly deteriorates as the amount of data is reduced.

7 Conclusions
Odometric information, which is often readily available in
the robotics domain, makes it possible to learn hidden
Markov models efficiently and effectively, while using
shorter training sequences. The odometric information can
be directly incorporated into the traditionalHMM model,
maintaining convergence of the reestimation algorithm to a
local maximum of the likelihood function.

Even though we are primarily interested in the underly-
ing topological model (transition and observation proba-
bilities), our experiments demonstrate that using odomet-
ric relations can both reduce the number of iterations re-
quired by the algorithm and improve the resulting model.



Seq. # 1 2 3 4 5
With KL 1.46 1.18 1.20 1.02 1.22
Odo Iter # 11.8 36.8 30.7 24.6 33.3
No KL 6.91 9.93 10.03 9.54 12.43

Odo Iter # 113.3 113.1 102.0 104.2 112.5

Table 1: Average results of 2 learning settings with 5 training
sequences.

The initialization procedure and the enforcement of the ad-
ditivity constraint over relatively small models prove help-
ful both topologically and geometrically. An extensive
study [Sha99] shows that for long data sequences, gen-
erated from large models, enforcing onlyanti-symmetry
rather thanadditivity, leads to better topological models.
This is because in these cases, initialization is not always
good, and additivity may over-constrain the learning to an
unfavorable area. Learning of large models may benefit
from enforcing only anti-symmetry during the first few it-
erations, and complete additivity in later iterations. Alter-
natively, we may use our algorithm to learn separate mod-
els for small portions of the environment, combining them
later into one complete model.

The work presented here demonstrates how domain-
specific information and constraints can be incorporated
into the statistical estimation process, resulting in better
models, while requiring shorter data sequences. We
strongly believe that this idea can be applied in domains
other than robotics. In particular, the acquisition ofHMMs
for use in Molecular Biology may greatly benefit from
exploiting geometrical (and other) constraints on molecu-
lar structures. Similarly, temporal constraints may be ex-
ploited in domains in whichPOMDPs are appropriate for
decision-support, such as air-traffic control and medicine.
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