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Abstract

Hidden Markov models{mMs) and partially observable
Markov decision processesgmDpPs) form a useful tool

for modeling dynamical systems. They are particularly
useful for representing environments such as road net-
works and office buildings, which are typical for robot
navigation and planning. The work presented here is
concerned wittacquiringsuch models. We demonstrate
how domain-specific information and constraints can
be incorporated into the statistical estimation process,
greatly improving the learned models in terms of the
model quality, the number of iterations required for con-
vergence and robustness to reduction in the amount of
available data. We present new initialization heuristics
which can be used even when the data suffers from cu-
mulative rotational error, new update rules for the model
parameters, as an instance of generalzedand a strat-
egy for enforcing complete geometrical consistency in
the model. Experimental results demonstrate the ef-
fectiveness of our approach for both simulated and real
robot data, in traditionally hard-to-learn environments.

Introduction

Hidden Markov modelsH{mMs), as well as their general-

ization to partially observable Markov decision processe€@'lier work enforced only part of the constraints (anti-
(POMDRS), model a variety of nondeterministic dynamical SYmmetry of the odometry between points). We conclude

systems as probabilistic state-transition systems wish di
crete states, observations, and possibly actions. In #iis p
per we concentrate on the special case of models in whic

nl m ni h. gov

changing environments. Sine@mMbP models are a simple
extension oHMMSs, they can, theoretically, be learned with

a simple extension to the Baum-Welch algorithm [Rab89]
for learningHMMs. However, without a strong prior con-
straint on the structure of the model, the Baum-Welch al-
gorithm does not perform very well: it is slow to converge,
requires a great deal of data, and often becomes stuck in
local maxima.

Our work focuses on showing how weak information about
the metric relationship between states can be used to sig-
nificantly improve model learning. Such information is
usually readily available but is often ignored during the
process of learning topological maps. We have previ-
ously shown [SK97, SK98] that the odometric ability of
the robot, which allows it to roughly measure its geometric
position changes while moving in the environment, can be
very useful when learninppologicalmodels.

This paper addresses several issues not previously dealt
with: It introduces a “lag-behind” estimation procedure
that enforces geometrical constraints, while being an in-
stance ofgeneralizedeM, new heuristics for choosing an
initial model from which the iterative optimization starts
and an update strategy that allows the enforcement of the
complete geometrical constraintadditivity), while our

by empirically demonstrating the effectiveness of our algo
rithms for learning models of environments that are tradi-
f{onally considered hard to learn.

states can be associated with points in a metric configuraa  Related Work
tion space. These are appropriate in contexts such as of-

fice building, road network, or sewerage system modeling

Specifically, suchPombP models form a useful basis for

robot navigation in buildings, providing a sound method for

The work presented here is concerned wéarning sta-

tistical modelsin the context ofrobot navigation In the
robotics domain it is common to distinguish between two

localization and planning [SK95, NPB95, CKK96]. Much Main types of maps:geometricand topological - The
of the previous work on planning assumed that the model i£0"Mer represent the environment in terms of the objects

acquired manually; such manual acquisition can be very t

dious and it is often difficult to obtain correct probab##i

gblaced in it and their positions. For examplgid-based

maps [ME85, Asa91, TBF98] are an instance of the geo-
metric approach. Such maps are the best choice when it

Learning such models automatically is an ultimate goalig necessary for a robot to know its location accurately in

both for robustness and in order to cope with new anderms of metric coordinates. However, in our environments
*This work was supported by the Brown University Graduate Re-Of interest such as office buildings with corridors and rooms
search Fellowship. or networks of roadgppologicalmaps [KB91], specifying



the important locations and their connections, suffice hSucber), the density of any pointis the same as that oft &k,
maps are typically less complex and support much more effor any integett. In addition, usually the learned statistical
ficient planning than metric maps. parameters are unconstrained (aside for the obvious con-

We draw an additional distinction, between world-ceritric straint ofbeing a d|str|but|qn) Our appr(_)ach_, which en-
mapsthat provide an “objective” description of the environ- forces geometrical constraints when estimating the param-

ment independent of the agent using the map, and roboElers, requires special precautions to ensure convergénce
centric modelswhich capture thénteractionof a partic- the iterative reestimation procedure, as demonstratdein t

ular “subjective” agent with the environment. An agent following sections.

learning amap (such as the grid maps mentioned above),3 Models and Assumptions

takes into account its own noisy sensors and actuators andfe describe here the model (and later the algorithms) for
tries to obtain an objectively correct map that other agent$earning anHmMM, rather than @oMDP. The extension to
could use as well; other agents need to compensate for thehoMDPs — which we developed and implemented — is tech-
own limitations when assessing their position according tonically straightforward but notationally more cumbersome

the map. We take the approach of learninqiadelthat  The world is composed of a finite set of states, whose num-
captures theénteractionof the agent with the environment. par is assumed here to be known. The dynamics of the
Hence, the noisy sensors and actuators specific to the agegby|q are described by state-transition distributionsgsp

are reflected in the model; this approach allows robust planging the probability of transitioning from one state to the
ning, taking into account the error in sensing and actionpey; A finite set of possible observations is associated
(although a different model is likely to be needed for differ \yit each state; the observation frequency is described by
ent agents). Moreover, topological models support a morg ropability distribution and depends only on the current
general notion of state, possibly including informationlsu  ¢iate  In our model, observations areilti-dimensional

as the robot’s battery voltage or arm position. hence, an observation is a vector of values, each chosen
The work most closely related to ours is by Koenig andfrom a finite domain. We assume that observation values
Simmons [KS96a, KS96b], who learnombP models are conditionally independent, given the state.

(stochastic topological models) of a robot hallway en-j, 4qgition, each state is assumed to be associated with a
vironment. To overcome the hardship of learning sucho; necessarily unique) pointin some metric space. When-
a model without initial information they use Buman-  oyer 5 state transition is made, encoders on the robot's
providedtopological map to start from, and further con- \yheels allow it to record its current pose (position and ori-
straints on the structure of the model. A modified ver-gnation) relative to its pose in the previous state. It is as

sion of the Baum-Welch algorithm learns the parameterg;med that the position chang&4, Ay) is corrupted with

of the model. They also developed an incremental Verjhgenendent 0-meanormal noise, while the orientation

sion of Baum-Welch that allows it to be used on-line in change, £6), is corrupted with independenbn Mises
certain kinds of environments. Their models contain veryyisributed noise. The von Mises distribution is a circular
weak metric information, representing hallways as chainggrsjon of the normal distribution, and its density funatio
of 1-meter segments and allowing the learning algorithmg. Fun(0) (K)en cos(¢=1) wherex is a concentra-

_ 1
. . . — 2nlo(k)
to select the most probable chain length. This method i$on parameter ands (x) is the modified Bessel function

effective, but results in large models (size is proportionaof the first kind and orde®. It is extensively discussed in

to hallways’ length). In contrast, we directly incorporate
odometric information into the Baum-Welch algorithm to former work [SGDS3, Mar72, SK98]

learn a probabilistic model with both discrete and continu-In early work [SK97] we assumed perpendicularity of the
ous probabilities. corridors that was taken advantage of while the robot col-

lected the data; Odometric readings were recorded with re-

Probabilistic models are widely used within the Al com- spect to aglobal coordinate systemand the robot could

(Tsuggﬁosnusipaggﬂﬁlivgﬁ(yoﬂl%V;;g;ggusgsvgrrokgiﬂl('stlges]’re-align itself with the origin after each turn. A trajec-
HMM S [GJ97] and stochastic maps [SSC91]. However, tha%ory of odometry recorded under this assumption by our

R : . robot Ramona, along the andy axes is given in Fig-
work significantly differs from ours in several ways. Com- . .
. L ) ure 1. In contrast, Figure 2 shows a trajectory of the odome-
monly, the continuous distributions used é&ireear — that

: N o : . try recordedwithoutthe perpendicularity assumption. The
is — distributions assigning density to each point on thedata collected under the latter setting is subjected to cu-

real line so that the a_lrea_underthe density curve, In_te@_r"j‘temulative rotational error. In recent work [SK98] we have
over the whole real line, i, (most often the distributionis

Gaussian). As pointed out in our earlier work [SK98], di- shown how such data can be handied thrasigte-relative

. L ) . : coordinate systemss explained later in this section. This
rectional data is inherentigyclic, requiring the use ofir- L : S
o . solution is reflected both in the constraints imposed on the
cular distributions where for some periog (a real num-

model and in the learning algorithm.

! Thanks to Sebastian Thrun for the terminology. To state the setting formally, a model is a tuple
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Figure 1: Sequence gathered by RaFigure 2: Sequence gathered by RaFigure 3: Robot in states;, faces in the y-axis direc-

mona, perpendicularity assumed. mona, no perpendicularity assumed. tion; the relations;,S; is WRT S;’s coordinate system.
A=(S,0,A, B, r, R), where to be the transformation that maps¢an, y,) pointrep-
o 5= 1{so sn_1} is afinite set ofV states; resented with respect to the coordinate system of state
= yeey SN= ;

a, to the same point represented with respect to the co-
O = [\, O; is a finite set of observation vectors of  ordinate system of state (x;, ;).

length/; the:th element of an observation vectorischo-  pore explicitly, letx?, be, as before, the mean change
’ a ’ ’

sen from the finite seb;; in heading from state to stateb. Applying 7. to a
A is a stochastic transition matrix, with ; = Pr(qey1= vector({ ) results in the vectof ) as follows:
sjlge = 85);0<4, < N—1; ¢ is the state at timg m\ _ - A cos(u®y) — ya sin(u®,)
B is an array of stochastic observation matrices, with Yo ¢ a wasin(ply) + ya cos(ply)

Bijo=Pr(Vilil = olg:=s;); 1 <i<l, 0<j < N-1, . )
o€ O;; V, is the observation vector at timg The consistency constraints are then restated as follows

(and referred to aelative constraint§rom here on):
7 is a stochastic initial probability vector describing the (29) _ )
distribution of the initial state; for simplicity it is as- o pi"¥(a, a) = (0, 0); _
sumed here to bé),...0,1,0,...,0), implying that o pul™¥) (a,b) = =Ty ["¥) (b, @)] (anti-symmetry)
the robot always starts in a designated initial state o p{™¥) (a,¢) = pl=¥) (a, b) + Tpa[pl™¥) (b, )] (additivity).

Ris arelation matrix' Specifying for each pair of Sta‘[es'The fO”OWing sections describe the Iearning algorithm and

s; ands;, themeanandvarianceof the metric relation ~ the initialization procedure. For clarity and brevity, pfs
between them along the and they dimensions; e.g. and a lot of technical detail are omitted, and we concen-

uf: & u(R: ;[2]) is the mean of the component of the trate on enforcing the global constraints rather than the re
' " ative ones. The extension is straightforward, and thetesul

reported in Section 6 were indeed obtained urrdkative

coordinate systems. The complete proofs, treatment of the

relative constraints, extension to completavbpps and fur-

ther results can be found in [Sha99].

relation between; ands;, and(c;)? £ o2(R, 4[2]),
the variance. As shown in earlier work [SK98]also
contains themeanand concentrationof the change in
headingbetween the two stateg;; and ;. Further-
more, R is geometrically consistentin a global co- ]
ordinate system this means that for each componer# Learning the Model

w € {z,y,0}, the relationu¥, e u#(Rap[w]) must be  The learning algorithm starts from an initial modi)

a directed metric satisfying the following constraints and is given a sequence ekperienceE; it returns a re-
(referred to agylobal constraintfrom here on) for all  vised model), with the goal of maximizing the likelihood
states, b, andc: P(E|\). The experience sequengds of lengthT’; each
element,E;, is a pair{r;, V), wherer; is the observed re-
lation vector along the, y andd dimensions, between the
statesy;_; andg; andV; is the observation vector at tinie

O flge = Hap T Hpe (additivity). Our algorithm extends the Baum-Welch algorithm [Rab89]
In a state-relative coordinate systethese same con- 0 deal with the relational information and the factored

straints apply to th& component, but the constraints Observation sets. ~ The Baum-Welch algorithm is an
over z andy need to be specified with respect to the €xpectation-maximizatiore¢) algorithm [DLR77]; it al-
explicit coordinate system used. As shown in Figure 3 ternates between

O figq = 0;

o puy = —pp, (anti-symmetry)and

each states;, has its own coordinate system; theaxis o theE-stepof computing the state-occupation and state-
is aligned with the robot’s heading in the state (denoted transition probabilities;y and&, at each time in the
by bold arrows in the figure), and theaxis is perpen- sequence giveh and the current model, and

dicular to it. The geometric relation fromy to s; is e the M-stepof finding a new model}, that maximizes
expressed with respect to the coordinate system.of P(E|N, 7, €),

Given a pair of states andb, we denote byi{®¥) (a, b) providing monotone convergence of the likelihood function
the vector{u(Rqp[x]), u(Rasly])). Let us definef,,  P(E|)A) to alocal maximum.



However, our extension introduces an additional compo4.2 Updating Transition and Observation
nent, namely, the relation?) matrix. It can be viewed as Parameters

having two kinds of observationstateobservations (as the
ordinaryHMM — with the distinction that we observe inte-
ger vectors rather than integers) drahsitionobservations

(the odometry relations between states). The latter musg, is the expected number of timess observed along
satisfy geometrical constraints. Hence, an extensioneof th,; ">

standard update formulae, as described below, is requireolt.helth dme_nsmn When m_sta.ltg, divided by the expected
number of times of being ig;:

31:_02 ézt(lhj) _' .

©Je T

The A and B matrices can be straightforwardly reesti-
mated;A; ; is the expected number of transitions frejio
s; divided by the expected number of transitions frem

4.1 State-Occupation Probabilities

Following Rabiner [Rab89], we first compute the forward 4:.j
(e) and backwardf®) matrices.«; (¢) denotes the probabil-
ity density value of observing, throughE; andq;, = s;,
given \; 5;(¢) is the probability density of observirk ;¢
throughE7_ giveng; = s; and .

The forward procedure for calculating thematrix is ini-
tialized with b =1

0 otherwise,

- o 1L Vili]=0]3(5)

s () il ()
wherel[c] is an indicator function with value 1 ifis true
and O otherwise.

)

4.3 Updating Relations Parameters

When reestimating the relation matrig, the geometri-
cal constraints induce interdependencies among the opti-
mal mean estimates as well as between optimal variance

Ozo(i) =

and continued fol) < ¢ < 7'—1 with

N-1
ai(§) =Y @ (Aii F(re| Rij)bl -

=0
f(r¢|R; ;) denotes thelensityat pointr; according to the

estimates and mean estimates. Parameter estimation under
this form of constraints is almost untreated in main-stream
statistics [Bar84] and we found no previous existing solu-
tions to the estimation problem faced here. As an illustra-

distribution represented by the means and variances in efion, consider the following constrained estimation prob-

try i, j of the relation matrix?, andb] is the probability of
observing vectos; in states;; that is,b] = Hi’:o B j v, li)-

The backward procedure for calculating thenatrix is ini-
tialized with 8r_:(5) = 1, and continued fop<t<T-1

lem of 2 normal means.

Example 1 Consider two sample sets of points

P:{p17p27 .. '7pn} and Q = _{11171127 .. -an}, |nde'
pendently drawn from two distinct normal distributions

with meansip, 1q and variancesry, o, respectively.

with N-1 4 We are asked to find maximum likelihood estimates for the

Be(1) = Zﬁt+1(j)A,;jf(rt+1|Ri,j)b§+1 . two distribution parameters. Moreover, we are told that
im0 the means of the two distributions arelated such that

Givena and 3, we now compute the state-occupation andre = —p, as illustrated in Figure 4. If not for the latter

state-transition probabilities,and¢. The state-occupation constraint, the taskis simple [DeG86], and we have:

probabilities are computed as follows: Sorapi s o (pi— pe)?
o B  al)B) pp =S, op = SE———
ve(i) =Pr(q = silEN) = =g 57— —
Y jmo @t(A)Bi(d) and similarly for o and o3. However, the constraint
Similarly, the state-transition probabilities are conguit pr=-u¢ requires finding asingle mean: and setting the
as: other one to its negated valuey. Intuitively, when choos-

&(i,5) = Pr(qe = si, qry1 = s;|E,N)
(1) Ai jbl iy F(rep1 | Rij)Ber (5)

ing such a maximum likelihood single mean, the more con-
centrated sample should have more effect while the more

No1N-1 4 ‘ varied sample should be more “submissive”. Thus, the
DD @i A by Fren| Rig)Ber () overall sample deviation from the means would be mini-
i=0 j=0 mized and the likelihood of the data — maximized. There-

These are essentially the same formulae appearing in Réere, there existsnutual dependencleetween the estima-
biner's tutorial [Rab89], but they also take into accourt th tion of the mean and the estimation of the variance.
density of the odometric relations. Since the samples are independently drawn, by taking the

In the next phase of the algorithm, the goal is to find a newferivatives of their joint log-likelihood function, wittes
model, X, that maximizesPr(E|), v,¢). Usually, this is ~ SPect topp, op andog, and equating them t6, while
simply done using maximum-likelihood estimation of the USing the constrainto = —p, we obtain the following
probability distributions int andB by computing expected set of mutual equations for maximum likelihood estimators:
transition and observation frequencies. In our model we (033" ) — (02 Z@ )

must also compute a new relation matik,under the con- Q 2uiz1 Pi P 2j=1

1 | N ” i Hp = 2 ko2 y MHQ = —HP,
straint that it remain geometrically consistent. Throuug t nog + kop
. . L - .
rest of this section we use the notatioto denote a reesti s N (pi — pp)? - ijl(‘Jj + up)?
mated value, where denotes the current value. op=T o QT T
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Figure 4: Examples of two sets of normally distributed points with smained means, in 1 and in 2 dimensions.

By substituting the expressions top andog into the ex-  Similarly, the reestimation formula for the von Mises mean
pression fonp, we obtain a cubic equation which is cum- and concentration parameters of theading changde-
bersome, but still solvable (in this simple case). The solutween states; ands; is the solution to the equations:

tion provides a maximum likelihood estimate for the mean T

and variance under the constraint) = —pp. o Z[Sin(rt[e])(&(i, g — &G 7]
We now proceed to the actual update of the relation matrix —e _ . | =0

under constraints. For clarity, we initially discuss ortigt " T2

first two geometrical constraints, and discuss the addjtivi > leos(ril8])(&eli, 5)Ri g + &5, 1))
constraint in Section 4.4. Recall that we concentrate here £=0

on the global constraints enforcement, although the same, [r? ;]

idea is applied for the state-relative constraints. Io[R¢ ]

. lz?j [60(i, ) cos(re[6] = )]

Yoo &lind)
Zero distancedetween states and themselves are trivially ) )
enforced, by setting all the diagonal entries in fhenatrix ~ A9@in, to avoid the need to solve these mutual equations,
to 0. with a small variance. we take advantage of the “lag-behind” strategy, updating

Anti-symmetrywithin a global coordinate system is en- the mean using the current estimates of the concentration
forced by using the data recorded along the transition fronParameterss; ;, ., as follows:
s; tos; as well as froms; to s; when reestimating (R, ;). T2 (e [O]) (€0 (i )i Ca

. . ! . J = y J) K, _5 VIRILT R
As shown in Example 1, the variance has to be taken int@i; ; = arctan }‘_02[ ( t[e])( t(, ,) s & - ,) 3] .
account, leading to the following set of mutual equations: 2 im0 Leos(rel0D) (&l j)mis + &ld, 1)r)]
T-2 {m[m]st(z’,y’) _ m[m]st(j,z')}

TS

: 0] N O

and then calculating the new concentration parameters

t=0 om.)2 o7
i - _ ( EZ()” Et((j;’)l » (1) based onthe newly updated mean, as the solution to equa-
t=0 {W + (0_3”—)2} tion 4, through the use of lookup-tables.
tT—_O2[€t(i7 7)(re[m] — 1) A possible alternative to our lag-behind approach is to up-
@7)? = e (2)  date the mean as though the assumptign= o ; holds.
Y=o &(i2d) Under this assumption, the variance terms in equation 1

For thex andy dimensions this amounts to a complicated cancel out, and the mean update is independent of the
but still solvable cubic equation. However, in the more gen-variance once again. Then the variances are updated as
eral case, when accounting for the orientation of the robotstated in equation 2yithoutassuming any constraints over
and also when complete additivity is enforced, we do nothem. This approach was taken in earlier stages of this
obtain such closed form reestimation formulae. work [SK97, SK98]. The lag-behind strategy is superior,
To avoid these reestimation hardships, we usgsbehind both according to our experiments, and due to its being an
update rule; the yet-unupdated estimate of the variance i§stance of generalizegiv.

used for calculating a new estimate for the mean, and this ] o
new mean estimate is used to update the variance, usifg4 Enforcing Additivity

Eg. 2. 2 Thus, the mean is updated using a variance pas L L
rameter thatags behindit in the update process, and the Note that the additivity constraint implies the other twe ge

reestimation formula 1 needs to usg; rather tharg7";: ometrical constraints, thus enforcing it results in cortgle
’ ’ geometrical consistency. One way to enforce additivity is

by using the iterative anti-symmetric update procedure de-
scribed above, augmenting each iteration with a procedure
for deriving an additive model from the anti-symmetric

This lag-behind policy is an instance of generalized®"€: Our experience with such a technique proved unsatis-

EM [Sha99], which guarantees monotone convergence tfRCtory: typically converging to poor models or altogether
a local maximum of the likelihood function. failing to converge.

t=0 (e™ )2 o
7

T2 {m[m]mm) _ rt[mlftgi)}

R

T—2 | ¢,(:,j 15,1
T [ ]

—m

M5 = (3)

2A similar approach, termedne step lateupdate, is taken by We _b_ri_efly describe here th_e me_thod for directly enforcing
others applyingem to highly non-linear optimization prob- additivity through the reestimation procedure. As before,
lems [MK97]. we restrict the discussion to global coordinate systems.



4.4.1 Additivity in the z, y dimensions \

The main observation underlying our approach is that the \K
additivity constraint is a result of the fact that states lsan

embedded in geometrical space That is, assuming we -z i~
have N states,sg,...,sy—_1, there are points on th&, -2 PCTa(v))
Y and@ AXES, Ly« ooy TN—1s Y0y+-+sYN—1, 0,...,0N_1, A o,
respectively, such that each staig,is associated with the

coordinatesx;, v, 0;). Assuming one global coordinate ] _ o _
system, the mean odometric relation from statéo state Figure 5: Projectingo onto an affine space

s;j can be expressed ag:; — i, y; — 4, 6; — ;). plied directly. Still, this set of vectors does form affine

During themaximizatiorphase of theMm iteration, rather  vector space, and we can project onto it using a special
than try to maximize with respect f§2 odometric relation  technique from linear algebra, as explained betow
vecto_rg. <uf§, “Z “fj>’ we reparamete_nzahe_problem. Definiton A C R” is an n-dimensionalaffine
S_pemﬂcally, WE eXpress eac_h_ odometric r_ela_t|on qsafuncépace if for all vectorsv, € A, the set of vectors:
tion of two of theV state positionsand maximize with re- det o

spect to theinconstrained)V state positionsFor instance, * ~ Vs = {ta — valua € A} is alinearspace.

for the X dimension, we find during the maximization step Hence, we can pick a vectog,, € A, and define the
N 1-dimensional pointsgg,...,zxy_1, from which we translation?; : A — V, whereV is a linear space,
calculateyf; = x; — x;. Moreover, since all we are inter- V = A — v,,. This translation is trivially extended for any
ested in is finding the begtlationshipsetweenr; andz;,  vectors’ € R”, by definingT, (v') = v’ — v,,. In order
we can fix one of the;;’s at 0 (e.g. zo = 0), and only find  to project a vector € R" ontoA, we apply the translation
optimal estimates for the othé¥ — 1 state positions. The 7, tov and project, (v) ontoV, which results in a vector
variance reestimation remains as before, and the lag-sehir (7, (v)) in V. By applying the inverse transforif; ! to
policy is used to eliminate the interdependency between thé, we obtain the projection of on A, as demonstrated in

update of the mean and the variance parameters. Figure 5. The linear space in the figure is the two dimen-
- ) o sional vector spac&(z, y}| y = —«}, and the affine space
4.4.2 Additive Heading Estimation is {(x,y)| y = —x + 4}. The transforni, consists of

Unfortunately, the reparameterization described above isubtracting the vectaf0, 4). The solid arrow corresponds
not feasible for heading change estimation, due to the voro the direct projection of the vecteronto the pointP(v)
Mises distribution assumption over the heading measuresf the affine space. The dotted arrows represent the projec-
By reparameterizinmfj asf; — 0; and maximizing the tion viatranslation of to 7, (v), the projection of the latter
likelihood function with respect to th#s, we obtain a set onto the linear vector space, and the inverse translation of
of N —1 trigonometric equationsvith terms of the form  the result?(T,(v)), onto the affine space.

cos(6;)- sin(f;) which do not enable simple solution. Although the procedure for preserving additivity over

A possible alternative is to use the anti-symmetricheadings is not proven to preserve monotone convergence
reestimation procedure, followed by a perpendicu-of the likelihood function towards a local maximum, our
lar projection operator, mapping the headings vector extensive experiments consisting of hundreds of runs have
(11605 -+ s 15 - ..,p?V_LN_1>, 0 < 4,5 < N—1, which  shown that monotone convergence is preserved.

does not satisfy additivity, onto a vector of headings withi . .
an additive Iinfeyar vectoryspaceSimpIe orthogonagl pro- > Choosing an Initial Model

jection is not satisfactory within our setting, since it sim Typically, in instances of the Baum-Welch algorithm, an
ply looks for the additive vector closest to the non-adéitiv initial model is picked uniformly at random from the space
one, ignoring the fact that some of the entries in the nonef all possible models, perhaps trying multiple initial rmod
additive vector are based on a lot of observations, whilels to find different local likelihood maxima. An alternativ
others are based on hardly any data at all. Intuitively, weapproach we have reported [SK97] was based on clustering
would like to keep the estimates that are well accounted fothe accumulated odometric information using the simple k-
intact, and adapt the less accounted for estimates in ordeneans algorithm [DH73], taking the clusters to be the states
to meet the additivity constraint. More precisely, we wouldin which the observations were recorded, to obtain state and
like to project thenon-additiveheading estimates vector observation counts and estimate the model parameters.
onto asubspacef the additivevector space, in which the
vectors have the same values as the non-additive vector
the entries that are well-accounted for. The culprit is that0
the latter subspace i®talinear vector space (for instance,
it does not satisfy closure under scalar multiplicationy a
the projection operator over linear spaces can not be agMany thanks to John Hughes for introducing this technique.

When perpendicularity is assumed, as shown in Figure 1,
e k-means algorithm assigns the same cluster (state) to
dometric readings recorded at close locations, leading to
reasonable initial models. However, when this assump-



statess;, s;, denoting the origin state (from which the tran-

SEb e sition took place) and the destination state (to which the
transition led), respectively. In conjunction, the mean en
tries, u;;, of the relation matrix/2, are populated.

‘ <2,94,92 > ‘

<-4,102,91 >

‘ <1994, 0, 88 > ~

<1998, -5, 90 >

‘ <3,-93,86 > ‘

<-2,-106, 91 >

p2:
<1996, -2.5, 89>

pl:
<-1, 98, 91.5>

1 2 3 4 Example 2 (cont.) Returning to the sequence above, the
Figure 6: The bucket assignment of the example sequence. process is demonstrated in Figure 7. We assume that the
data recording starts at state, and that the odometric

tion is dropped, as illustrated in Figure 2, the cumulativechange through self transitions s with some small stan-
rotational error distorts the odometric location recordedqard deviation (we use0 here as well). This is shown on

within a global coordinate system, so that the location aspart A of the figure.
signed to the same state during multiple visits varies great ;.o the first element in the sequen(@eg4 92), is more

and WOUld not be recggmzed as the same” by a S_'mplqhan two standard deviations away from the med#|[0]
location-based clustering algorithm. To overcome this, we

2 -~ X and no other entry in the relation row of stafleis popu-
developed an alternative initialization heuristics, lobdie y Pop

" h Jedlationsbet tat ther th lated, we pickl as the next state and populate the mean
rectiyon the recordeceiationsbetween states — rather than #[0][1] to be the same as the mean of bucketo which
on absolute states location. For clarity, the descriptiene h

o - 7 _ 2 94 92) belongs. To maintain geometrical consistenc
is informal, consisting mostly of an illustrative example < ) g g y

d enforci lobal st traint ’ the mearu[1][0] is set to be—[0][1], as shown in part B of
and entorcing global consistency constraints. the figure. We now have populated 2 off-diagonal entries,

Given a sequence of observations and odometric readingsnd the state sequence (8, 1). The entryf0][1] in the ma-

E, we begin by clustering the odometric readings imtok-  trix becomes associated with bucketind this information
ets. The number of buckets is at most the number of distincis recorded for helping with tagging future odometric read-
state transitions recorded in the sequence. The goal at thisgs belonging to the same bucket.

stage is to have each bucket contain all the odometric readrne next odometric readingl994 0 88), is a few standard
ings that are close to each other along all three dimensiongiations from any populated mean in rawwhere1 is

To achieve this, we start by fixing a predetermined, smalkthe current believed state). Hence, we pick a new state
standard deviation value along they, andg dimensions. and set the meap[1][2] to bey2 — the mean of buckét—
Denote these standard deviation valaesc,, oy respec-  to which the reading belongs (Figure 7 C). The erjiry2]
tively, (typically o, = o). The first odometric reading is recorded as associated with bucketTo preserve anti-
is assigned to buckét and the mean of this bucket is set symmetry and additivity;[2][1] is set to—[1][2]. £[0][2]

to be the value of this reading. Through the rest of thes set to be the sum[0][1] + x[1][2], and u[2][0] is set
process the subsequent odometric readings are examindd. —[0][2]. Similarly, ;1[2][3] is updated to be the mean
If the next reading is withi.5 standard deviations along of bucket3, causing the setting qf[3][2], p£[1][3], ©£[0][3],
each of the three dimensions from the mean of some exx[3][1], andx[3][0]. Bucket3 is associated with[2][3].

isting non-empty bucket, add it to the bucket and updatent this stage the odometric table is fully populated, as
the bucket mean accordingly. If not, assign it to an emptyshown in part D of Figure 7. The state sequence at this
bucket and set the mean of the bucket to be this reading. point is: (0,1,2,3). The next reading(—1999 —1 94),
This algorithm guarantees that all the odometric readings i is Within one standard deviation frop{3][0] and therefore
each bucket are within a rangeob- (o, 7, o4 ) from the the next state i9. Entry [3][0] is associated with bucket
bucket mean. Since the actussimplestandard deviation 4, (the bucket to which the reading was assigned), and the
of each bucket can not exceed the fixed deviation used duptate sequence becomés; 1, 2, 3, 0).
ing the bucketing process, intuitively, each bucketisttigh The next reading, being from buckét is associated
concentrated about its mean. We note that other clusteringith the relation from stateé) that is tagged by bucket
algorithms [DH73] could be used at the bucketing stage. 1, namely, statel. By repeating this for the last
Example 2 We would like to learn a 4-state model from a two readings, the final state transition sequence becomes
sequence whose odometric component is as follows: (0,1,2,3,0,1,2,3,0). o
(294 92), {1994 0 88), (3 —93 86), (—1999 1 94), Once the state-transition sequence is obtained, the rest
(=4102 91), (1998 —590), (=2 —106 91), (=2003 787).  of the initialization algorithm is the same as it is for k-
As a first stage we place these readings into buckets. Supaeans based initialization, deriving state-transitiourds
pose the standard deviation constantis The placement from the state-transition sequence, assigning the observa
is as shown in Figure 6. The mean value associated withions to the states under the assumption that the state se-
each bucket is shown as well. o guence is correct, and obtaining state-transition andrebse
vation probabilities. The initialization phase does natin
The next stage of the algorithm is thgte-taggingphase, much computational overhead, and is equivalent time-wise
in which each odometric reading,, is assigned a pair of to performing one additional iteration of tiz@ procedure.



A B C D

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
<1, <1, <1995, <1, <1995, |<1995.5,
0| <0,00> 0] <0,00>| 98, 0] <0,00>| 98, 95.5, 0] <0,00>| 98, 95.5, -4,
91.5> 91.5> | -179.5> 915> | -179.5> | 91>
< 1, < 1, <1996, < 1, <1996, |<1996.5,
1 <0,0,0> 1] -8, <0,0,0> 1] -8, <0,0,0> | -2.5, 1] -8, <0,0,0> | -2.5, -102,
-91.5> -91.5> 89> -91.5> 89> 177.5>
<1995, | <-1996, <1995, | <-1996, <05,
2 <0,0,0> 2 <0,0,0> 2| 955, 25, | <0,0,0> 2| 955, 25, | <0,0,0> | -99.5,
179.5> | -89> 179.5> | -89> 88.5>
<-1995.5,<-1996.5, | <-0.5,
3 <0,0,0> 3 <0,0,0> 3 <0,0,0> 4, 102, 99.5, | <0,0,0>
91> | -177.5> | -88.5>
S: 0 S:0,1 S:0,1,2 S:0,1,2,3
Bucket(R[0][1]) =u1 Bucket(R[1][2]) =p2 Bucket(R[2][3]) =p3

S:0,1,2,3,0
Bucket(R[3][0]) =4
e 9:0,1,2,3,0,1,2,3,0
Figure 7: Populating the odometric relation matrix and creating sestgging sequence.

6 Experiments and Results picted in Figure 12. Again, observations are omitted, and

Our experiments consist of learning models from both reafhis is a projection of the odometry readings onto a global
and simulated robot dataithoutassuming perpendicular- 2-dimensional coordinate system. For each sequence we

ity), evaluating the results both visually and statistical ~ ran our algorithm 10 times. For comparison, we also ran
. . the standard Baum-Welch algorithm, not using odometric
6.1 Experimental Setting information, 10 times on each sequence.

We ran our robot, Ramona, alongpeescribed directed
path in the Brown CS department. Low-level routines let6.2 Results

Ramona move forward from one hallway intersection to thE\Ne used our algorithm, enforcing additivity and using the

next and_ to turr90° to the I_eft or right. U_Itras_omc data in- initialization procedure of Section 5, to learn a model & th
tergre_ta;tlon Ier:s r;er pﬁrcen_/e, in three d|rect|onsd— it | nvironment from the data gathered by Ramona. Figure 9
and right —whether there is an open space, a door, a wal epicts a typical model learned from that data; the learned

or sometEmg Lrjlnknowr:j. Doorz and intersections cgnstltut?b matrix was used for determining relative state positions.
states When they are detected, Ramona stops and recorqg;g ¢jear that the model corresponds well both topologi-

its observations, and its odometric change between the Preaily and geometrically to the true environment. The ob-

vious and_the current state. All re_corded measures as Weélervation distributions learned are omitted, but they &80 r
as the actions are, of course, subject to error. flect well the walls, doors and openings encountered, while
The path Ramona followed consists of 4 connected corriincorporating the identification error resulting from nois
dors, including 17 states, and is shown asi&w™ in Fig-  sensors. Note that the initial stafg,is not well positioned
ure 8. Black dots represent the physical locations of stategjeometrically with respect to the rest of the model; due to
Multiple states (shown as numbers in the plot) associatethe large number of states neighboring the initial state,
with a single location correspond thfferent orientations in the true environment, it was not recognized that we ever
of the robot at that location. The larger circle, at the bot-returned to this particular state during the loop. Therfor
tom left corner, represents the initial position. Solidbars  only one expected transition was recognized from dlate
represent the most likely directed transition (corridertr to statel by the algorithm. When projecting the angles to
versed) between states and dashed arrows represent transiaintain additivity, the angle from staeto 1 was conse-
tions that have probability.2 or higher (if such exist). The quently compromised, maintaining the rectangular geome-
arrow length represents the corridor lengitgwn to scale  try among the more regularly visited states.

The_ observatl_ons_assomated with ea_ch statg are omitted fNote that learning such circular topologies s very chajlen
clarity. A prqecﬂ_on of _the odometric regdlr!gs recordeding, since their highly symmetric nature makes it difficult
along thex andy dimensions, was shown in Figure 2. to distinguish separatstates, as well as tdentify when

To statistically evaluate our algorithm, we use a simulatedhesamestate is revisited; as far as we know no other topo-
office environment in which the robot follows a prescribed logical approach can learn such models from raw data, and
path. It is represented as amm consisting of 44 states, the only other work which handles them is the grid-based
and the associated transition, observation, and odometrigeometrical approach of Thrun et al [TBF98].

distributions. Figure 11 depicts thisum. We generated Figure 10 shows the topology of a typicaiim learned us-
.5 data sequences from the model, each of length 80_0’ UY%g the standard Baum-Welch algorithmithout odomet-
ing Monte Carlo sampling. One of these sequences is deﬁc information. The bold circle represents the initialtsta

“Hence, no decisions are executed by the robot, and the nsdel iThe arrows semantics is as befqre. The loop topology of
anHMM and not a completeoOMDP. the traversed environment is obviouslgt captured.
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Figure 8: True model of the corridors ~ Figure 9: Learned model of the corri- Figure 10: Model learned without the
Ramona traversed. dors Ramona traversed. use of odometric information.
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Figure 11: True model of the simu-  Figure 12: A data sequence generated ~ Figure 13: AveragexL divergence as a
lated hallway environment. from the simulated model function of length.

Traditionally, in simulation experiments, learned modelssitioning between them multiple times, to gather sufficient
are quantitatively compared to the actual model that genemdata for robust statistical modeling. Intuitively, expiog

ated the data. Each of the models induces a probability dissdometric data can help reduce the number of visits needed
tribution on strings of observations; the Kullback-Leible for obtaining a reliable model. To examine the influence of
divergence [KL51] between the two distributions is a mea-reduction in the length of data sequences on the quality of
sure of how far the learned model is from the true modelthe learned models, we took one of the 5 sequences and
We report our simulation results in terms of a sampled verused its prefixes of length 100 to 800 (the complete se-
sion of thekL divergence, as described by Juang and Ragquence), in increments of 100, as training sequences. We
biner [JR85]. It is based on generating sequences of sufan the two algorithmic settings over each of the 8 prefix
ficient length according to the distribution induced by thesequences, 10 times repeatedly. Thedivergence was
true model, and comparing their likelihoods according tothen used to evaluate each resulting model with respect to
the learned model, with the true model likelihoods. Odo-the true model. For each prefix length we averaged the
metric information is ignored when applying tke mea- KL divergence over the 10 runs. Figure 13 depicts the av-
sure, thus allowing comparison between purely topologicaéragekL divergence as a function of the sequence length
models that are learned with and without odometry. for each of the settings. It demonstrates that , in terms of

Table 1 lists th&L divergence between the true and learnedN® KL d_|vergenc_e, our algorithm, using Qdometrlc infor-
model as well as the number of iterations until conver-Mation, is robustin the face of data reduction, (down to 200

gence was reached, for each of the 5 simulation sequencd@t@ Points). In contrast, learning without the use of odom-
under the two learning settings, averaged over 10 runs pé?try quickly deteriorates as the amount of data is reduced.

sequence. The table demonstrates thamheiivergence_ 7 Conclusions
with respect to the true model for models learned using . _ L _ . .
odometric data. is abo@ times smallethan for models Qdometric information, which is often readily available in
learned without it. To check the significance of our resultsiN® robotics domain, makes it possible to learn hidden
we used the simple two-sample t-test. The models learnelflarkov models efficiently and effectively, while using
using odometric information have highly statisticallysig ShOrter training sequences. The odometric information can
nificantly (» < 0.0005) lower averagexL divergence than be directly incorporated into the traditionaMm model,

the others. In addition, the number of iterations requiredn@intaining convergence of the reestimation algorithmto a

for convergence when learning using odometric informa-/0cal maximum of the likelihood function.

tion is smaller than required when ignoring such informa-Even though we are primarily interested in the underly-
tion. Again, the t-test verifies the significange< 0.005)  ing topological model (transition and observation proba-
of this result. bilities), our experiments demonstrate that using odomet-
ric relations can both reduce the number of iterations re-

LearningHMM s obviously requires visiting states and tran-""" ' - -
quired by the algorithm and improve the resulting model.



Seq. # 1 2 3 4 5
With KL 146 | 118 | 1.20 | 1.02 | 1.22
Odo " Tter# 11.8 | 368 | 30.7 | 246 | 33.3 [GGD53] E. G. Gumbel, J. A. Greenwood and D. Durand,
No KL 601 | 993 | 1003 954 | 12.43 The Circular Normal Distribution: Theory and Tables,
Odo " Tter# | 1133] 113.1| 1020 1042 | 1125 American Statistical Society Journd8, pp. 131-152,
1953.
Table 1. Average results of 2 learning settings with 5 training [GJ97] Z. Ghahramani and M. I. Jordan, Factorial Hidden
sequences. Markov Models, Proc. of thént. Conf. on Machine

Learning 1997.

The initialization procedure and the enforcement of the ad[HG95] D. Heckerman and D. Geiger, Learning Bayesian Net-

ditivity constraint over relatively small models prove el works: A Unification for Discrete and Gaussian Do-
ful both topologically and geometrically. An extensive mains,Proc. of the Int. Conf. on Uncertainty in App.
study [Sha99] shows that for long data sequences, gen- 274-284,1995.

erated from large models, enforcing orayti-symmetry [JR85]  B.H.JuangandL.R. Rabiner, A Probabilistic Dist&nc
rather thanadditivity, leads to better topological models. Measure for Hidden Markov Model&T&T Technical

Journal 64 (2), pp. 391-408, 1985.

B. Kuipers and Y.-T. Byun, A Robot Exploration and
Mapping Strategy Based on a Semantic Hierarchy of
Spatial Representationdournal of Robotics and Au-

This is because in these cases, initialization is not always
good, and additivity may over-constrain the learning to ankB91]
unfavorable area. Learning of large models may benefit

from enforcing only anti-symmetry during the first few it- tonomous SystenB, pp. 47—63, 1991.

erations, and complete additivity in later iterations.eMt <1 51] s, Kullback and R. A. Leibler, On Information and
natively, we may use our algorithm to learn separate mod- Sufficiency,Annals of Mathematical Statistic&2 (1),

els for small portions of the environment, combining them pp. 79-86, 1951.

later into one complete model. [KS96a] S.Koenigand R. G. Simmons, Passive Distance Learn-
The work presented here demonstrates how domain- :\qggﬁirns Egg:n’?ni;gg;g%%fglig;hé Int. Conf. on
specific information and constraints can be incorporate(iKS%b] S. Koenig and R. G. Simmons, Unsupervised Learning
into the statistical estimation process, resulting indrett of Probabilistic Models for Robot NavigatioRyoc. of
models, while requiring shorter data sequences. We the Int. Conf. on Robotics and Automatjdr®96.
strongly believe that this idea can be applied in domaingmar72] K. V. Mardia, Statistics of Directional DataAcademic
other than robotics. In particular, the acquisitionHims Press, 1972.

for use in Molecular Biology may greatly benefit from [ME85] H. P. Moravec and A. Elfes, High Resolution Maps
exploiting geometrical (and other) constraints on molecu- from Wide Angle SonarProc. of the Int. Conf. on
lar structures. Similarly, temporal constraints may be ex- Robotics and Automatiopp. 116-121, 1985.

ploited in domains in whictroMDPs are appropriate for [MK97] G. J. McLachlan and T. Krishnafhe EM Algorithm

decision-support, such as air-traffic control and medicine and Extensionslohn Wiley & Sons, 1997.
[NPB95] I. Nourbakhsh, R. Powers and S. Birchfield,
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