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Abstract. Knowing the location of a protein within the cell is important
for understanding its function, role in biological processes, and potential
use as a drug target. Much progress has been made in developing com-
putational methods that predict single locations for proteins, assuming
that proteins localize to a single location. However, it has been shown
that proteins localize to multiple locations. While a few recent systems
have attempted to predict multiple locations of proteins, they typically
treat locations as independent or capture inter-dependencies by treating
each locations-combination present in the training set as an individual
location-class. We present a new method and a preliminary system we
have developed that directly incorporates inter-dependencies among lo-
cations into the multiple-location-prediction process, using a collection
of Bayesian network classifiers. We evaluate our system on a dataset
of single- and multi-localized proteins. Our results, obtained by incor-
porating inter-dependencies are significantly higher than those obtained
by classifiers that do not use inter-dependencies. The performance of
our system on multi-localized proteins is comparable to a top perform-
ing system (YLoc+), without restricting predictions to be based only on
location-combinations present in the training set.

1 Introduction

Knowing the location of a protein within the cell is essential for understanding
its function, its role in biological processes, as well as its potential role as a
drug target [1,2,3]. Experimental methods for protein localization such as those
based on mass spectrometry [4] or green fluorescence detection [5,6], although
often used in practice, are time consuming and typically not cost-effective for
high-throughput localization. Hence, an ongoing effort is put into developing
high-throughput computational methods [7,8,9,10,11] to obtain proteome-wide
location predictions.

Over the last decade, there has been significant progress in the development
of computational methods that predict a single location per protein. The fo-
cus on single-location prediction is driven both by the data available in public
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databases such as UniProt, where proteins are typically assigned a single loca-
tion, as well as by an (over-)simplifying assumption that proteins indeed localize
to a single location. However, proteins do localize to multiple compartments in
the cell [12,13,14,15], and translocate from one location to another [16]. Iden-
tifying the mutiple locations of a protein is important because translocation
can serve some unique functions. For instance, GLUT4, an insulin-regulated
glucose transporter, which is stored in the intracellular vesicles of adipocytes,
translocates to the plasma membrane in response to insulin [17,18]. As proteins
do not localize at random and translocations happen between designated inter-
dependent locations, we hypothesize that modeling such inter-dependencies can
help in predicting protein locations. Thus, we aim to identify associations or
inter-dependencies among locations and leverage them in the process of predict-
ing locations for proteins.

Several methods have been recently suggested for predicting multiple loca-
tions for proteins. ngLOC [19] uses a Näıve Bayes classifier to obtain independent
predictions for each single location and combines these individual predictions to
obtain a multi-location prediction. Li et al. [20] construct multiple binary clas-
sifiers, each using an ensemble of k-nearest neighbor and SVM, where each bi-
nary classifier distinguishes between a pair of locations. The predictions from all
the classifiers are combined to obtain a multi-location prediction. iLoc-Euk [21]
uses a multi-label k-nearest neighbor classifier to predict multiple locations for
proteins. Similar methods were used for localizing subsets of eukaryotic pro-
teins [22,23], virus proteins [24], and bacterial proteins [25,26]. In contrast to the
machine learning-based approaches listed above, KnowPred [27] uses sequence
similarity to associate proteins with multiple locations.

Notably, none of the above methods for predicting multiple locations uti-
lizes inter-dependencies among locations in the prediction process. All the above
models independently predict each single location and thus do not take into
account predictions for other locations. IMMML [28] attempts to make use of
correlation among pairs of locations, a simple type of dependency, when pre-
dicting multiple locations for proteins. This system does not account for more
complex inter-dependencies and was not tested on any extensive protein multi-
localization dataset. YLoc+[29], a comprehensive system for protein location
prediction, uses a näıve Bayes classifier (see e.g. [30]) and captures protein lo-
calization to multiple locations by explicitly introducing a new class for each
combination of locations supported by the training set (i.e. having proteins local-
ized to the combination). Thus, each prediction performed by the näıve Bayes
classifier can assign a protein to only those combinations of locations included
in the training data. To produce its output, YLoc+ transforms the prediction
into a multinomial distribution over the individual locations. We also note that
as the number of possible location-combinations is exponential in the number of
locations, training the näıve Bayes classifier in this manner does not provide a
practical model in the general case of multi-localized proteins, beyond the train-
ing set. The performance of YLoc+ was evaluated using an extensive dataset [29]
and is the highest among current multi-location predictors.



In this paper, we present a new method that directly models inter-dependencies
among locations and incorporates them into the process of predicting locations
for proteins. Our system is based on a collection of Bayesian network classi-
fiers [31]. Each Bayesian Network (BN) related to each classifier corresponds to
a single location L. Each such network is used to assign a probability for a protein
to be found at location L, given both the protein’s features and information re-
garding the protein’s other possible locations. Learning each BN involves learning
the dependencies among the other locations that are primarily related to proteins
localizing to location L. For each Bayesian network classifier, its corresponding
BN is learnt with the goal to improve the classifier’s prediction quality. The
formulation of multi-location prediction as classification via Bayesian networks,
as well as the network model are presented in Section 2. Notably, our system
does not assume that all proteins it classifies are multi-localized, but rather more
realistically, that proteins may be assigned to one or more locations.

We train and test our preliminary system on a dataset containing single- and
multi-localized proteins previously used in the development and testing of the
YLoc+ system [29], which includes the most comprehensive collection of multi-
localized proteins currently available, derived from the DBMLoc dataset [13].
As done in other studies [10,11,29,32], we use multiple runs of 5-fold cross-
validation. The results clearly demonstrate the advantage of using location inter-
dependencies. The F1 score of 81% and overall accuracy of 76% obtained by
incorporating inter-dependencies are significantly higher than the corresponding
values obtained by classifiers that do not use inter-dependencies. Also, while
our system retains a level of performance comparable to that of YLoc+ on the
same dataset, we note that unlike YLoc+, by training the individual classifiers
to predict individual − although inter-dependent − locations, the training of
our system is not restricted to only those combinations of locations present in
the dataset, thus our system is generalizable to multi-locations beyond those
included in the training set.

The rest of the paper proceeds as follows: Section 2 formulates the problem
of protein subcellular multi-location prediction and briefly provides background
on Bayesian networks and relevant notations. Section 3 discusses the structure,
parameters, and inter-dependencies comprising our Bayesian network collection,
and introduces the learning procedure used for finding them. Section 4 presents
details of the dataset, the performance evaluation measures, and experimental
results. Section 5 summarizes our findings and outlines future directions.

2 Problem Formulation

As is commonly done in the context of classification, and protein-location clas-
sification in particular [8,11,29,33], we represent each protein, P , as a weighted
feature vector, fP=〈fP

1 , . . . , fP
d 〉, where d is the number of features. We view

each feature as a random variable Fi representing a characteristic of a protein,
such as the presence or absence of a short amino acid motif [8,32], the rela-
tive abundance of a certain amino acid as part of amino-acid composition [19],



or the annotation by a Gene Ontology (GO) term [34]. Each vector-entry, fP
i ,

corresponds to the value taken by feature Fi with respect to protein P . In the
experiments described here, we use the exact same representation used by Briese-
meister et al. [29] as explained in Section 4.1.

We next introduce notations relevant to the representation of a protein’s
localization. Let S={s1, . . . , sq} be the set of q possible subcellular components
in the cell. For each protein P , we represent its location(s) as a vector of 0/1
values indicating the protein’s absence/presence, respectively, in each subcellular
component. The location-indicator vector for protein P is thus a vector of the
form: lP = 〈lP1 , . . . , l

P
q 〉 where lPi = 1 if P localizes to si and lPi = 0 otherwise.

As with the feature values, each location value, lPi is viewed as the value taken
by a random variable, where for each location, si, the corresponding random
variable is denoted by Li. Given a dataset consisting of m proteins along with
their location vectors, we denote the dataset as: D= {(Pj , l

Pj ) | 1 ≤ j ≤ m}.
We thus view the task of protein subcellular multi-location prediction as that
of developing a classifier (typically learned from a dataset D of proteins whose
locations are known) that given a protein P outputs a q-dimensional location-
indicator vector that represents P ’s localization.

As described in Section 1, most recent approaches that extend location-
prediction beyond a single location (e.g. KnowPred [27], and Euk-mPLoc 2.0 [35]),
do not consider inter-dependencies among locations. YLoc+[29] indirectly con-
siders these inter-dependencies by creating a class for each location-combination.
Our underlying hypothesis, which is supported by the experiments and the re-
sults presented here, is that capturing location inter-dependencies directly can
form the basis for a generalizable approach for location-prediction. The training
of a classifier for protein multi-location prediction involves learning these inter-
dependencies so that the classifier can leverage them in the prediction process.
We use Bayesian networks to model such inter-dependencies.

In order to develop a protein subcellular multi-location predictor, we pro-
pose to develop a collection of classifiers, C1, . . . , Cq, where the classifier Ci is
viewed as an “expert” responsible for predicting the 0/1 value, lPi , indicating
P ’s non-localization or localization to si. In order to make use of location inter-
dependencies, each Ci uses estimates of location indicators of P , l̂Pj (for all other
locations j, where j 6= i), along with the feature-values of P , in order to calculate
a prediction. We use support vector machines (SVMs) (see e.g. [30]) to compute
these estimates. The output of Ci for a protein P is given by

Ci(P ) =

{

1 If Pr(lPi = 1 | P, l̂P1 , . . . , l̂
P
i−1, l̂

P
i+1, . . . , l̂

P
q ) > 0.5;

0 Otherwise.
(1)

Further details about the estimation procedure itself are provided in Section 3.2.
Bayesian networks have been used before in many biological applications

(e.g. [36,37,38]). In this paper, we use them to model inter-dependencies among
subcellular locations, as well as among protein-features and locations. We briefly
introduce Bayesian networks here, along with the relevant notations (see [39]
for more details). A Bayesian network consists of a directed acyclic graph G,
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Fig. 1. An example of a collection of Bayesian network classifiers we learn. The col-
lection consists of several classifiers C1, . . . , Cq, one for each of the q subcellular loca-
tions. Directed edges represent dependencies between the connected nodes. We note
that there are edges among location variables (L1, . . . , Lq), as well as between feature
variables (F1, . . . , Fd) and location variables (L1, . . . , Lq), but not among the feature
variables. The latter indicates independencies among features, as well as conditional
independencies among features given the locations.

whose nodes are random variables, which in our case represent features, denoted
F1, . . . , Fd, and location indicators, denoted L1, . . . , Lq. We assume here that
all the feature values are discrete. To ensure that, we use the recursive minimal
entropy partitioning technique [40] to discretize the features; this technique was
also used in the development of YLoc+[29].

Directed edges in the graph indicate inter-dependencies among the random
variables. Thus, as demonstrated in Figure 1, edges are allowed to appear be-
tween feature- and location-nodes, as well as between pairs of location-nodes in
the graph. Edges between location-nodes directly capture the inter-dependencies
among locations. We note that there are no edges between feature-nodes in our
model, which reflects an assumption that features are either independent of each
other or conditionally independent given the locations. This simplifying assump-
tion helps speed up the process of learning the network structure from the data,
while the other allowed inter-dependencies still enable much of the structure of
the problem to be captured (as demonstrated in the results). Further details
about the learning procedure itself are provided in Section 3.1.

To complete the Bayesian network framework, each node
v ∈ {F1, . . ., Fd, L1, . . ., Lq} in the graph is associated with a conditional prob-
ability table, θv, containing the conditional probabilities of the values the node
takes given its parents’ values, Pr(v | Pa(v)). We denote by Θ the set of all
conditional probability tables, and the Bayesian network is the pair (G,Θ). A
consequence of using the Bayesian network structure, is that it represents cer-
tain conditional independencies among non-neighboring nodes [39], such that
the joint distribution of the set of network variables can be simply calculated as:

Pr(F1, . . . , Fd, L1, . . . , Lq) =
∏d

i=1
Pr(Fi | Pa(Fi))

∏q

j=1
Pr(Lj | Pa(Lj)). (2)

Figure 1 shows an example of a collection of Bayesian network classifiers. The
collection consists of Bayesian network classifiers C1, . . . , Cq, one for each of the
q subcellular locations s1, . . . , sq, where each classifier Ci consists of the graphGi

and its set of parameters Θi. In each classifier Ci, the location indicator variable



Li is the variable we need to predict and is therefore viewed as unobserved, and
is shown as an unshaded node in the figure. The feature variables F1, . . . , Fd are
given for each protein and as such are viewed as known or observed, shown as
shaded nodes in the figure. Finally, the values for the location indicator variables
for all locations except for Li, {L1, . . . , Lq} − {Li}, are needed for calculating
the predicted value for Li in the classifer Ci. As such, they are viewed by the
classifier as though they are observed. Notably, the values of these variables are
not known and still need to be estimated.

Thus, the structure and parameters of the network for each classifier Ci

(learnt as described in Section 3.1), are used to predict the value of each unob-
served variable, Li. The task of each classifier Ci, is to predict the value of the
variable Li given the values of all other variables F1, . . . , Fd, and {L1, . . ., Lq}−{Li}.
Since, as noted above, the values of the location indicator variables Lj (j 6= i)
are unknown at the point when Li needs to be calculated, we estimate their
values, using simple SVM classifiers as described in Section 3.1. We note that
other methods, such as expectation maximization, can be used to estimate all
the hidden parameters, which we shall do in the future.

3 Methods

As our goal is to assign locations (possibly multiple) to proteins, we use a collec-
tion of Bayesian network classifiers, where each classifier Ci, predicts the value
(0 or 1) of a single location variable Li – while using estimates of all the other
location variables Lj (j 6= i), which are assumed to be known, as far as the classi-
fier Ci is concerned. The estimates of the location values Lj are calculated using
SVM classifiers as described in Section 3.1. The individual predictions from all
the classifiers are then combined to produce a multi-location prediction. For each
location si, a Bayesian network classifier Ci must be learned from training data
before it can be used. As described in Section 2, each classifier Ci consists of a
graph structure Gi and a set of conditional probability parameters, Θi, that is:
Ci=(Gi, Θi). Thus, our first task is to learn the individual classifiers, i.e. their
respective Bayesian network structures and parameters. The individual networks
can then be used to predict a protein’s localization to each location.

Given a protein P , each classifier Ci needs to accurately predict the location
indicator value lPi , given the feature-values of P and estimates of all the other

location indicator values l̂Pj (where j 6= i). That is, each classifier Ci in the

collection assumes that the estimates of the location-indicator values, l̂Pj for
all other locations sj (where j 6= i) are already known, and is responsible for
predicting only the indicator value lPi for location si, given all the other indicator
values. For a Bayesian network classifier this means calculating the conditional
probability

Pr(lPi = 1 | P, l̂P1 , . . . , l̂
P
i−1, l̂

P
i+1, . . . , l̂

P
q ), (3)

under classifier Ci, where l̂
P
1 , . . . , l̂

P
i−1, l̂

P
i+1, . . . , l̂

P
q are all estimated using simple

SVM classifiers. The classifiers C1, . . . , Cq are each learned by directly optimizing



an objective function that is based on such conditional probabilities, calculated
with respect to the training data as explained in Section 3.1.

The procedures used for learning the Bayesian network classifiers and to
combine the individual network predictions are described throughout the rest of
the section.

3.1 Structure and Parameter Learning of Bayesian Network

Classifiers

Given a dataset D, consisting of a set of m proteins {P1, . . . , Pm} and their
respective location vectors {lP1 , . . . , lPm}, each classifier Ci is trained so as to
produce the “best” prediction possible for the value of the location indicator
lPi (for location si), for any given protein P and a set of estimates of location
indicators for all other locations (as shown in Equation 3 above). Based on this
aim and on the available training data, we use the Conditional Log Likelihood
(CLL) as the objective function to be optimized when learning each classifier
Ci. Classifiers whose structures were learnt by optimizing this objective function
were found to perform better than classifiers that used other structures [31].
This objective function is defined as:

CLL(Ci | D) =

m
∑

j=1

log Pr(Li = l
Pj

i | fPj , l̂
Pj

1 , . . . , l̂
Pj

i−1
, l̂

Pj

i+1
, . . . , l̂Pj

q ).

Each Pj is a protein in the training set and each probability term is the condi-

tional probability of protein Pj to have the indicator value l
Pj

i (for location si),
given its feature vector fPj and the current estimates for all the other location

indicators are l̂
Pj

k (where k 6= i), under the Bayesian network structure Gi for
the classifier Ci that governs the joint distribution of all the variables in the
network (see Equation 2).

To learn a Bayesian network classifier that optimizes this objective function,
we use a greedy hill climbing search (see [31,41] for details). While Grossman
and Domingos [31] propose a heuristic method that modifies the basic search
depicted by Heckerman et al. [41], we do not employ it in this preliminary study,
but rather use the basic search, as it does not prove to be prohibitively time

consuming. To find estimates for the location indicator values l̂
Pj

k , we compute

a one-time estimate for each indicator l
Pj

i from the feature-values of the protein
fPj by using an SVM classifier (e.g. [30]). We use the SVM implementation
provided by the Scikit-learn library [42] with a Radial Basis Function kernel. We
employ q such SVMs, SVM1, . . . , SVMq, where each SVM classifier is trained to
distinguish one location indicator from the rest, as done in the Binary Relevance
approach [43]. The rest of the network parameters are estimated as follows: For
each Bayesian network classifier Ci, we use the maximum likelihood estimates
calculated from frequency counts in the training dataset, D, to estimate the
network parameters (see [31]). To avoid overfitting of the parameters, we apply
standard smoothing by adding pseudo-counts for all the events that have zero
counts (see [44] for details).



To summarize, at the end of the learning process we have q Bayesian net-
work classifiers, C1, . . . , Cq, like the ones depicted in Figure 1, and q SVMs,
SVM1, . . . , SVMq, used for obtaining initial estimates for each location variable
for any given protein. We next describe how these classifiers are used to predict
the multi-location of a protein P .

3.2 Multiple Location Prediction

Given a protein P , whose locations we would like to predict, we first use the
SVMs to obtain preliminary estimates for each of its location indicator values
l̂P1 , . . . , l̂

P
q . We then use each of the learned classifiers Ci, and the preliminary

values obtained from the SVMs to predict the value of the location indicator
lPi . The classifier outputs a value of either a 0 or a 1 by thresholding, as shown
in Equation 1. The conditional probability of lPi given the feature-values of the

protein P and the estimates of the location indicator values l̂Pj (where j 6= i) is
first calculated as:

Pr(lPi = 1 | fP , l̂P1 , . . . , l̂
P
i−1, l̂

P
i+1, . . . , l̂

P
q ) =

Pr(lPi = 1,fP , l̂P1 , . . . , l̂
P
i−1, l̂

P
i+1, . . . , l̂

P
q )

∑

z∈{0,1} Pr(l
P
i = z,fP , l̂P

1
, . . . , l̂Pi−1

, l̂Pi+1
, . . . , l̂Pq )

. (4)

The joint probabilities in the numerator and the denominator of Equation 4
above are factorized into conditional probabilities using the Bayesian network
structure, Gi (see Equation 2). The 0/1 prediction for each lPi obtained from
each Ci becomes the value of the i’th position in the location-indicator vector
〈lP1 , . . . , l

P
q 〉 for protein P . This is the total multi-location prediction for protein

P .
In the next section, we describe our experiments using the Bayesian network

framework for predicting protein multi-location and the results obtained.

4 Experiments and Results

We implemented our algorithms for learning and using a collection of Bayesian
network classifiers as described above using Python and the machine learning
library Scikit-learn [42]. We have applied it to a dataset containing single- and
multi-localized proteins, previously used for training YLoc+ [29]. Below we de-
scribe the dataset, the experiments, the evaluation methods we use, and the
multiple location prediction results obtained on the proteins from this dataset.

4.1 Data Preparation

In our experiments we use a dataset containing 5447 single localized proteins
(originally published as the Höglund dataset [32]) and 3056 multi-localized pro-
teins (originally published as part of the DBMLoc set [13] that is no longer



publicly available). The combined dataset was previously used by Briesemeister
et al. [29] in their extensive comparison of multi-localization prediction systems.
We report results obtained over the multi-localized proteins for comparing our
system to other published systems, since the results for these systems are only
available for this subset [29]. For all other experiments described here, we report
results obtained over the combined set of single- and multi-localized proteins.
We use the exact same representation of a 30-dimensional feature vector as used
in YLoc+ [29]. The features include sequence-based features, e.g. amino acid
composition and those based on PROSITE patterns, as well as on GO annota-
tions. (See [29] for details on the pre-processing, feature construction, and feature
selection). The single localized proteins are from the following locations (abbre-
viations and number of proteins per location is given in parentheses): cytoplasm
(cyt, 1411 proteins); endoplasmic reticulum (ER, 198), extra cellular space (ex,
843), golgi apparatus (gol, 150), lysosomal (lys, 103), mitochondrion (mi, 510),
nucleus (nuc, 837), membrane (mem, 1238), and peroxisomal (per, 157). The
multi-localized proteins are from the following pairs of locations: cyt nuc (1882
proteins), ex mem (334), cyt mem (252), cyt mi (240), nuc mi (120), ER ex
(115), and ex nuc (113). Note that all the multi-location subsets used have over
100 representative proteins.

4.2 Experimental Setting and Performance Measures

To compare the performance of our system to that of other systems (YLoc+ [29],
Euk-mPLoc [45], WoLF PSORT [46], and KnowPred [27]), whose performance
on a large set of multi-localized proteins was described in a previously pub-
lished comprehensive study [29], we use the exact same dataset, employing the
commonly used stratified 5-fold cross-validation. As the information about the
exact 5-way splits used before is not available, we ran five complete runs of 5-
fold-cross-validation (i.e. 25 runs in total), where each complete run of 5-fold
cross-validation uses a different 5-way split. The use of multiple runs with differ-
ent splits helps validate the stability and the significance of the results. To ensure
that the results obtained by using our 5-way splits for cross-validation can be
fairly compared with those reported before [29], we replicated the YLoc+ runs
using our 5-way splits, and obtained results that closely match those originally
reported by Briestmeister et al [29]. (The replicated F1-label score is 0.69 with
standard deviation of ±0.01, compared to YLoc+ reported F1-label score of 0.68,
and the replicated accuracy is 0.65 with standard deviation of ±0.01, compared
to YLoc+ reported accuracy of 0.64). The total training time for our system
is about 11 hours (wall-clock), when running on a standard Dell Poweredge
machine with 32 AMD Opteron 6276 processors. Notably, no optimization or
heuristics for improving run time were employed, as this is a one-time training.
For the experiments described here, we ran 25 training experiments, through 5
times 5-fold cross validation, where the total run time was about 75 hours (wall
clock).

We use in our evaluation the adapted measures of accuracy and F1 score pro-
posed by Tsoumakas [43] for evaluating multi-label classification. Some of these



measures have also been previously used for multi-location evaluation [28,29]. To
formally define these measures, let D be a dataset containing m proteins. For a
given a protein P , let MP ={si | l

Pi =1, where 1 ≤ i ≤ q} be the set of locations

to which protein P localizes, and let M̂P ={si | l̂
Pi =1, where 1 ≤ i ≤ q} be the

set of locations that a classifier predicts for protein P , where l̂Pi is the 0/1 pre-
diction obtained (as described in Section 3). The multi-label accuracy and the
multi-label F1 score are defined as:

Acc=
1

m

m
∑

j=1

|M j ∩ M̂ j |

|M j ∪ M̂ j |
and F1=

1

m

m
∑

j=1

2|M j ∩ M̂ j |

|M j |+ |M̂ j |
.

Adapted measures of Precision and Recall, denoted Presi and Recsi are used
to evaluate how well our system classifies proteins as localized or not localized
to any single location si [29]. The Multilabel-Precision is:

Presi =
1

|{P ∈ D | si ∈ M̂P }|

∑

P∈D | si∈M̂P

|MP ∩ M̂P |

|M̂P |
,

and the Multilabel-Recall is:

Recsi =
1

|{P ∈ D | si ∈ MP }|

∑

P∈D | si∈MP

|MP ∩ M̂P |

|MP |
.

Note that Presi captures the ratio of the number of correctly predicted multiple
locations to the total number of multiple locations predicted, and Recsi captures
the ratio of the number of correctly predicted multiple locations to the number
of original multiple locations, for all the proteins that co-localize to location
si. Therefore, high values of these measures for proteins that co-localize to the
location si indicate that the sets of predicted locations that include location si
are predicted correctly. Additionally, the F1-label score used by Briesemeister et
al. [29] to evaluate the performance of multi-location predictors is computed as
follows:

F1-label=
1

|S|

∑

si∈S

2× Presi ×Recsi
Presi +Recsi

.

Finally, to evaluate the correctness of predictions made for each location si,
we use the standard precision and recall measures, denoted by Pre-Stdsi and
Rec-Stdsi (e.g. [10]) and defined as:

Pre-Stdsi =
TP

TP + FP
and Rec-Stdsi =

TP

TP + FN
,

where TP (true positives) denotes the number of proteins that localize to si
and are predicted to localize to si, FP (false positives) denotes the number of
proteins that do not localize to si but are predicted to localize to si, and FN

(false negatives) denotes the number of proteins that localize to si but are not
predicted to localize to si.



Table 1. Multi-location prediction results, averaged over 25 runs of 5-fold cross-
validation, for multi-localized proteins only, using our system, YLoc+[29], Euk-
mPLoc [45], WoLF PSORT [46], and KnowPred [27]. The F1-label score and Acc

measures shown for all the systems except for ours are taken directly from Table 3

in the paper by Briesemeister et al. [29]. Standard deviations are provided for our
system (not available for other systems).

Our system YLoc+[29] Euk-mPLoc [45] WoLF PSORT [46] KnowPred [27]

F1-label 0.66 (± 0.02) 0.68 0.44 0.53 0.66

Acc 0.63 (± 0.01) 0.64 0.41 0.43 0.63

Table 2. Multi-location prediction results, averaged over 25 runs of 5-fold cross-
validation, for the combined set of single- and multi-localized proteins, using our sys-
tem. The table shows the F1 score, the F1-label score, and the accuracy (Acc) obtained
for SVMs without using location inter-dependencies and for our system which uses
location inter-dependencies. Standard deviations are shown in parentheses.

F1 F1-label Acc

SVMs (without using dependencies) 0.77 (± 0.01) 0.67 (± 0.02) 0.72 (± 0.01)

Our system (using dependencies) 0.81 (± 0.01) 0.76 (± 0.02) 0.76 (± 0.01)

Table 3. Multi-location prediction results, per location, averaged over 25 runs of 5-fold
cross-validation, for the combined set of single- and multi-localized proteins. Results are
shown for the five locations si that have the largest number of associated proteins (the
number of proteins per location is given in parenthesis): cytoplasm (cyt), extracellular
space (ex), nucleus (nuc), membrane (mem), and mitochondrion (mi). The table shows
the measures (standard precision (Pre-Stdsi) and recall (Rec-Stdsi), and Multilabel-

Precision (Presi) and Multilabel-Recall (Recsi)), obtained for SVMs without using
location inter-dependencies and for our system by using location inter-dependencies.
The highest values between the two methods are shown in boldface. Standard deviations
are shown in parentheses.

cyt (3785) ex (1405) nuc (2952) mem (1824) mi (870)

Pre-Stdsi
(SVMs) 0.84 (± 0.01) 0.87 (± 0.02) 0.79 (± 0.02) 0.93 (± 0.01) 0.90 (± 0.03)

Pre-Stdsi
(Our system) 0.84 (± 0.01) 0.91 (± 0.02) 0.79 (± 0.03) 0.90 (± 0.01) 0.87 (± 0.03)

Rec-Stdsi
(SVMs) 0.85 (± 0.01) 0.64 (± 0.02) 0.72 (± 0.02) 0.79 (± 0.02) 0.62 (± 0.03)

Rec-Stdsi
(Our system) 0.86 (± 0.01) 0.65 (± 0.02) 0.74 (± 0.03) 0.80 (± 0.02) 0.66 (± 0.03)

Presi
(SVMs) 0.82 (± 0.01) 0.89 (± 0.02) 0.83 (± 0.01) 0.92 (± 0.01) 0.87 (± 0.03)

Presi
(Our system) 0.81 (± 0.02) 0.91 (± 0.02) 0.83 (± 0.01) 0.90 (± 0.01) 0.89 (± 0.02)

Recsi (SVMs) 0.78 (± 0.01) 0.72 (± 0.02) 0.77 (± 0.01) 0.76 (± 0.01) 0.68 (± 0.02)

Recsi (Our system) 0.80 (± 0.01) 0.74 (± 0.02) 0.78 (± 0.02) 0.78 (± 0.01) 0.73 (± 0.02)

4.3 Classification Results

Table 1 shows the F1-label score and the accuracy for our system in comparison
to those obtained by other predictors (as reported by Briesemeister et al. [29],
Table 3 there, using the same set of multi-localized proteins and evaluation mea-
sures. While the table shows that our system has a slightly lower performance
than YLoc+, the differences in the values are not statistically significant, and the
overall performance level is comparable. Thus our approach performs as effec-
tively as current top-systems, while having the advantage of directly capturing



inter-dependencies among locations in a generalizable manner (that is, without
introducing a new location-class for each new location-combination).

Table 2 shows the F1 score, the F1-label score, and the accuracy obtained
by the individual SVM classifiers (used for computing estimates of location in-
dicators) without using location inter-dependencies compared with the corre-
sponding values obtained by our system by using location inter-dependencies,
on the combined dataset of both single- and multi-localized proteins. All the
scores obtained by using inter-dependencies are significantly higher than those
obtained by using SVMs alone without utilizing inter-dependencies. These dif-
ferences are highly statistically significant (p ≪ 0.001), as measured using the
2-sample t-test [47].

Table 3 shows the prediction results obtained by our system for the five loca-
tions that have the largest number of associated proteins: cytoplasm (cyt), ex-
tracellular space (ex), nucleus (nu), membrane (mem), and mi (mitochondrion),
on the combined dataset of both single- and multi-localized proteins. For each
location si, we show the standard precision (Pre-Stdsi) and recall (Rec-Stdsi)
as well as the Multilabel-Precision (Presi) and Multilabel-Recall (Recsi). The
table shows values for each of the measures obtained by SVMs without using lo-
cation inter-dependencies and by our system using location inter-dependencies.
When using inter-dependencies, we note that for all locations the Multilabel-
Recall (Recsi) increases (in some cases statistically significantly); while for a few
locations (such as cytoplasm and membrane) the Multilabel-Precision (Presi )
decreases, the decrease is not statistically significant. For instance, when classi-
fying using SVMs without using inter-dependencies Reccyt is 0.78 and Recmem

is 0.76, while when incorporating the inter-dependencies the recall is 0.80 and
0.78, respectively. Even for locations with fewer associated proteins, e.g. per-
oxisome, (157 proteins), the Multilabel-Recall increases from 0.37 using simple
SVMs to 0.65 using our classifier. This demonstrates the advantage of using lo-
cation inter-dependencies for predicting protein locations, not just for locations
that have a large number of associated proteins but also for locations that have
relatively few associated proteins.

5 Discussion and Future Work

We presented a new way to use a collection of Bayesian network classifiers taking
advantage of location inter-dependencies to provide a generalizable method for
predicting possible multiple locations of proteins. The results demonstrate that
the performance of our preliminary system is comparable to the best current
multi-location predictor YLoc+[29], which indirectly addresses dependencies by
creating a class for each multi-location combination. Our results also show that
utilizing inter-dependencies significantly improves the performance of the loca-
tion prediction system, with respect to SVM classifiers that do not use any
inter-dependencies.

In most biological applications that have used Bayesian networks so far (e.g.
[36,37,38]), the variable-space typically corresponds to genes or SNPs which is



a very large space and necessitates the use of strong simplifying assumptions
and many heuristics. In contrast, we note that predicting multiple locations for
proteins involves a significantly smaller number of variables (as the number of
subcellular components and the number of features for representing proteins
are relatively small), making this task ideally suitable for the use of Bayesian
networks.

The study presented here is a first investigation into the benefit of directly
modeling and using location inter-dependencies. In order to obtain initial esti-
mates for location values, we used a simple SVM classifier, and location inter-
dependencies were only learned based on these values. While the results have
already shown much improvement with respect to the baseline SVM classifiers,
we believe that a better approach would be to simultaneously learn a Bayesian
network while estimating the location values using methods such as expectation
maximization.

We note that although the dataset we use contains the most extensive avail-
able collection of multi-localized proteins, several subcellular locations are not
represented in the dataset at all due to the low number of proteins associated
with them. Similarly, there is not enough data pertaining to proteins that are
localized to more than two locations. We are in the process of constructing a set
of multi-localized proteins that will be used in future work to test the perfor-
mance of our system on novel, and more complex, combinations. We also plan to
develop improved approaches for learning models of location inter-dependencies
from the available data.

Acknowledgments: We are grateful to S. Briesemeister for so readily providing
us with information about the implementation and testing of YLoc+.
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