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ABSTRACT

Motivation: Knowing the localization of a protein within the cell helps

elucidate its role in biological processes, its function and its potential

as a drug target. Thus, subcellular localization prediction is an active

research area. Numerous localization prediction systems are

described in the literature; some focus on specific localizations

or organisms, while others attempt to cover a wide range of

localizations.

Results: We introduce SherLoc, a new comprehensive system for

predicting the localization of eukaryotic proteins. It integrates several

types of sequence and text-based features. While applying the

widely used support vector machines (SVMs), SherLoc’s main

novelty lies in the way in which it selects its text sources and

features, and integrates those with sequence-based features. We

test SherLoc on previously used datasets, as well as on a new set

devised specifically to test its predictive power, and show that

SherLoc consistently improves on previous reported results. We also

report the results of applying SherLoc to a large set of yet-

unlocalized proteins.

Availability: SherLoc, along with Supplementary Information, is

available at: http://www-bs.informatik.uni-tuebingen.de/Services/

SherLoc/

Contact: shatkay@cs.queensu.ca

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Protein subcellular localization prediction is an important

and well-studied problem in bioinformatics (Dönnes and

Höglund, 2004; Schneider and Fechner, 2004). Knowing a

protein’s localization helps elucidate its function, its role in

biological processes, and its potential use as a drug target.

Experimental methods for protein localization range from

immunolocalization (Burns et al., 1994) to tagging of proteins

using green fluorescent protein (Hanson and Köhler, 2001)

and isotopes (Dunkley et al., 2004). Such methods are accurate,

but slow and labor-intensive compared to high-throughput

computational methods. Computationally predicting subcellu-

lar localization enables a proteome-wide initial ‘triage’.

Moreover, computational methods provide information that

is not otherwise attainable, e.g. for proteins that are hard to

isolate, produce or locate experimentally, but whose amino acid

sequence may be determined from the genomic sequence.

Much progress in computational prediction of protein

subcellular localization using sequence-based information has

been reported in recent years. Nakai and Kanehisa (1991, 1992)

introduced a rule-based expert system, PSORT, which was later

improved upon using machine-learning methods for classifica-

tion (Horton and Nakai, 1997). Other prominent systems,

TargetP (Emanuelsson et al., 2000) and ChloroP (Emanuelsson

et al., 1999), based on artificial neural networks, have

demonstrated a high accuracy when applied to a limited set

of subcellular localizations in either plant (ChloroP) or animal

cells (TargetP). Other recent systems apply a variety of

machine-learning techniques. Most focus on a few subcellular

localizations and improve – or just meet – the prediction accu-

racy of earlier systems (Bannai et al., 2002; Cai and Chou, 2004;

Gardy et al., 2003; Nair and Rost, 2005). The best performing

comprehensive sequence-based systems reported to date, which

were extensively tested and compared to previous systems, are

PLOC (Park and Kanehisa, 2003) and, more recently, MultiLoc

(Höglund et al., 2006a). While they report the best accuracy so

far on a broad range of organisms and localizations, there is

still room for improvement.
SherLoc is a new system that computationally assigns

proteins to their respective subcellular localization. It integrates

several types of sequence-derived and text-based information,

and performs very well in terms of sensitivity, specificity and

overall accuracy. The system is applicable to – and retains

its good performance across – a wide variety of eukaryotic

organisms and subcellular localizations.
SherLoc uses text to obtain features for representation and

classification, as is done in information retrieval, and does not

apply traditional text mining or natural language processing

methods. That is, unlike Craven and Kumlien (1999) we do not

try to discover localization statements in the literature. While

finding such statements may help in surveying the literature, it

does not support localization prediction for yet unlocalized

proteins. In contrast, we use the text to obtain a set of features*To whom correspondence should be addressed.
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that are correlated with location, without necessarily stating or

directly indicating it. The idea of using a collection of indirect

weak features is well rooted in both machine learning (Hastie

et al., 2001) and biology. For example, Jensen et al. (2002)

predict protein function using neural networks applied to a

wide range of protein features, including sequence length and

isoelectric point. While such features do not biologically explain

the function, the collection of feature values is correlated with

function, and can help predict the function when used as a basis

for a machine-learning classification method. Following the

same general approach, we use a set of text-based features

(which we call distinguishing terms) that are correlated with –

but not necessarily biologically indicative of – specific sub-

cellular locations.
Our hypothesis is that distinguishing terms, derived from

text, provide features that can characterize localizations – and

can thus be used to represent proteins associated with these

localizations. Introducing such features into the classification

process improves the ability to distinguish among proteins from

different locations, and thus improves prediction performance.

Underlying this hypothesis is the idea that scientists working

with proteins write differently about proteins that may end up,

for instance, in the nucleus, as opposed to proteins that will end

up in the peroxisome. This is because such proteins are likely to

be studied in different processes, related to different small

molecules, be associated with diverse functions – and as such

require a different language to be reported – long before their

localization is determined. Put simply, the ‘jargon’ of the

articles discussing different proteins can be used to provide cues

about their localization, even when their localization is still

unknown.

Several groups have already explored the use of text features

to characterize biological entities and proteins in particular.

Chang et al. (2001) use the classification of text that

accompanies protein sequences to enhance homology search

by PSI-BLAST. More recently, Glenisson et al. (2003)

integrated text data into the clustering of gene expression

profiles, which extends another early work that characterized

and clustered genes based on text (Shatkay et al., 2000).

Several recent publications have examined the use of text to

support subcellular localization annotations. Specifically,

Stapley et al. (2002) represented yeast proteins as vectors of

weighted terms taken from all the PubMed abstracts mention-

ing their respective genes. The protein-text vectors were used to

train support vector machines (SVM) to distinguish among

subcellular localizations. The results reported were favorable in

comparison to using the amino acid composition alone.

However, the system was not compared against any state-of-

the-art prediction method, and combining the two data sources

did not show better performance than the text-based classifier

alone. Nair and Rost (2002) used text obtained from curated

Swiss-Prot annotations to represent proteins with known

localization, and trained a prediction model using this

representation. While the method just met the state-of-the-art

at that time, it is limited to a few localizations and does not

integrate text with other types of data. Eskin and Agichtein

(2004) extended this idea, using amino acid subsequences as

some of the terms considered in the text representation.

The system was not compared to existing systems and the
results do not suggest improvement over previous methods.
In addition to testing SherLoc on publicly available and

previously used data, in the current study we introduce two new

datasets and demonstrate SherLoc’s predictive ability. To this
end, as discussed in Section 3, we apply SherLoc to proteins

whose localization was unknown at the time the training set was

extracted and the system was trained, but has become known
since, as well as to proteins whose localization is still

undetermined. Finally, along with this article we present
SherLoc as a publicly available server for predicting the

subcellular localization of proteins.
In the next section, we outline the methods used for

constructing the integrated prediction system. Sections 3

and 4 present the experimental settings and demonstrate the
performance of SherLoc. Section 5 concludes the article and

outlines future work.

2 METHODS

SherLoc uses localization predictions from four different sequence-

based classifiers and from one text-based classifier, and integrates them

to produce an improved prediction of the subcellular localization of the

input protein. The four sequence-based classifiers originate from the

MultiLoc prediction system, which has been described in detail

elsewhere (Höeglund et al., 2006a). We provide here a brief description

of these classifiers as well as of the text-based classifiers. Section 2.3

explains how these classifiers are combined to form the integrated

prediction system, as depicted in Figure 1.

Four of the five classifiers are based on SVMs and have been

implemented using the libSVM package (Chang and Lin, 2003). This

implementation supports soft and probabilistic n-class categorization

(Wu et al., 2004), in which an n-dimensional vector denoting the

probability of belonging to each of the n classes is assigned to each item.

Radial basis function (RBF) kernels and 5-fold cross-validation were

used throughout this study. Further details are given below.

2.1 Sequence-based methods

The four sequence-based classifiers utilize four types of biological

features which are known to play an important role in intracellular

sorting of proteins. Namely, N-terminal targeting peptides, internal

signal anchors, overall amino acid composition and certain sorting

sequence motifs. SVM classifiers are used to identify the first three types

of features. The fourth classifier scans the protein sequences for pre-

specified short motifs indicative of structure and function (for details,

see (Höglund et al., 2006)).

SVMTarget uses the N-terminal targeting peptide to predict

chloroplast (ch), mitochondria (mi), secretory pathway (SP) and other

(OT) localizations in plant cells, and only mi, SP, and OT in non-plant

cells. Targeting peptides are represented by their partial amino acid

composition. Given an input protein, the classifier outputs a 4-dimen-

sional (3-dimensional for non-plant) vector with the probabilities of

each localization.

SVMSA is a binary classifier reporting the probability that the query

sequence contains a signal anchor (SA). Signal anchors are located

further from the N-terminus and have a longer hydrophobic region

than targeting peptides. They characterize a few secretory pathway

proteins that lack an N-terminal targeting peptide and may escape

detection by SVMTarget.

SVMaac is based on overall amino acid composition (aac). It is

a collection of binary classifiers, one for each localization,

and an additional classifier trained to separate cytosolic (cy) from
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nuclear (nu) proteins. The output is a vector containing the respective

probability for each localization.

MotifSearch produces a vector of binary features indicating the

presence (or absence) of 43 sequence motifs in the query sequence.

These motifs1 were obtained from the PROSITE (Bairoch and Bucher,

1994) and from the NLSdb (Cokol et al., 2000; Nair et al., 2003)

databases.

2.2 Text-based methods

The text-based classifier relies on the idea of representing each protein

as a vector of weighted text features. While text-based protein

classification has been suggested before (Nair and Rost, 2002; Stapley

et al., 2002), our approach differs in several ways from previous

research, specifically in the text source used, the feature selection and

the term weighting scheme, as described below.

2.2.1 Text sources For each protein, the primary text source is

the set of PubMed abstracts assigned to it by its Swiss-Prot entry. The

titles and abstracts2 of the PubMed articles referenced from Swiss-Prot

are obtained for each protein. This choice of text is different from that

of Stapley et al. (2002), who use all PubMed abstracts mentioning a

certain gene’s name, and from that of Nair and Rost (2002), who use

Swiss-Prot annotation text rather than abstracts. The selected abstracts

are tokenized into a set of terms consisting of singletons (unigrams) and

pairs of consecutive words (bigrams), with standard stop words

excluded from consideration. Porter stemming (Porter, 1997) was

applied to all the words in the final set of terms.

An important point to note is that some proteins may not have

PubMed identifiers associated with their Swiss-Prot entry, while

others – newly discovered proteins –may not even be included in

Swiss-Prot yet. We refer to such proteins as ‘textless’. If such a protein

has close homologs, which already have text associated with them, we

use the text of the homologs.3 Note that this is different from assigning

the localization directly through homology, as all of the other

components of the integrative system still use the original query

sequence of the ‘textless’ protein itself. Results based on this strategy

are reported in Section 4. While homology search does have limitations,

our results suggest that this strategy is quite effective.

2.2.2 Term selection While the text associated with proteins may

contain numerous terms, we select only a subset of distinguishing terms

for representing proteins. The selection is done by scoring terms with

respect to each subcellular localization, such that the score reflects the

term’s probability to occur in abstracts associated with proteins of

this particular localization. Essentially, a term is distinguishing for a

localization L if it is much more likely to occur in abstracts associated

with localization L than in abstracts associated with any other

localization. This idea is formalized in the following paragraphs.

Let t be a term, L a subcellular localization and p a protein. We

define the following sets:

Dp is the set of all abstracts associated with p;

PL is the set of all proteins known to be localized to L;

DL is the set of abstracts that are associated with a localization L,

defined as: DL ¼
S

p2PL
fd j d 2 DPg. The number of abstracts in DL

is denoted jDLj.

The probability of a term t to be associated with localization L,

(denoted PrtL) is expressed as the conditional probability of the term to

be included in a document, given that the document is associated with

the localization: PrtL ¼ Prðt 2 d j d 2 DLÞ. For each term t and localiza-

tion L, this probability is easily estimated as the proportion of

documents containing t among all those associated with the localization:

PrtL�ðNumber of documents d2DL s:t: t2dÞ=jDLj:

Based on the probability PrtL, a term t is called distinguishing for

localization L, if and only if its probability to occur in localization L,

PrtL, is significantly different from its probability to occur in any other

localization L0, PrtL0 . The significance is measured using a statistical test

that evaluates the difference between the probabilities, PrtL and PrtL0 ,

based on a Z-score (Walpole et al., 1998) (see Höglund et al., 2006b for

details). When the Z-score is greater than a certain threshold (1.96, in

our case), the hypothesis that the two probabilities PrtL and PrtL0 are

indeed different is accepted with confidence greater than 95%. In this

case, the term t is considered distinguishing for localization L, and is

included in the set of distinguishing terms. Our text-based method uses

only distinguishing terms, (of which there are about 550), for

representing proteins as term vectors. The table below gives examples

of some of the distinguishing terms for several localizations.

The distinguishing terms do not necessarily include the name of the

organelle that they represent. This is an important feature, as it

supports our hypothesis that documents discussing proteins of a certain

localization demonstrate an over-abundance of specific terms, (which

we view as the ‘localization jargon’). These terms may not state the

localization itself, but can be used as cues to identify the localization.

These cues are helpful not because they say directly what the organelle

is, but because they tend to occur in documents discussing proteins

localized to that particular organelle. The text classifier uses these cue

terms to associate the protein with the respective organelle.

2.2.3 Term weighting Once the collection of N distinguishing

terms, denoted TN, is established, each protein p is represented as an

N-dimensional vector, where the weightW
p
ti at position i, (1 � i � N), is

the conditional probability of the term ti to appear in the abstracts

associated with protein p, given the set of all abstracts associated with

the protein (the set Dp). This probability is estimated as the ratio

between the total number of times the term ti occurs in the abstracts of

protein p and the total number of occurrences of all distinguishing

terms in the same abstracts. Formally, it is calculated as:

W
p
ti ¼

X

d2Dp , such that ti2d

ðNumber of times ti occurs in dÞ

X

d2Dp

X

tj2TN

ðNumber of times tj occurs in dÞ
, ð1Þ

where the sums are taken over all the abstracts d in the set of abstracts

Dp associated with the protein p.

The weighted term vectors representing the proteins were partitioned

into training and test sets for each subcellular localization. As was the

case with sequence-based feature vectors, an SVM was trained to

classify these protein feature vectors into their most probable

localization.

Localization Examples of distinguishing terms

nu bind, control, dna, histon, transcript

mi coa (CoA), cytochrom, dehydrogenas, oxidas

go acceptor, catalyt domain, fucosyltransferas

er calcium, chaperon, disulfid isomeras, lumen

1Statistical analysis was conducted to obtain the set of motifs with
discriminative power with respect to the localizations.
2Without the MeSH (Medical Subject Headings) terms.
3BLAST, http://www.ncbi.nlm.nih.gov/BLAST/, is used for identifying
homologs.
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2.3 An integrated system: SherLoc

Given a query protein as input, each of the above classifiers produces a

subcellular localization prediction for this protein. Each prediction is

typically a vector indicating for each localization the probability of the

protein to be associated with it (an exception is MotifSearch, whose

output is a binary vector indicating the presence/absence of motifs in

the protein).

As illustrated in Figure 1, the output vectors of the five classifiers are

combined to form the input for the final SVM classifier. This last

classifier produces a vector denoting the probability of the protein to

belong to each of the possible localizations. The localization with the

highest probability is the one assigned to the protein as the final

prediction. As proteins may belong to more than one localization, our

system can easily be adjusted to output several top-ranking localiza-

tions along with their probabilities instead of a single predicted

localization.

This combination of classifiers creates an integrated prediction

method, utilizing both protein sequence and text data. Training and

evaluation were executed using strict 5-fold cross-validation, in

accordance with the practice recommended in statistical machine-

learning literature (Hastie et al., 2001). Thus, no test protein was used

to train any of the classifiers.

3 EXPERIMENTS

SherLoc was tested extensively, using at first several large sets

of proteins of known localization, partitioned into training and

test sets for conducting 5-fold cross-validation. Additionally,

we created a novel test set by extracting proteins whose

localizations were unknown at the time the training sets were
created, but have become known since. Finally, we applied

SherLoc to the proteins in Swiss-Prot whose localization is still

unknown, providing de novo prediction as a basis for future

laboratory experiments.
Three existing datasets, namely those used for training and

testing TargetP, MultiLoc and PLOC, were used for training

and for testing SherLoc using 5-fold cross-validation. As these

sets were used in previous studies (Emanuelsson et al., 2000;

Höglund et al., 2006a; Park and Kanehisa, 2003) they provide

the basis for an extensive and sound performance comparison.
Two additional datasets were newly created, based on a

recent Swiss-Prot release 48.8 (released January 2006). The

proteins in these sets were not used in any way to train SherLoc,

as they were not yet localized in release 42.0 (the 2003 version

used to create the dataset for training and testing MultiLoc and

SherLoc). The first set contains proteins that were not yet

localized when SherLoc was trained but were localized in

release 48.8. The second is a set of proteins whose localization is

still undetermined (either uncertain or unknown) as of release

48.8. The datasets, the evaluation procedure and the results are

described throughout this section.

3.1 Experimental setting

3.1.1 A comparative study The three datasets used in our
comparative experiments are the following:

TP: This dataset was used for training TargetP (Emanuelsson

et al., 2000) and contains a total of 3415 proteins from four

plant (ch, mi, SP and OT) and three non-plant (ch excluded)

localizations. The SP category includes proteins from all

localizations in the secretory pathway: endoplasmic reticulum

(er), extracellular space (ex), Golgi apparatus (go), lysosome

(ly), plasma membrane (pm) and vacuole (va). The OT (Other)

category includes cytoplasmic (cy) and nucleus (nu) proteins.

ML: A total of 5959 proteins extracted from Swiss-Prot

release 42.0 (Bairoch and Apweiler, 2000) form the MultiLoc

dataset (Höglund et al., 2006a). It covers 11 eukaryotic

localizations (cy, ch, er, ex, go, ly, mi, nu, pe, pm, va), from

animal, fungus and plant.
PL: The PLOC dataset (Park and Kanehisa, 2003) consists of

7579 proteins from Swiss-Prot release 39 covering 12 localiza-

tions with a maximum sequence identity of 80%. In contrast to

MultiLoc, this dataset introduces the additional cytoskeleton

(cs) localization within the cytoplasm.
Using these three datasets, the performance of the new

system, SherLoc, is compared to that of TargetP, PLOC and

MultiLoc.4 In addition, we compare SherLoc’s performance

to that of an SVM classifier applied to the text data alone.

Following previous evaluations (Emanuelsson et al., 2000; Park

and Kanehisa, 2003) we consistently employ strict 5-fold cross-

validation. For comparison with the PLOC dataset, we use the

same split as the one used by Park and Kanehisa (2003). For

the TargetP data, since Emanuelsson et al. (2000) do not

provide the split they have used, we randomize the data split

five times (on top of the 5-fold cross-validation) to ensure the

robustness of the evaluations.
In order to test the performance of SherLoc on textless

proteins, we conduct an experiment in which the text associated

with test data was removed, and each protein in the test data

was assigned the term vector associated with its closest

homolog from the training data. We recall that there are no

Fig. 1. SherLoc’s architecture comprises four sequence-based

and one text-based classifiers, and a final integrating classifier.

All classifiers whose name includes the SVM acronym are based on

SVMs. SVMTarget uses N-terminus targeting peptides, SVMSA

identifies the presence of a signal anchor, SVMaac uses amino acid

composition as its features. The output from the final classifier is the

probability of the query protein to be localized to each of the possible

11 localizations (ch: chloroplast, cy: cytoplasm, er: endoplasmic

reticulum, ex: extracellular, go: Golgi, ly: lysosome, mi: mitochondria,

nu: nucleus, pe: peroxisome, pm: plasma membrane, va: vacuole).

The most probable localization is selected as the predicted localization

for the query protein.

4Comparison to PSORT (Nakai and Kanehisa, 1992) is not included
here, since MultiLoc has already demonstrated a higher prediction
accuracy when compared to it (Höglund et al. 2006a).
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two proteins with homology exceeding 80% in the set, therefore

this is a stringent test, resulting in what we view as a lower

bound on the performance of SherLoc on textless proteins. In

practice, we expect to assign ‘textless’ proteins with the text of

multiple homologs with higher than 80% identity, thus

expecting results that even exceed the ones reported here.

For each system and dataset, the performance is measured in

terms of the sensitivity (Sens), specificity (Spec), and the

Matthews correlation coefficient (MCC), defined as:

Sens¼TP=ðTPþFPÞ ; Spec¼TP=ðTPþFPÞ ;

MCC¼
TP�TN�FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþFNÞ�ðTPþFPÞ�ðTNþFNÞ�ðTNþFPÞ
p ,

where TP, FP, TN and FN denote the number of true positives,

false positives, true negatives and false negatives, respectively,

for a given localization. Furthermore, the overall accuracy

(Acc) is provided for each dataset, as well as the average

sensitivity (Avg), (also known as average localization-specific

accuracy).

3.1.2 De novo prediction Once SherLOC has been built and
trained, its performance on data outside the cross-validation

setting is evaluated on two new datasets: the first, Diff48,

consists of proteins not included in the training of SherLoc, as

their localization was either unknown or annotated as uncertain

in release 42.0. We further limit this set to contain only proteins

for which SherLoc’s predictions can actually be checked, by

keeping in it only proteins that were assigned a definite

localization in a recent Swiss-Prot release, 48.8. Having such

proteins allows us to faithfully simulate a true prediction

scenario, as we predict location using a text-representation

based on old abstracts and a system trained on data from

several years ago, while verifying the prediction against new

localization data that became available only recently. Thus,

Diff48 includes proteins that adhere to three criteria: (1) They

did not participate in any way in the training of SherLoc;

(2) PubMed abstracts are associated with them through Swiss-

Prot entries that predate their localization, and were not used in

the training; and (3) They now have a validated localization,

indicated in a recent Swiss-Prot release, allowing us to validate

SherLoc’s predictions.
The second set, called Unknown, contains all the proteins

whose localization is still uncertain or unknown in Swiss-Prot

release 48.8 and have a PubMed reference associated with them.
Similar to the sets used in the comparative study, both new

sets contain only animal, fungal and plant proteins, as indicated

by the presence of the keywords Metazoa, Fungi or

Viridiplantae, respectively, in the OC (organism classification)

field. To generate the sets, we first scanned Swiss-Prot release

42.0 for all proteins that either did not have a SUBCELLULAR

LOCATION line in their comment field, or contained the keywords

potential, probable or by similarity in it. Any protein that

occurred in the MultiLoc dataset was removed from the set to

ensure that no protein used for training SherLoc is reused in the

new evaluation.
As stated above, an important property of the Diff48 set, is

that it contains only proteins whose localization, as predicted

by SherLoc, can be checked and verified. Thus, to build the

Diff48 set, a second step was taken in which the latest release of
Swiss-Prot (48.8) was scanned for each of the proteins in the

unknown/uncertain set generated above. Proteins that were

now localized with certainty were included in the Diff48 set.

At the end of this procedure, there were 361 proteins in the
Diff48 set.

To represent the proteins and perform localization predic-
tion, the text for each of the Diff48 proteins comes from

PubMed abstracts referenced in an earlier Swiss-Prot release,

specifically, in which the protein was still not localized. The text

for each protein is then represented as a weighted term vector
using the same distinguishing terms that were selected as

discussed in Section 2.2.2 and used in the experiments discussed

in Section 3.1.1. SherLoc uses this text representation, along

with protein sequence features, to predict localization. Thus the
prediction does not use any information that became available

after the true localization was determined. The predictions are

then compared against the true locations as curated in Swiss-

Prot release 48.8.
The second dataset, called Unknown, consists of proteins that

are still unlocalized (or localized without complete confidence,
as indicated by the annotation: potential, probable or by

similarity), which we use for de novo prediction. There are

�19000 proteins in the Unknown set, of which �15000 have no

known localization, while the localization of the remaining
4000 is uncertain. We note that in contrast to the Diff48 set, the

predictions in this set are not presently verified.
We examine SherLoc’s performance on the set Diff48 of

proteins whose localization was recently determined. As the set

is quite small, some localizations are not represented at all,

while other have only 1–2 associated proteins, the results –
although quite good – are not always conclusive. We also

applied SherLoc to predict the localizations of the Unknown

proteins. Given the very good performance of our system on

cross-validation data as well as on the newly localized proteins,
we believe these predictions will prove useful. They are

available from the SherLoc web site. Future laboratory

experiments are, of course, necessary to validate such

predictions.

4 RESULTS

Table 1 shows the total and average accuracies (Acc and Avg,
respectively) over the localizations, using the TargetP (TP) and

PLOC (PL) datasets. Results obtained from SherLoc, as well as

from each of its individual components (MultiLoc and the text-

bases classifier), are shown. The TargetP set separates plant and
non-plant proteins, while PLOC distinguishes among animal,

fungal and plant proteins. For comparison, we also list the

results obtained by TargetP and PLOC on their respective

datasets, taken directly from their respective original publica-
tions (Emanuelsson et al., 2000; Park and Kanehisa, 2003).5

A detailed comparison of our four approaches –MultiLoc
(sequence only), Text (text only), SherLoc (integrated) and

Homology (SherLoc, but using homologous proteins for text

5A comparison of prediction results for individual localizations with
respect to TargetP and PLOC, is shown in Tables T1 and T2 of the
Supplementary Material.
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assignment) – is summarized in Table 2, listing the sensitivity

(Sens), specificity (Spec) and Matthew’s correlation coefficient

(MCC) for animal and plant proteins. Results for fungal

proteins are shown in Table T4 of the Supplementary Material.

The results were obtained using strict 5-fold cross-validation on

the MultiLoc (ML) dataset, repeated five times with five

different randomized splits.
Notably, the table also demonstrates the ability of our system

to handle ‘textless’ proteins by obtaining text through

homology. In this case, the test proteins were stripped of

their original text, and the text from a homologous protein in

the training data was used instead. We observe that the results,

as shown in the Homology columns of Table 2, are still almost

as good as those of SherLoc, in which we used the Swiss-Prot

curated abstracts for the protein.

The results in Tables 1 and 2 clearly show that the combined

classifier, SherLoc, integrating text and sequence data, out-

performs earlier prediction methods, as well as its own

individual components.
The Homology column in Table 2 shows an overall

performance that is still better than the individual components

and of previous systems, and on average is only 3% inferior to

SherLoc’s performance. These results strongly support the idea

that in the absence of curated text for a protein, ‘borrowing’

text from a relatively remote homolog (less than 80% identity),

yields a very good prediction when integrated with sequence

data. It affirms homology-based text recovery as an effective

way to handle proteins that have no curated text when using the

integrative framework. Again, we stress that homology is used

here only to obtain text for a protein that may not have it. It is

Table 1. Summary of the prediction results using the datasets previously used by TargetP (TP) and by PLOC (PL). Both the total accuracy (Acc) and

the average sensitivity (Avg) are shown for the original method using this dataset (TargetP or PLOC, respectively), as well as for MultiLoc (sequence

features only), Text (text features only) and SherLoc (integrating sequence and text features). The highest values are shown in bold. Standard

deviations (denoted �) are provided where available.

Dataset Method Acc (� Standard Deviation)/Avg (�Standard Deviation)

TP Plant Non-Plant

TargetP 0.853 (�0.035) / 0.856 (n/a) 0.90 (�0.007) / 0.907 (n/a)

MultiLoc 0.897(�0.016) / 0.902 (�0.02) 0.925 (�0.012) / 0.928 (�0.011)

Text 0.812 (�0.026) / 0.781 (�0.032) 0.887 (�0.011) / 0.898 (�0.016)

SherLoc 0.947 (�0.015) / 0.944 (�0.016) 0.962 (�0.008) / 0.967 (�0.009)

PL Plant Animal Fungal

PLOC 0.782 (�0.009) / 0.579 (�0.021) 0.796 (�0.009) / 0.599(�0.033) 0.795 (�0.009) / 0.568 (�0.019)

MultiLoc 0.736 (�0.007) / 0.713 (�0.028) 0.76 (�0.007) / 0.736 (�0.039) 0.758 (�0.008) / 0.725 (�0.025)

Text 0.687 (�0.007) / 0.735 (�0.018) 0.702 (�0.007) / 0.755 (�0.027) 0.678 (�0.005) / 0.724 (�0.026)

SherLoc 0.853 (�0.012) / 0.842 (�0.024) 0.864 (�0.008) / 0.845 (�0.036) 0.854 (�0.008) / 0.838 (�0.028)

Table 2. Prediction results, per localization, on the MultiLoc dataset, for the three systems – MultiLoc (sequence), Text (text), SherLoc

(integrated) – as well as from a version of SherLoc where the text is taken from a homologous protein (Homology). Localization-specific (sensitivity,

specificity, MCC) measures as well as overall results (percent accuracy (Acc) and average percent sensitivity (Avg) with standard deviations) are

shown for animal and plant proteins. The results for the fungal proteins are similar to those of animal proteins and can be found in Table T4 of the

Supplementary Material.

Localization Plant (Sens Spec MCC) Animal (Sens Spec MCC)

MultiLoc Text SherLoc Homology MultiLoc Text SherLoc Homology

ch 0.88 0.85 0.85 0.89 0.70 0.78 0.94 0.91 0.92 0.91 0.87 0.88 – – – –

cy 0.68 0.85 0.70 0.53 0.75 0.54 0.81 0.91 0.82 0.77 0.88 0.78 0.67 0.85 0.68 0.51 0.77 0.53 0.83 0.91 0.82 0.79 0.88 0.78

er 0.72 0.54 0.61 0.73 0.55 0.62 0.82 0.63 0.71 0.79 0.66 0.71 0.68 0.56 0.60 0.74 0.48 0.58 0.82 0.67 0.73 0.80 0.67 0.72

ex 0.68 0.81 0.70 0.74 0.80 0.73 0.84 0.90 0.84 0.80 0.89 0.82 0.79 0.83 0.77 0.76 0.78 0.72 0.86 0.90 0.86 0.84 0.88 0.84

ly – – – – 0.69 0.36 0.48 0.75 0.32 0.47 0.86 0.55 0.68 0.82 0.55 0.66

go 0.75 0.41 0.54 0.82 0.42 0.57 0.84 0.61 0.70 0.84 0.58 0.69 0.71 0.43 0.53 0.86 0.40 0.57 0.87 0.65 0.74 0.83 0.61 0.70

mi 0.85 0.79 0.80 0.80 0.80 0.78 0.90 0.88 0.88 0.86 0.84 0.83 0.88 0.82 0.83 0.80 0.79 0.77 0.93 0.91 0.91 0.89 0.86 0.86

nu 0.82 0.75 0.75 0.80 0.72 0.72 0.89 0.85 0.85 0.86 0.82 0.82 0.82 0.73 0.73 0.84 0.71 0.73 0.89 0.83 0.84 0.86 0.80 0.80

pe 0.71 0.34 0.47 0.88 0.71 0.79 0.85 0.59 0.70 0.82 0.57 0.67 0.71 0.31 0.44 0.93 0.60 0.74 0.89 0.68 0.77 0.84 0.61 0.70

pm 0.74 0.89 0.77 0.80 0.91 0.82 0.84 0.96 0.87 0.84 0.94 0.86 0.73 0.90 0.76 0.80 0.91 0.81 0.85 0.95 0.87 0.86 0.93 0.86

va 0.70 0.20 0.36 0.59 0.15 0.29 0.83 0.29 0.48 0.76 0.25 0.43 – – – –

Acc [%] 74.6 (� 0.8) 73.1 (� 1.1) 85.1 (� 1.1) 82.6 (� 0.9) 74.6 (� 1.0) 72.5 (� 0.7) 86.2 (� 0.9) 83.7 (� 0.7)

Avg [%] 75.2 (� 0.9) 76.0 (� 2.3) 85.5 (� 1.2) 82.6 (� 0.9) 74.1 (� 2.5) 77.5 (� 1.5) 86.8 (� 1.5) 83.6 (� 0.8)
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not used for assigning the localization of a homolog to an

unknown protein.
Finally, we ran our systems on the two new datasets

Unknown and Diff48. As the Unknown set contains �19000

proteins, the results are not given here but provided on the

SherLoc web site.
As for Diff48, this relatively small set does not uniformly

represent all localizations (go, pe, ly and pm are not represented

at all, and ch, va and er have between 1 and 3 proteins each).

Overall, SherLoc predicted the localization of these newly

localized proteins with an accuracy of about 71%, but

performance per localization varies. (See Table T3 of the

Supplementary Material.) For instance, SherLoc predicts the

132 extracellular proteins with 79% sensitivity and 99%

specificity, exceeding all previously reported predictive results

(including SherLoc’s own specificity) on cross-validation data.

SherLoc’s sensitivity on the newly localized extracellular

proteins is only slightly lower than its demonstrated extra-

cellular sensitivity on cross-validation data. For the 21 newly

localized mitochondrial proteins, SherLoc demonstrated a

similarly high performance (75% specificity; 95% sensitivity).

On the 91 newly localized cytoplasmic proteins, SherLoc’s

sensitivity was 79%, similar to its own performance and

exceeding all previously reported methods on cross-validation

data. Its specificity was much lower (59%), as it predicted �50

of the 111 nucleus proteins as cytoplasmic proteins. This

obviously also lowered SherLoc’s performance on the nucleus

proteins. This demonstrates a well-known problem in distin-

guishing nucleus from cytoplasmic proteins. TargetP handles it

by simply grouping nucleus and cytoplasmic proteins together

as one set. If we were to do the same, the performance soars to

above 90% in both sensitivity and specificity for the combined

set. However, we aim to predict the most specific localization

possible rather than to combine localizations into sets. As for

the localizations with 1–3 proteins, while SherLoc does

correctly predict some of them, this sample size is not sufficient

to merit analysis.
Overall, the above results demonstrate excellent performance

using the standard measures over all available datasets when

using the widely accepted scheme of 5-fold cross-validation.

Moreover, we show almost equally good results on the data

available for newly localized proteins that were not part of the

training/testing procedure. Finally, we provide de novo predic-

tion for a set of �15 000 proteins whose localization is

unknown to date, and for additional 4000 proteins whose

localization is still uncertain.

5 DISCUSSION AND OUTLOOK

We introduced SherLoc, a new comprehensive system for

predicting subcellular localization through integration of text

and sequence data. SherLoc, similarly to the system reported by

Nair and Rost (2002), uses Swiss-Prot as its primary text

source. However, we do not use the curated annotation text,

but rather the PubMed abstracts referenced in Swiss-Prot.

Stapley et al. (2002) use every abstract that contains the gene

name for the protein. In contrast, we use only abstracts that are

referenced by Swiss-Prot. Moreover, rather than using all the

terms with a standard (TF*IDF)6 weighting, as done by Stapley

et al., we select terms discriminatively as described in Section

2.2.2, and apply a probabilistic weighting scheme (Section

2.2.3). Moreover, we suggest a way to support text-based

localization even when the protein entry in Swiss-Prot does not

contain any PubMed abstracts (or when proteins may not even

have a Swiss-Prot entry).
The methods, experiments and results presented here clearly

demonstrate that SherLoc achieves a significantly improved

prediction of eukaryotic protein subcellular localization.

Table 2 in particular demonstrates that the use of text and

sequence data distinctly complement each other. MultiLoc,

which uses sequence data, typically performs well predicting

localizations that are directed by N-terminal signals, such as the

mitochondria and the chloroplast. Text information comple-

ments it, and its contribution is particularly noticeable for

localizations whose sequence-based signal is not as overt,

including those related to the secretory pathway, such as the

Golgi apparatus and the endoplasmic reticulum.
When relying on curated text for prediction, it is often

pointed out that such text is not always available. We introduce

one solution to this problem by using text that is associated

with a homologous protein. We have shown that using the text

of related proteins (less than 80% identity) instead of the

protein’s own text is indeed effective, as the performance is still

significantly better than that of a system relying on sequence

data alone. Furthermore, this performance is only slightly

lower than that obtained by SherLoc when using the protein’s

own curated abstracts.
In addition, we have created and introduced two new

datasets and applied SherLoc to them, demonstrating

SherLoc’s ability to predict the localization of completely new

proteins, outside the dataset on which it was trained and tested

through 5-fold cross-validation. The set Diff48 allows us to

evaluate SherLoc’s predictions realistically. By applying

SherLoc to proteins whose localization was not yet determined

in SherLoc’s training data, but became known in a new Swiss-

Prot release, we can validate predictions made outside the

standard test-and-train cross-validation setting. Our results

showed that while for several localizations (mitochondria,

extracellular) prediction was actually better than expected from

the cross-validation studies, for nuclear and cytoplasmic

proteins the cross-validation studies showed better results

than those observed over new data. This serves as a reminder

that cross-validation studies do have their limitations when the

characteristics of yet unknown proteins are not necessarily the

same as those of well-studied and well-known ones.
By predicting localization for the Unknown set of 19 000

proteins, whose localization is either unknown or uncertain, we

provided new tentative localizations for 15 000 proteins that

currently do not have any associated localization. These

predictions can serve as putative annotations and should be

experimentally validated. In the meantime, they provide

preliminary clues for experimentalists.

From the text-mining perspective, we note that biological

text mining has been an active research area for about a

6An acronym for Term Frequency times Inverse Document Frequency.
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decade now, and much work has focused on identifying entities

and relations in text. A Nature news feature titled Biology’s

Name Game (Pearson, 2001) pointed out the difficulties in

identifying protein and gene names in biomedical text. This

challenging problem is the center of active and fruitful research

(Hanisch et al., 2003; Hirschman et al., 2005; Tanabe and

Wilbur, 2002), under the assumption that the best way for

Biology to utilize the literature is by first accurately identifying

biological entities in it. So far, the progress made in biological

named entity recognition has not translated into a quantitative

improvement with respect to any specific biological problem.

Here we use a very different approach. We do not try to ‘play’

biology’s name game, but rather use text as just another source

of features to characterize proteins. Our results demonstrate,

for the first time, the definite utility of text, by achieving a

measurable and significant improvement in accuracy in

predicting protein subcellular localization.

We are expanding the system further to allow the localization

of proteins by integrating text sources other than PubMed

abstracts. Specifically, we are working on ways to combine text

from several homologous proteins instead of just one, as well as

on using other text sources such as user-provided summaries.

Experimental validation of SherLoc’s predictions as well as

computational prediction of intraorganelle localizations are

additional lines of ongoing work.
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