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The current era of large-scale biology is characterized by a fast-paced growth in the number of sequenced
genomes and, consequently, by a multitude of identified proteins whose function has yet to be deter-
mined. Simultaneously, any known or postulated information concerning genes and proteins is part of
the ever-growing published scientific literature, which is expanding at a rate of over a million new pub-
lications per year. Computational tools that attempt to automatically predict and annotate protein char-
acteristics, such as function and localization patterns, are being developed along with systems that aim to
support the process via text mining. Most work on protein characterization focuses on features derived
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directly from protein sequence data. Protein-related work that does aim to utilize the literature typically
concentrates on extracting specific facts (e.g., protein interactions) from text. In the past few years we
have taken a different route, treating the literature as a source of text-based features, which can be
employed just as sequence-based protein-features were used in earlier work, for predicting protein sub-
cellular location and possibly also function. We discuss here in detail the overall approach, along with
results from work we have done in this area demonstrating the value of this method and its potential use.
© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

The era of large-scale genome-based biology has been marked
by an unprecedented number of sequenced genes and proteins,
accompanied by a tremendous growth in the number of biomedi-
cal publications. High-throughput sequencing technology provides
fast and relatively easy means to obtain the sequence information
for a multitude of proteins. Naturally, traditional experimental
methods for studying these proteins lag behind, resulting in a rapid
increase in the number of proteins whose sequence is available but
whose role within biological processes remains unknown. Much
research is thus dedicated to characterizing proteins, identifying
their structure, function, location and interactions, as well as to
making such information available through public databases such
as SwissProt and UniprotKB [59] or the Protein Data Bank [42].
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As a lot of the information pertaining to genes and proteins is
(and has been) published throughout the scientific literature, there
is a surge of interest in biomedical text mining methods [52], aim-
ing to accelerate the acquisition and the structuring of information
obtained from unstructured text. Simultaneously, computational
methods for predicting and deducing protein function, structure
and location are also being developed. Here we discuss work that
is in the intersection of these two directions, namely, the utiliza-
tion of text as a component within computational methods for pre-
dicting protein subcellular location and function.

Computational methods for predicting proteins’ characteristics
typically utilize features derived from protein sequence, possibly
along with structure or interaction networks [5,20,46]. For
instance, the function-prediction systems GOtcha [30], OntoBLAST
[63], and BLAST2GO [12] rely on sequence similarity, PHUNCTION-
ER [39] and ConFunc [60] use similarity between protein struc-
tures, while GeneMANIA [33] and an earlier system by Chua
et al. [10] rely on protein-interaction networks. Similarly, quite a
few location prediction systems use sequence motifs, sequence
similarity, or more refined sequence-based features to predict the
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subcellular location of proteins [e.g., [3,9,18,23,24,34,55]]. Notably,
computational prediction of a protein’s function or location, as dis-
cussed here, is often framed as a classification task. The class-labels
are the possible functions or the organelles within the cell, and the
goal is to take a protein - typically represented as a feature vector
based on sequence properties — and assign it with a correct class-
label.

An alternative approach to the sequence-based representation
of proteins is text-based representation. The underlying idea is that
if a passage of text is relevant to a protein, there is often informa-
tion therein that can be used to help deduce a protein’s class (i.e.,
its subcellular location or its bio-molecular role). In the context of
protein characterization, text can be put to use through two dis-
tinct approaches: Information Extraction and Text-based classifica-
tion. While we focus on the latter (i.e., classification), we briefly
discuss the former. Information extraction systems aim to identify
and extract phrases or terms within the text that explicitly
describe the protein’s characteristics. That is, rather than predict
yet unknown information, extraction systems aim to find out what
has already been discovered and reported in the literature about the
protein in terms of function, process or location. AbXtract [1],
which was one of the earliest extraction systems in the biomedical
domain, aimed to identify and rank sentences discussing protein
function based on statistical properties of words in the sentence.
Craven and Kumlien [14] have used a hidden Markov model of sen-
tence structure to extract protein subcellular location from docu-
ments discussing it. Several later systems have used extraction
strategies to identify text passages discussing protein function.
For instance, Pérez et al. [40] introduced a dictionary-based system
that extracts keywords from the literature or from databases and
associates them with GO categories; Other systems used pattern
matching and sentence structure to retrieve sentences containing
a protein along with Gene Ontology (GO) terms denoting function
[8,26]. A recent function prediction system [56] identifies pairs of
GO terms and proteins within abstracts, and uses them as part of
an integrative similarity measure (kernel) employed in classifying
proteins by function. Additional information extraction systems
have been used in a variety of knowledge discovery tasks within
the biomedical domain (see surveys, e.g., [11,25,52]).

In contrast to textual information extraction systems, classifica-
tion systems represent genes and proteins using features that are
derived from text sources — regardless of whether the text explic-
itly discusses the proteins’ function/location. The idea underlying
this approach, which is rooted in probabilistic information retrieval
and language models [47-49], is that the language or, more explic-
itly, the distribution of words used within the text to discuss the
protein (or the gene) can provide cues about its function, process
or location. We can thus make use of sets of proteins whose char-
acterization is already known, represent them based on text-fea-
tures, and train machine-learning classifiers that can then assign
class-labels to yet-unannotated proteins (where the latter are also
represented using text-based features).

For instance, in an early work Raychaudhuri et al. [45] classified
published abstracts into biological process GO categories (using 21
categories). Proteins that are mentioned in each abstract are then
assigned the GO categories associated with the abstract. In our
own early work on using text for characterizing gene’s function,
we have introduced the use of probabilistic topic models applied
to PubMed abstracts for representing sets of genes sharing a com-
mon function [53]. Van Driel et al. [16] later use a similar idea for
grouping and characterizing genes, by identifying similarities
among the text describing their respective phenotypes, obtained
from OMIM; Groth et al. [21,22] also approach phenotype-based
study of genes by applying a clustering technique to the text-
descriptions of phenotypes, and associating text and keywords
within it with GO categories. A text-based classification system

by Stapley et al. [57] used support vector machines to assign yeast
proteins to subcellular locations; Nenadic et al. [36] used a similar
approach to annotate proteins with one of 11 biological process
terms from the upper levels of the GO hierarchy. In both cases, pro-
teins were represented as vectors of words occurring in abstracts
that mentioned the protein’s name. More recent work in the area
of text-assisted functional annotation [37,58] examined the classi-
fication of biomedical abstracts (rather than of proteins) into func-
tional categories, tagging the abstracts themselves with relevant
GO codes.

Another source of text considered for use in automated charac-
terization of proteins consists of the descriptive terminology (typi-
cally GO terms) appearing within protein annotations in public
databases, such as SwissProt/UniProtKB. Eisenhaber and Bork’s
rule-based Meta_A(nnotator) [17] used functional annotation terms
from the protein’s SwissProt entry to deduce the protein’s location.
Nair and Rost [35] used text from the same source to associate pro-
teins with selected functional keywords and develop the LOCkey
classifier for predicting subcellular location. Utilizing only such
functional keywords for protein representation greatly limited the
coverage of the system to proteins already annotated with these
keywords. Eskin and Agichtein [ 19] expanded on LOCkey by utilizing
as part of the classification scheme more of the annotation terms
associated with the proteins, as well as protein sequence features,
albeit without demonstrating improved performance. More recent
systems for protein subcellular location prediction such as Proteome
Analyst [28] and YLoc [3], while relying primarily on sequence-
based features for representing proteins, also employ text-features
obtained from protein annotation (e.g., GO terms annotating the
proteins) to aid in the prediction. Notably, having a prediction sys-
tem use such features for protein-representation implies that the
protein in question has already been manually curated and
annotated, which limits the utility of the system to aid in de novo
annotation of proteins that have not yet been characterized.

The methods we discuss throughout the rest of this paper aim
to take advantage of the available published text for protein repre-
sentation and classification, without relying on manually-curated
annotation terms (such as GO terms assigned to the protein). We
thus focus on text obtained from the published literature, specifi-
cally from PubMed abstracts [43], that can be associated with pro-
teins and utilized by automated systems. These ideas have been
put to use in specific systems we have developed to address the
two tasks discussed before, namely protein subcellular location
prediction [2,4] and protein function prediction [61]. Here we pres-
ent a complete framework for using text as a basis for representing
and characterizing proteins; moreover, the function prediction work
and results discussed here employ support vector machine classifiers
(SVM), as opposed to k-nearest neighbor classifiers that were used
before (the latter were reported in [61]). The approach and the
methods, the results of applying them - and the lessons learned
from these applications, are presented and discussed in detail
throughout the following sections.

2. Methods: from proteins to text and back

To use text as a form of data for characterizing proteins, one
must first identify a source of text pertaining to proteins, along
with a strategy for associating each protein with its related text.
Next, one needs to represent proteins as feature vectors based on
the associated text, possibly making use of additional aspects of
the protein (such as sequence-based information) in the represen-
tation. Once proteins are represented as feature vectors, machine-
learning methods for training and testing classifiers can be applied
and used for protein characterization. In this section we focus
primarily on the first two steps, namely association of proteins
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with text, and text-based protein representation. The classification
task and the classifiers themselves are discussed at the end of this
section.

2.1. Associating text with proteins

Theoretically speaking, any database discussing proteins (e.g.,
organism-specific resources) may contain text or documents
pertaining to a subset of proteins. However, when developing a
prediction system, it is essential that the resource selected as a
text-source provides text association for a substantial number
proteins, thereby allowing for the majority of the proteins to be
represented. As such, we focus on two major resources: UniProtKB/
SwissProt [59], which is a comprehensive database containing
sequence data and available information about hundreds of
thousands of proteins, and PubMed [43], which is a comprehensive
online database containing the abstracts from more than twenty
million published biomedical articles.

Given a set of proteins, we first identify the UniProtKB entries
associated with them, either through their protein accession
number or, if such identifiers are not provided, by sequence
identity. To obtain abstracts pertaining to each protein, we
extract the PubMed identifiers (PMIDs) provided as references
from within the protein’s respective UniProtKB entry. We then
retrieve the corresponding abstracts that are all publicly available
from PubMed.! By retrieving abstracts that are curated in
UniProtKB we ensure that the abstracts are indeed relevant for
the proteins and are of high scientific quality. An alternative
approach could have been to scan through PubMed for articles that
mention the protein’s name or one of its synonyms. However, given
the well-known difficulty and complex issues in correctly identify-
ing protein names in the literature [29], as well as in identifying
truly relevant articles for a subject matter, we adopt the strategy
of harvesting abstract references from UniProtKB.

Notably, we use abstracts rather than full-text articles because
abstracts are readily and publically available, whereas full-text
articles are often not freely accessible. The use of abstracts as a text
source has proven beneficial for curation in the context of protein
characterization [15], and in our experience for predicting protein
location [2]. Moreover, Shah et al. [51] showed that the abstract
has the highest density of keywords out of all other sections in
an article, and is therefore typically a good source of text features.
We also point out that not all the abstracts obtained using the
above procedure are strongly associated with any one protein or
with any one biological function, location or other characteristics.
For instance, an abstract may discuss a multitude of proteins and
multiple functions. Such abstracts are typically flagged and dis-
carded by our methods (as described in Section 3), because
the terms occurring in them are usually not strongly indicative
of any one characteristic (location, function or process) of a
protein.

2.2. Selecting informative terms

Once the collection of published abstracts relevant to the set of
proteins has been gathered, terms must be selected from the text as
a basis for protein representation. This process, known as feature
selection, is commonly used in a variety of text classification tasks.
The goal is to select only those terms that are useful for distinguish-
ing between items from different classes. In our case, the items are
proteins, and the classes can be the different subcellular locations, or
possibly the different biological functions or processes in which a

1 Proteins that have no UniProt entry, or no PMIDs listed in their entry, are referred
to as textless and handled as discussed later.

protein participates. Feature selection reduces the computational
cost of machine learning algorithms, and often improves classifica-
tion accuracy [50,62]. Several feature selection methods are used in
practice and comparative studies among them have been con-
ducted [2,62]. Here we describe a method we have used in several
contexts and has proven useful, which aims to select terms that are
associated with a class with high statistical significance, as further
described below. The selected terms are then used as text features
to represent proteins, forming the basis for our classifiers.

To obtain the terms, we pre-process all the abstracts, extracting
all individual words (unigrams) as well as pairs of consecutive
words (bigrams). All words are stemmed through Porter stemming
[41], which removes suffixes and retains the root form of words.
The number of terms is further reduced by eliminating stop words
such as pronouns, determiners and prepositions (e.g., ‘the’, ‘that’,
‘or’) and removing common words occurring in more than 70% of
the abstracts. We also remove rare and specific words, appearing
in fewer than three abstracts. This process results in a set of candi-
date terms. We then apply the Z-score statistical test to identify
characteristic terms, as described next.

We say that a term t is characteristic with respect to a class c, if
t's probability to appear in abstracts associated with proteins
belonging to class c, is statistically-significantly different from its
probability to appear in abstracts associated with proteins of all
other classes. The Z-score is calculated for each term t, indicating
the statistical significance of the difference in t’s occurrence-prob-
ability between classes. For a term t, and two different classes ¢ and
c, the Z-score is defined as:

_ Pr(t|c) —Pr(t|c")
0D ()

D, denotes the set of abstracts associated with proteins whose class
is ¢, and Pr(t|c) is the conditional probability of t to appear in
abstracts that are associated with proteins whose class is c. For a
class ¢, the latter conditional probability, Pr(t|c), is estimated
through a maximum likelihood estimate derived from a training
set of proteins whose classes (e.g., locations or functions) are
already annotated. It is calculated by dividing the number of
abstracts that are associated with proteins whose class is known
to be c and contain the term t, by the total number of abstracts asso-
ciated with proteins whose class is known to be c. Formally:

Pr(t|c) QW’ where d denotes an abstract. For a term t
and a class ¢, if the absolute value of the Z-score is higher than a
pre-set threshold with respect to each of the other classes ¢, t is
considered to be characteristic for class c.

Fig. 1 illustrates the process of selecting characteristic terms in
the context of protein subcellular localization, where classes corre-
spond to organelles. Two classes are specifically shown, the Nucleus
(nuc) and the Endoplasmic reticulum (ER).

Table 1 shows examples of top characteristic terms associated
with some of the molecular function categories, obtained by apply-
ing the method discussed above to the collection of abstracts dis-
cussed in Section 3.2. It also shows some of the characteristic
terms obtained through the same process in the context of subcel-
lular locations or organelles (Section 3.1 and [2]).

In each of the systems described in the following sections, the
union of all the characteristic terms over all the classes considered
by the system is used as the set of text features with which we rep-
resent proteins. We denote the resulting set of N characteristic
terms by Ty.

It is worth noting that characteristic terms most strongly asso-
ciated with a function or with a subcellular location, while indica-
tive of the function/location and provide cues to what it might be,
do not typically explicitly include its name. Table 1 illustrates the

IDe|-Pr(tlc) + De |-Pr(tlc)
[De[+ [Dc| ’

, where P=
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Fig. 1. Obtaining characteristic terms for proteins in eukaryotic cell organelles. The
cell is shown on the bottom right (cell image [6]). Two organelles in particular are
indicated: The Nucleus and the Endoplasmic Reticulum (ER). Proteins already known
to be associated with these organelles are obtained from UniProkB, along with
references to their curated abstracts. The respective sets of abstracts are denoted
Dpuc and Dgg. Terms are identified within the abstracts, and characteristic terms,
whose probability to occur in documents associated with a particular organelle is
significantly different from its probability to occur in the context of other
organelles, are selected.

Table 1
Examples of stemmed characteristic terms associated with several molecular
functions (top) and with several eukaryotic subcellular locations (bottom).

Molecular function Example function-characteristic terms

Catalytic activity
Transporter activity

Enzyme, oxidas, receptor, reductas, repair, require
Anion, carrier, cation, channel, gate, potassium,
uptake, voltage

Structural molecule Actin, collagen, cytoskeleton, filament, matrix,

activity muscle, myosin
Enzyme regulator Cyclin depend, exchange factor, GTP, GTPase,
activity inhibitor, kinase
Location Example location-characteristic terms
Nucleus Bind, base pair, chromatin, DNA

Mitochondria
Golgi apparatus
Endoplastic reticulum

Acyl coa, cytochrom, electron transport
Acceptor, galactos, golgi, transferase
Chaperon, disulfid isomeras, endoplasm

point. This observation supports the idea that we are not perform-
ing information extraction of location or function from the text, but
rather executing an actually predictive task, of deducing location
(or function) from the terms mentioned in the text. As a demon-
stration, in an earlier publication we have shown an example of
location assignment to a protein based on a text-description that
was completely sanitized of any location terms [2]. In a more
extensive earlier study [54], we have tested and demonstrated
the predictive ability of our approach by assigning location to pro-
teins using only the text available from articles that pre-dated the
time in which the proteins’ location became known. (See [2,54] for
further detail.)

2.3. Representing proteins as feature vectors

To represent each protein we use the well-known ‘bag of words’
approach [32]. Each protein p is represented as an N-dimensional
vector of term weights (wWf ,wf,....,wf ), where t;,..., ty are the
characteristic terms in the selected set, Ty, and wfi is a weight
reflecting the significance of term t; within the set of abstracts D,
that is associated with protein p. The weight is calculated as the
ratio between the number of occurrences of t; within D, and the
total number of term occurrences of all the characteristic terms,
t;, from the set Ty in Dp:

# of times t; appears in D,
> (#of timest; appears in D)’

tieTy

A
i

While proteins that are part of our training set are all associated
with text, and can thus be represented as explained above, there
may be query proteins that cannot be associated with text for either
one of the following reasons:
e The protein does not have an entry in the UniProtKB/SwissProt
database;
e There are no related articles recorded in its protein entry within
the UniProtKB;
o The article(s) were removed from the text collection for reasons
mentioned earlier (e.g., not being descriptive of any specific
class of proteins).

We refer to such proteins as textless, and handle them by assign-
ing the text features of homologous proteins to the textless protein,
as briefly explained next. (See our earlier publications [2,4,61] for a
more detailed description of the method, and [2] in particular for
additional ways of handling textless proteins). The sequence of
the textless protein is compared to sequences of proteins that do
have associated abstracts using BLASTP; matches with e-value lower
than 10 and sequence identity higher than 40% are sorted by e-value,
and the three proteins with the lowest e-values are selected as homo-
logs. A weighted combination of the respective text-feature-vectors
of the three homologs (denoted 5, v,, v3) is designated as the textless
protein’s vector, v.xtesss 1he weighting is based on the respective
sequence identity, s;, and is calculated as: Utext[,gSS:(Zf:]Sj - j/3).
We emphasize that this approach is very different from that of
protein-annotation “by similarity” through re-use of the annotation
of a protein’s close homologs [10,34,60]. Notably, we use here the
homologs just as a source of text-based representation for a textless
protein; the representation is then used for independently categoriz-
ing the protein based on its text. This point is further discussed in
Section 4.3.

2.4. The classifiers: training and testing

To train and test classifiers, we used datasets of proteins for
which a reliable annotation of location, function, or process was
already assigned according to UniProtKB. These datasets are fur-
ther described in Section 3. As discussed earlier, for each protein
we retrieved the PubMed abstracts referenced from its respective
UniProtKB entry. Characteristic terms (as pertaining to each of
the specific classification tasks addressed) were extracted and used
as features for representing proteins. The resulting datasets of pro-
teins were then used to train and test classifiers through multiple
runs of stratified 5-fold cross-validation. Under this scheme, the
dataset is partitioned at random into 5 disjoint subsets where in
each subset the class instance distribution is the same as in the
whole dataset. The classifier is trained and tested five times, where
each time a different subset serves for testing while the other four
subsets are used for training. To avoid biasing the results through
any specific partition, we conduct five complete sets of cross-vali-
dation experiments, each experiment using a different 5-way par-
tition, for a total of 25 runs.

The classifiers we employ here are all based on the LIBSVM [7]
implementation of support vector machines (SVMs), all with a
radial-basis-function kernel. LIBSVM enables soft, probabilistic cat-
egorization for n-class tasks through multiple one-vs-one runs;
each classified item is assigned an n-dimensional vector denoting

2 The 40% threshold is used due to a study by Brenner et al. suggesting that the
sequence identity of a match should be greater than 40% for the matching sequences
to be considered homologous.
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the item’s probability to belong to each of the n classes. For the
classification of proteins according to location, we have also exper-
imented with versions of Naive Bayes classifiers, with similar
results [27], but focus here on the system that uses SVM [2].

For the classification of proteins according to function or to pro-
cess (using the respective GO categories) we have formerly used a
k-nearest neighbor classifier (KNN, with k = 10) [13], as it is simple
to implement and to modify. We have used that classifier in the
CAFA (Critical Assessment of Function Annotation) challenge
[44,61], and a detailed description of this classifier and its associ-
ated results are provided there [61]. Here we introduce new results
(Section 3.2) obtained using an SVM classifier. For the sake of com-
pleteness and further insight into the results, we include in our
tables results from both the SVM and the from the KNN classifier.

Viewing protein subcellular localization as a classification task
is rather intuitive. Each of the subcellular organelles or substruc-
tures can be viewed as a class, and the proteins need to be assigned
class tags reflecting the organelles to which they localize. Similarly,
posing function prediction as classification implies that the GO cat-
egories comprising the biological process and molecular function
sub-ontologies are the class labels. However, in contrast to protein
location prediction that involves a relatively small number of
organelles as classes (typically, at most 13), there are about
20,000 distinct biological process and 9000 molecular function GO
categories. The vast majority of these do not have a sufficient num-
ber of proteins (or associated abstracts) that can be used to train a
classifier. For instance, the GO term ‘dihydrofolic acid binding’ has
only two associated proteins, while ‘platelet activating factor metab-
olism’, has only one. Such dearth of data hinders both statistically
significant feature selection and reliable training of classifiers.

We therefore experimented with several strategies for reducing
the number of categories. One approach was to select only the 20
GO categories that have the highest number of associated proteins
(regardless of their level in the GO hierarchy). However, these GO
categories are relatively refined and deeply nested in the hierar-
chy; tracing to their parents up to the second-from-the-top level
of the GO hierarchy, shows that out of the 17 high-level categories
in the molecular function sub-ontology, only three (namely, ‘bin-
ding’, ‘structural molecular activity’, and ‘electron carrier activity')
are represented. For the biological process sub-ontology, the

Table 2
The 10 function categories and the 24 process categories that are used as classes.

selected categories represent only five out of the 29 categories at
the second level of the GO hierarchy. Thus, we employ a different
strategy that does not limit as much the diversity of protein func-
tions our classifier can assign.

To ensure that diversity in high-level protein functions is better
accounted for, we use as function classes all the GO categories at a
specific relatively-high level in the GO hierarchy. Initially, we tried
using the third level from the top, but found that a majority of the
classes still did not have a sufficient number of associated proteins
(fewer than 10 proteins for most of the categories). Therefore, we
use as function classes only the GO categories at the second level
of the GO hierarchy (one level away from the root node), where
the GO sub-categories descending from each node are merged.
There are 29 distinct biological process categories and 17 distinct
molecular function categories at this level. However, 12 of these cat-
egories had fewer than 15 proteins each and were therefore
removed (along with the total of 52 proteins that were associated
with them) from our dataset. This leaves a final total of 10 molec-
ular function categories and 24 biological process categories, as
shown in Table 2.

3. Experimental setting and results

We discuss here two sets of experiments we have conducted.
The first, presented in Section 3.1, is concerned with predicting
the subcellular location of eukaryotic proteins into the main sub-
cellular compartments of the eukaryotic cell (see [2,54] for addi-
tional details). The second set of experiments, discussed in
Section 3.2, is concerned with the task presented by the CAFA chal-
lenge, namely predicting proteins’ function and process, where
both types of categories are as denoted within the GO hierarchy.
While the classifier we have used in the CAFA challenge [61] was
a KNN classifier, the classifiers discussed and presented here are
all based on LIBSVM (as is our subcellular-location classifier).

3.1. Protein subcellular location prediction
3.1.1. Experimental setting

The text-based classifier for subcellular location prediction, to
which we refer as Epiloc, was trained and tested, as we have

Molecular function

Biological process

GO ID GO category GO ID GO category
G0:0005488 Binding G0:0065007 Biological regulation
G0:0003824 Catalytic activity G0:0032502 Developmental process
G0:0030528 Transcription regulator activity G0:0009987 Cellular process
G0:0005215 Transporter activity G0:0050896 Response to stimulus
G0:0060089 Molecular transducer activity G0:0008152 Metabolic process
G0:0030234 Enzyme regulator activity G0:0051234 Establishment of localization
G0:0005198 Structural molecular activity G0:0016043 Cellular component organization
G0:0016247 Channel regulator activity G0:0023052 Signaling
G0:0009055 Electron carrier activity G0:0032501 Multi-cellular organismal process
G0:0045182 Translation regulator activity G0:0022414 Reproductive process
G0:0051704 Multi-organism process
G0:0040011 Locomotion
G0:0040007 Growth
G0:0051179 Localization
G0:0022610 Biological adhesion
G0:0008283 Cell proliferation
G0:0000003 Reproduction
G0:0002376 Immune system process
G0:0016265 Death
G0:0071554 Cell wall organization or biogenesis
G0:0048511 Rhythmic process
G0:0023046 Signaling process
G0:0044085 Cellular component biogenesis
G0:0043473 Pigmentation
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Table 3

Overall prediction performance of EpiLoc on the TargetP, PLOC and MultiLoc datasets,
compared to that reported by the respective systems on the same dataset. For the
MultiLoc dataset HomoLoc’s performance is also shown. Performance is shown in
terms of Average Sensitivity and Overall Accuracy. For TargetP, the non-Plant results
are summarized only over the three organelles (Mitochondria, Secretory Pathway and
Other), while the Plant results are shown summarized over the four organelles that
also include Chloroplast. Highest performance values are indicated in boldface.
Standard deviations are shown in parentheses (except for when unavailable in the
original system paper).

Dataset System Avg. sensitivity Overall accuracy
TargetP Plant TargetP 0.856 (n/a) 0.853 (+0.035)
EpiLoc 0.883 (+0.001) 0.862 (+0.004)
TargetP non-Plant TargetP 0.907 (n/a) 0.900 (0.007)
Epiloc 0.908 (+0.003) 0.901 (+0.006)
PLOC PLOC 0.579 (+ 0.021) 0.796 (+ 0.009)
EpiLoc 0.773 (+0.0012) 0.743 (+0.002)
MultiLoc MultiLoc 0.741 (£ 0.025) 0.746 (+ 0.01)
EpiLoc 0.818 (+0.005) 0.792 (+0.008)
HomoLoc 0.822 (% 0.005) 0.812 (% 0.010)

described before [2], through extensive cross-validation studies.
The latter were conducted on three different datasets, previously
used by other location-prediction systems whose predictions were
based on features derived directly from protein sequence, namely
TargetP [18], PLOC [38], and MultiLoc [24], while using only the
proteins in these sets that are associated with text (i.e., not text-
less). As the vast majority of the proteins do have associated text,
the number of proteins is still substantial (as shown below), and
enables a meaningful comparison. The performance of EpiLoc
was then compared to that reported by these three systems. We
provide below some more of the details to make this presentation
of the topic self-contained.

The TargetP dataset [18] consists of 3123 eukaryotic proteins
with associated text, known to be from four plant subcellular loca-
tions: chloroplast (ch, 123 proteins), mitochondria (mi, 465 pro-
teins), Secretory Pathway organelles (SP, 921 proteins) and Other
(OT, 1614 proteins), or three non-plant locations (mi, SP, and OT).
The Secretory Pathway class includes proteins from all locations
participating in this pathway, namely: endoplasmic reticulum (er),
extracellular space (ex), Golgi apparatus (go), lysosome (ly), plasma
membrane (pm), and vacuole (va), while the OT (Other) class
includes cytoplasmic (cy) and nuclear (nu) proteins. The PLOC data-
set [38] contains 6503 eukaryotic proteins whose location was
available in SwissProt Release 39.0. Proteins whose sequence iden-
tity with another protein in the set was greater than 80% were
removed. In addition to the explicit locations listed above, the
PLOC set also includes proteins from the cytoskeleton (cs), and the
peroxisome (pe). The respective numbers of protein per location
are: ch (528 proteins), cs (37), cy (1113), er (101), ex (805), go (34),
ly (85), mi (625), nu (1833), pm (1184), va (44), and pe (114). This
set is the largest of the three, because it includes proteins whose
subcellular location annotation in SwissProt indicated uncertainty
through the words potential, probable, or by similarity. The MultiLoc
set consists of 5345 eukaryotic proteins with associated text
obtained from SwissProt release 42.0. Similar to the PLOC database,
proteins whose sequence identity with another protein was greater
than 80% were excluded. However, unlike PLOC, this set excludes
proteins whose subcellular location annotation is uncertain, indi-
cated by the terms by similarity, potential, or probable in the loca-
tion annotation. The set of locations covered is the same as that
covered by PLOC except for the cytoskeleton (cs). The distribution
of proteins per location is given as part of Table 4.

To evaluate EpiLoc’s performance we obtained the text associ-
ated with the proteins in each of the above datasets, identified a
set of about 2000 characteristic terms as described in Section 2.2,
and represented the proteins as weighted term vectors as

described in Section 2.3. For each of the three datasets, we per-
formed five complete studies of 5-fold cross-validation runs each,
(25 cross-validation runs in total per dataset), where each of the
five studies is done on a different five-way partition, thus ensuring
the robustness of the results. Notably, the selection of characteris-
tic terms for representing proteins is re-executed in each cross-val-
idation run, using only the training set for choosing informative terms.
This is critical in experiments involving feature selection, ensuring
that the feature selection itself utilizes only the training data and does
not rely on any of the test data.

To test the system’s ability to handle textless proteins using the
homology-based approach (see Section 2.3), we ran a set of cross-
validation experiments over the MultiLoc dataset in which we
removed the text associated with proteins in each of the test sub-
sets. Each protein in the test set was then represented using the
averaged text-based vector-representation of its homologs, with-
out including the text associated with the protein itself. The system
thus handling textless proteins is referred to throughout the rest of
the paper as HomoLoc [2].

The evaluation metrics were the same ones as reported for the
previous location prediction systems [18,24,38], namely sensitivity
(Sens), specificity (Spec),> and Matthew’s correlation coefficient
(MCC) [31]. These are formally defined as:

TP-TN — FP-FN

and MCC= )
\/(TP+FN)-(TP+FP)- (IN+FN) - (TN + FP)

Sens=

TP e e TP
PN’ P TP PP

where TP, TN, FP, and FN represent the number of true positives,
true negatives, false positives, and false negatives, respectively,
with respect to a given location, where a positive is the assignment
of a protein to a location and a negative means not assigning the pro-
tein to the location.

The sensitivity measure as defined above is also referred to as
Recall, while the specificity measure -when defined this way - is
also referred to as Precision. In the context of protein subcellular
localization, we use the terms Sensitivity and Specificity as defined
above as opposed to the standard terms of Recall and Precision,
for compatibility with the terminology used by many earlier sys-
tems. In the context of function prediction, as discussed in Sec-
tion 3.2, we do use the Recall and Precision terminology. We also
calculate for each dataset the average sensitivity, Avg Sens, over
all locations, as well as the overall accuracy, Acc = C/N, where C is
the total number of correctly classified proteins in the dataset
and N is the total number of proteins in the dataset.

3.1.2. Results for protein subcellular prediction

Detailed results from our experiments of using text for protein
subcellular location are provided in our earlier publications
[54,2,4]. We therefore present here a brief summary of the results,
as shown in Table 3. The table shows the average sensitivity (Avg.
Sens.) and overall accuracy (Overall Acc) of the various systems over
the respective datasets. For further illustration and for supporting
the discussion in the context of this manuscript, Table 4 (adapted
from [2]), shows location-specific results focusing on the MultiLoc
dataset and highlighting the performance of the homology-based
text classifier, HomoLoc. Further discussion of the results is pro-
vided in Section 4.

3.2. Protein function/process prediction

3.2.1. Experimental Setting
For our experiments in training and testing a text-based
classifier for predicting proteins’ function and process, we first

3 Notably, Specificity is typically defined as TN/(TN + FP); we use here the dual
definition TP/(TN + FP), because it was the one used in all preceding localization
systems, and we wanted to retain a consistent notation with those in our comparison.
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Table 4

(adapted from [2]). Prediction performance of MultiLoc (taken from [24]), the text-based classifier EpiLoc, and the version of the text-based classifier that assigns text to a protein
based on the text associated with its homologs, HomoLoc. Results are shown on the Animal proteins of the MultiLoc dataset. Highest values are shown in boldface. The number of
proteins associated with each location is shown in the second column on the left. Locations with fewer than 200 proteins, where the text classifiers show particular improvement

over the sequence-based classifier are also shown in boldface.

Location # of Proteins MultiLoc dataset (Animal)

MultiLoc EpiLoc HomoLoc

(Sens Spec MCC)
go 140 0.71 0.43 0.53 0.88 0.62 0.73 0.90 0.72 0.80
ly 98 0.69 0.36 0.48 0.86 0.39 0.57 0.85 0.49 0.63
er 821 0.68 0.56 0.60 0.74 0.59 0.65 0.77 0.67 0.71
pe 135 0.71 0.31 0.44 0.90 0.77 0.82 0.80 0.69 0.74
mi 443 0.88 0.82 0.83 0.82 0.82 0.80 0.79 0.84 0.80
ex 821 0.79 0.83 0.77 0.80 0.82 0.77 0.83 0.83 0.79
cy 1290 0.67 0.85 0.68 0.68 0.79 0.65 0.72 0.80 0.67
pm 1173 0.73 0.90 0.76 0.85 0.90 0.84 0.89 0.91 0.87
nu 685 0.82 0.73 0.73 0.84 0.81 0.80 0.87 0.84 0.83
Overall Acc 0.746 (+ 0.01) 0.792 (+0.008) 0.812 (% 0.010)
Avg. Sens. 0.741 (£ 0.025) 0.818 (+0.005) 0.822 (* 0.005)

constructed a dataset of proteins that have a reliably assigned GO
annotation of molecular function or biological process according to
UniProtKB/SwissProt, as well as at least one reference to a PubMed
abstract associated with their UniProtKB entry (see [61] for a more
detailed description of the dataset). For each protein, we retrieved
the PubMed abstracts referenced from its respective UniProtkKB
entry as a source of text features. As we aim to identify text-fea-
tures that well-characterize each GO category corresponding to a
function or a process, proteins annotated with three or more GO
categories from the second level of the GO hierarchy are excluded.
Furthermore, similar to the MultiLoc dataset of localized proteins,
to ensure high-certainty functional annotation of the proteins, we
excluded from the dataset proteins for which the evidence code
associated with the GO annotation indicates reliance on computa-
tional methods (such as ISS: Inferred from Sequence/Structural
similarity, ISA: Inferred from Sequence Alignment, etc. For a com-
plete list of included and excluded evidence codes see [61], Table 1
therein).

Out of about 267,500 proteins - annotated with 4547 Molecular
Function GO terms in UniProtKB/SwissProt, only 22,958 proteins
are reliably annotated, leaving only 2859 of the Molecular Function
GO terms reliably assigned; about 650 proteins annotated by three
or more different functions or having no associated abstract are
removed from the set, leaving 22,309 proteins tagged by 2641
GO function terms. Similarly, out of about 266,800 proteins anno-
tated with 7204 Biological Process GO terms, only 23,919 are reli-
ably annotated, and accordingly only 6733 of the associated GO
terms are reliably assigned; of these proteins, about 1200 anno-
tated by three or more different processes are removed from the
set, leaving 21,764 proteins tagged by 4474 GO process terms.

The dataset thus consists of 36,536 proteins in total, of which
22,309 are reliably annotated by molecular function GO categories
and 21,764 are reliably annotated by biological process categories.
Representing proteins using text-features requires harvesting for
each protein the PubMed abstracts associated with its UniProtKB
entry. Recall that we aim to obtain terms that are highly predictive
of potential function in order to represent proteins. As a single
abstract may be referenced by multiple entries — possibly corre-
sponding to proteins of different functions - in UniProtKB,
abstracts associated with more than three proteins that have dif-
ferent functions are excluded from the set. The resulting text cor-
pus holds a total of 68,337 abstracts, covering all the proteins in
the dataset. This dataset was used to train and test our text-based
classifiers through five complete studies of 5-fold cross-validation
(as also described in Section 3.1). As was the case with the protein
subcellular location experiments, to ensure robustness and

statistical significance of the results, each study uses a different
random partition into 5 disjoint subsets, thus resulting in a total
of 25 train/test runs altogether.

As described in Section 2.2, we identified terms that are charac-
teristic for each functional category. We then use the union of such
terms from all functional classes to represent proteins and classify
them. As explained in Section 3.1.1 above, the actual term selection
step is done only after the set of proteins is partitioned into train-
ing and test sets; characteristic terms per function are selected
based only on abstracts associated with proteins within the train-
ing set — never based on the test set. This process results in the
selection of 521 characteristic terms for representing proteins in
the context of molecular function classification and a total of 831
terms for protein representation in the context of biological process.

In the experiments we have conducted, our system perfor-
mance was compared against two baseline classifiers. One of them,
Base-Prior, simply derives the protein class label from the prior dis-
tribution of classes in the training set, through Monte Carlo sam-
pling. That is, if the training dataset has 30% of its proteins
annotated with the function ‘transporter activity’ while 20% are
annotated with ‘enzyme regulator activity’, then to assign a label
to protein p, Monte Carlo sampling is conducted from a distribu-
tion in which the label ‘transporter activity’ has a 30% chance to
be drawn and the label ‘enzyme regulator activity’ has a 20% chance
to be drawn (with other labels have their own chance to be drawn,
for a total of 100%); the drawn label is then assigned to p.

The other baseline classifier, Base-Seq, is a k-nearest-neighbor
classifier that uses sequence similarity as its classification criterion.
To assign a function class to a protein p, it uses BLAST (with default
parameters) to search for k proteins with a similar sequence to p’s
within the training set (in our experiments k was set to 10), and
assigns p a function class that is shared by at least three of its k
closest training proteins. Additional evaluation of a text-based
classifier based on similar principles, has also taken place as part
of the CAFA challenge and was discussed in that context, along
with further details about the baseline classifiers [44,61].

As in the case of location-prediction, we have conducted addi-
tional preliminary experiments examining the ability of the func-
tion-prediction system to handle textless proteins, by representing
proteins that had no associated abstracts listed in their UniProtKB
entries (textless), using the homology-based strategy discussed in
Section 2.3. As quite a few functional categories did not have
textless proteins associated with them the experiment is limited
in size.

The evaluation metrics employed are the same as those used in
the location prediction task discussed earlier:
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Table 5

Classification performance of the text-based classifiers Text-SVM and Text-KNN, over molecular function classes compared with Base-Prior and Base-Seq. The column # of Proteins
shows the total number of proteins that are associated with each class in our dataset. The columns P, R, F, and M correspond to the classifier’s Precision, Recall, F-measure, and
MCC respectively, per class. Precision and Recall values of 0 for a class indicate that all the proteins belonging to that class are misclassified into another class. Highest values are

shown in boldface.

Molecular function # of Text-SVM Text-KNN Base-Prior Base-Seq
Proteins = F M P R F M P R F M P R F M

G0:0005488 Binding 13400 070 0.73 0.71 023 065 088 075 0.15 063 064 063 000 067 075 0.71 0.12

G0:0003824 Catalytic activity 3679 047 046 046 036 0.52 023 032 024 016 0.15 0.15 000 038 029 033 023

G0:0030528 Transcription regulator 1595 043 053 047 043 044 024 031 029 007 0.07 0.07 000 049 037 042 038
activity

G0:0005215 Transporter activity 978 050 0.55 052 050 059 038 046 045 0.04 004 0.04 000 050 043 046 044

G0:0060089 Molecular transducer 922 038 033 035 033 039 016 022 025 0.04 004 0.04 000 026 027 027 023
activity

G0:0030234 Enzyme regulator 606 033 0.10 0.16 0.17 043 005 0.08 0.15 003 003 0.03 001 016 0.09 0.12 0.11
activity

G0:0005198 Structural molecular 418 0.11 0.01 0.02 0.03 004 001 001 0.00 0.02 002 0.02 000 011 0.11 0.11 0.09
activity

G0:0016247 Channel regulator 72 0.50 0.06 011 0.18 060 0.24 035 0.60 001 0.01 0.01 0.00 0.00 0.00 0.00 0.00
activity

G0:0009055 Electron carrier activity 68 0.00 0.00 000 000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

G0:0045182 Translator regulator 26 0.00 0.00 000 000 0.00 0.00 0.00 0.00 000 0.00 0.00 000 0.00 000 000 0.00
activity

Table 6

Classification performance of the text-based classifiers Text-SVM and Text-KNN, over biological process classes compared with Base-Prior and Base-Seq. The column # of Proteins
shows the total number of proteins that are associated with each class in our dataset. The columns P, R, F, and M correspond to the classifier’s Precision, Recall, F-measure, and
MCC respectively, per class. Precision and Recall values of 0 for a class indicate that all the proteins belonging to that class are misclassified into another class. Highest values are

shown in boldface.

Biological Process # of Text-SVM Text-KNN Base-Prior Base-Seq
Proteins ~ ,  p f ™M P R F M P R F M P R F M
G0:0065007 Biological regulation 4532 024 050 033 009 023 052 031 007 020 024 022 0.00 032 048 038 0.15
G0:0032502 Developmental process 4173 0.27 035 031 021 022 019 020 0.10 0.12 0.17 0.14 000 0.22 024 023 0.14
G0:0009987 Cellular process 2237 026 043 033 016 024 029 026 010 0.17 014 015 000 0.26 027 027 0.12
G0:0050896 Response to stimulus 2225 031 0.22 026 0.19 025 0.16 0.19 0.12 0.10 0.10 0.10 000 0.16 0.09 0.11 0.04
G0:0008152 Metabolic process 2073 037 0.07 0.11 013 023 0.14 0.17 0.13 0.08 0.06 0.07 000 028 034 031 024
G0:0051234 Establishment of 1505 039 026 031 029 032 020 025 021 005 005 005 000 044 045 045 0.40
localization
G0:0016043 Cellular Component 1431 0.17 0.00 0.01 0.02 013 0.05 0.07 0.04 0.06 005 006 000 015 0.12 0.13 0.09
organization
G0:0023052 Signaling 1206 022 011 015 0.13 0.18 0.11 014 013 005 004 004 0.00 030 028 029 0.24
G0:0032501 Multi-cellular 757 0.17 0.00 001 0.02 0.12 0.02 0.04 003 004 003 004 000 024 o011 0.16 0.15
organismal process
G0:0022414 Reproductive process 432 057 0.09 0.15 022 051 0.15 024 034 0.02 0.02 002 000 014 0.03 005 0.06
G0:0051704 multi-organism process 340 020 0.01 001 004 029 0.09 014 0.17 001 001 001 0.00 009 004 0.05 0.05
G0:0040011 Locomotion 212 0.00 0.00 000 0.0 0.13 0.01 0.01 000 001 001 001 0.00 084 005 0.09 0.28
G0:0040007 Growth 206 0.00 0.00 000 0.00 0.01 0.01 0.01 000 0.01 001 001 0.00 000 000 0.00 0.00
G0:0051179 Localization 189 0.00 0.00 0.00 000 0.03 0.01 0.01 000 001 001 001 0.00 000 0.00 0.00 0.00
G0:0022610 Biological adhesion 160 0.08 0.01 0.02 0.03 007 002 003 0.00 0.01 0.01 001 000 0.00 0.00 000 0.00
G0:0008283 Cell proliferation 147 0.00 0.00 000 0.00 0.01 0.01 0.01 000 0.01 001 001 0.00 000 000 0.00 0.00
G0:0000003 Reproduction 120 0.00 0.00 0.00 000 0.00 0.00 0.00 000 o001 o001 001 0.00 000 0.00 0.00 0.00
G0:0002376 Immune system response 93 0.25 0.04 0.06 0.09 006 003 004 0.08 0.00 0.00 0.00 000 0.00 0.00 0.00 0.00
G0:0016265 Death 80 0.00 0.00 000 0.00 0.00 0.00 0.00 0.00 0.01 001 001 0.00 000 000 0.00 0.00
G0:0071554 Cell wall organization 57 025 0.03 005 009 038 0.08 0.13 0.21 001 000 0.00 0.00 000 0.00 0.00 0.00
G0:0048511 Rhythmic process 54 0.00 0.00 000 0.00 031 0.06 010 0.00 0.00 000 000 0.00 000 000 0.00 o0.00
G0:0023046 Signaling process 44 0.00 0.00 000 0.00 0.01 0.01 0.01 000 000 000 000 0.00 000 000 0.00 0.00
G0:0044085 Cellular component 20 0.00 0.00 000 0.00 0.01 0.01 0.01 000 000 000 000 0.00 000 000 0.00 0.00
biogenesis
G0:0043473 Pigmentation 16 0.00 0.00 000 0.00 0.00 0.00 0.00 0.00 0.00 000 000 0.00 000 000 0.00 o0.00
Recall——F precision——%— and MCC— TP IN _FP-FN Section 3.2.1, along with results obtained from the baseline classi-
TP+FN TP+FP /(TP+EN)-(IP+FP)- (IN+ FN) - (IN + FP)

We also report the standard F-measure, which is the harmonic aver-
2 - Recall - Precision

age of precision and recall [52] defined as: F = “Recall 1 Precision -

3.2.2. Results for protein function/process prediction
Tables 5 and 6 show the results obtained from running the
text-based SVM classifier over the protein datasets described in

fiers and those we have reported before obtained from the text-
KNN classifier.

Table 7 shows results from classification of textless proteins that
are annotated with molecular function classes, where the proteins
were represented using text associated with their homologs (see
Section 2.3). We note that some of the evaluated classes have a
very small sample size of fewer than 10 textless proteins available
and therefore, the evaluation results for these classes are not statis-
tically meaningful. We only consider here classes with more than 2
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Table 7
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Performance of the SVM text-based classifier over molecular function classes, for proteins that have no associated text (textless). The columns P, R, and F show the classifier’s
Precision, Recall and F-measure, respectively, over individual classes that have at least 5 textless proteins. The rightmost part of the table shows for comparison the cross-
validation results obtained for the same classes when testing/training over proteins that do have text (as shown in Table 5).

Molecular function # Textless proteins Text-SVM (Textless) Text-SVM (Cross-validation)

P R F P R F
G0:0005488 Binding 58 0.88 0.76 0.81 0.70 0.73 0.71
G0:0003824 Catalytic activity 9 0.25 0.44 0.32 0.47 0.46 0.46
G0:0005215 Transporter activity 5 0.50 0.20 0.29 0.50 0.55 0.52
G0:0060089 Molecular transducer activity 7 0.38 043 0.40 0.38 0.33 0.35

textless proteins. We also include, for comparison, the perfor-
mance obtained for these classes through cross-validation for pro-
teins that do have associated text (taken from Table 5). The results
for the evaluated classes over textless proteins show Precision and
Recall values that are consistent with those presented in Table 5,
which were obtained using proteins that do have associated text.
Similar results were obtained for biological process classes (not
shown).

4. Discussion

Throughout this section we discuss the performance of our
text-features-based classification/prediction approach. We start
by discussing it in the context of protein subcellular location
prediction (Section 4.1), then examine protein function prediction
(Section 4.2), and finally, in Section 4.3, the applicability to textless
proteins.

4.1. Protein subcellular location prediction using text-features

The results obtained by our location-prediction system clearly
demonstrate the utility of our approach. In the first set of experi-
ments discussed in Section 3.1, the text representation of proteins
have shown to provide an effective means for characterizing pro-
tein location. The results shown in Table 3 (as well as the more
detailed results not included here, see [2]) show that the text-
based classifier, EpiLoc, performs at a level that is at least similar
to (and often better than) that reported for sequence-based
classifiers.

Compared to TargetP (Table 3, top) EpiLoc’s overall accuracy and
average sensitivity are slightly higher. On the PLOC dataset (Table 3,
middle) PLOC’s overall accuracy is higher than EpiLoc’s, while Epi-
Loc’s average sensitivity is much higher than PLOC’s. The reader is
referred to [2] for a more detailed location-specific comparative
evaluation.

A more refined evaluation is included here in Table 4 for the
MultiLoc dataset, which also includes the evaluation of HomoLoc
for handling textless proteins, as further discussed in Section 4.3.
EpiLoc’s performance in terms of overall accuracy, average sensi-
tivity, and almost all location-specific scores is higher compared
to that of MultiLoc. In most cases the differences are statistically
significant. The improvement is particularly noteworthy and sig-
nificant for subcellular locations with small datasets such as the Golgi
(Go), the Peroxisome (Pe) and the Lysosome (Ly), each with fewer
than 150 proteins in the datasets. It appears that having the text
as an extra data source in these cases is particularly beneficial.

4.2. Function prediction using text-features

The results presented in Tables 5 and 6 reflect preliminary
experiments in which text is used as a feature-source for represen-
tation and functional classification of proteins. They show that the
text-based classifiers (based either on SVM or on KNN) perform

significantly better (p <0.05, 2-sample t-test) than the simple
baseline classifier, Base-Prior, which uses the class-distribution in
the training set to guide its class assignment. An exception is the
molecular function class ‘structural molecular activity’ (GO:0005198,
Table 5). The poor classification performance for this class can be
explained by the fact that out of 418 proteins in this class, 218
are annotated as both ‘structural molecular activity’ and ‘binding’.
Thus, proteins associated with ‘structural molecular activity’ have a
similar weighted term-vector representation to proteins in the
‘binding’ class. As Table 7 shows, proteins in the ‘binding’ class out-
number those labeled as ‘structural molecular activity’ by a factor of
about 30. Hence, both the KNN and the SVM text-classifiers are
likely to label ‘structural molecular activity’ proteins as ‘binding’.
Consequently, most of the proteins belonging to the ‘structural
molecular activity’ class are only classified as ‘binding’, resulting in
a lower Precision and even lower Recall for the ‘structural molecular
activity’ class.

As for the Base-Seq classifier, which uses sequence similarity,
the text-based classifiers have statistically significantly higher pre-
cision (p < 0.05) for half of the molecular function classes (Table 5),
and the SVM classifier also shows higher Recall, F-measure, MCC for
the majority of the classes. The three classes at the bottom of
Table 5 each has fewer than 100 associated proteins; we note that
both text-based classifiers make correct predictions for only one of
these three classes, namely, ‘channel regulator activity’
(G0O:0016247), where the KNN classifier performs much better
than the SVM. However, the Base-Seq classifier makes no correct
predictions for any of the proteins in these classes. All classifiers
perform poorly on these smallest classes, misclassifying most of
the test proteins in these classes by assigning them to the majority
class, ‘binding’. For assigning proteins to biological process classes
(Table 6), the text-based SVM classifier (Text-SVM) has an overall
accuracy of 0.26, similar to that of the Base-Seq classifier, which
is 0.28. When considering larger classes (12 top classes out of 24,
with over 210 proteins), for 7 of them the Base-Seq has the highest
values according to all performance measures, while for the others
- one (or both) of the text-based classifiers performs better. For the
vast majority of these larger classes, the SVM text classifier outper-
forms the KNN classifier.

Focusing on the smaller biological process classes, i.e., those with
fewer than 210 associated proteins, Base-Seq does not make any
correct predictions, as it mis-assigns these proteins to the larger
classes. In contrast, the text-based classifiers correctly assign
process classes to at least some of these proteins, specifically in
the classes ‘immune system response’ (GO:0002376), ‘cell wall
organization or biogenesis’ (GO:0071554), and ‘rhythmic process’
(GO:0048511).

Typically, all classifiers perform poorly over most of the small
classes (GO classes with fewer than 100 proteins). As we have
observed and discussed in detail in the context of CAFA [61], and
briefly summarize here, the explanation for the phenomenon of
poor text-based classification is that small classes often have a rel-
atively low number of associated abstracts. This leads to a skewed
term-distribution within the small abstract-set when compared to
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the rest of the database, and, in turn, to a relatively large set of
terms whose occurrence rate within the small abstract set is statis-
tically significantly different from their occurrence rate in the rest
of the dataset. Such a set of terms often includes generic concepts,
like human, male or library. When such common terms are used in
the representation, proteins from various classes end up having
high weights in the common-term positions within their repre-
senting vector, which leads to misclassification. As part of our
future work we shall reconsider and adjust the weighting scheme,
which we believe will help address this issue and improve
performance.

Another significant point is that the performance of all the clas-
sifiers when applied to molecular function is much better than
when applied to biological process classification. This can be
explained by the fact that proteins can take part in a broad range
of different biological processes, while sharing similar molecular
function and chemical properties. As such, while the classifiers
can identify proteins that are likely to share a similar behavior
(either based on sequence or based on similar associated text),
and consequently may even share a similar molecular function,
the biological processes of these proteins may still vary, and will
not be correctly deduced based on any of the similarity measures
used by our classifiers. Better performance is observed for molecu-
lar function classes because such functions are quite specific, and
proteins sharing a common molecular function more often share
other characteristics (both in terms of sequence similarity and in
terms of language used to describe them). See [61] for further
details concerning this point.

4.3. Handling textless proteins

We have presented the issue of proteins that may not have
associated curated PubMed articles, or who may have generic asso-
ciated articles, and as such are rendered “textless”. One of the strat-
egies we have devised and used for handling such textless proteins,
as described in Section 2.3, is to identify their closest homologs
that do have associated text, and use a weighted average of the
homologs’ text-based vector representation in order to represent
the textless proteins.

It is important to note that this approach is significantly differ-
ent from that of annotating proteins by “borrowing” the annota-
tion of their closest homologs [10,34,60]. In contrast to such
homology-based methods, we do not deduce the annotation of
our target protein from the annotation of its homologs. Rather,
we use the homologs just in order to obtain a possible expected
text-based representation for the protein; this representation is then
used as an input to a classifier that categorizes the protein. This
representation can be extended to include the protein’s own
sequence characteristics (see [4] for an example).

Tables 4 and 7 both clearly demonstrate the value of this
approach. As shown in Table 4, HomoLoc improves on EpiLoc’s per-
formance in terms of overall accuracy, and matches it in terms of
average sensitivity. Homoloc also shows the highest performance
for many of the individual locations. This improvement in perfor-
mance is most likely due to the large amount of text that HomoLoc
associates with each protein. Utilizing the additional abstracts that
are associated with three close homologs - as opposed to just those
abstracts referenced from the protein’s own SwissProt entry -
gives rise to a larger set of potentially significant terms for repre-
senting each protein, leading to a more robust representation
and classification.

Table 7 shows results obtained when predicting protein func-
tion for textless proteins, using their homologs in order to repre-
sent them. As the number of textless proteins in the dataset was
limited, the results are mostly illustrative, and are only shown
for classes that had more than 2 textless proteins. Notably, the only

function class that has a substantial number of textless proteins is the
binding function (G0O:0005488; 58 textless proteins). We observe
that for this class the Precision, Recall and F-measure are much
higher than expected from the cross-validation averages for these
classes.

As for the remaining classes, each having fewer than 10 textless
proteins: The molecular transducer activity (GO:0060089; 7 textless
proteins), shows the same precision as expected from the cross-
validation averages, along with significantly higher Recall and F-
measure; The catalytic activity class, (GO:003824; 9 texless pro-
teins) shows lower Precision but about the same Recall as expected
from the cross-validation, while the transporter activity class,
(G0:0005215; 5 texless proteins) shows the opposite trend with
lower Recall and about the same precision as expected from the
cross-validation average.

The results obtained from HomoLoc (Table 4), which are statis-
tically significant as they were obtained on thousands of proteins,
as well as the results from the binding class with more than 50
textless proteins in Table 7, provide strong evidence that in the
absence of curated text for a protein, reliable prediction can still
be performed by representing the protein through the text of its
homologs. We have devised additional methods that can handle
textless proteins, particularly proteins for which there are no close
homologs and about which very little is known. The details of these
methods are beyond the scope of this paper, and they are discussed
further in an earlier publication [2].

5. Conclusions

We have presented and discussed a method, which we have
developed over the past few years, for utilizing the biomedical lit-
erature pertaining to proteins as a source of data that can be used
for representing proteins. Essentially, we use distributional proper-
ties of terms in the text in order to identify certain terms as infor-
mative about protein characteristics, and associate these terms
with sets of proteins bearing these characteristics. This approach
is significantly different from much of the work done in biomedical
text mining, which typically focuses on automated extraction of
facts that are already stated in the text. We have also discussed
an effective method that we have devised, based on homology, to
assign a relevant text-based representation to proteins that may
not have published literature associated with them.

Several aspects of the approach and its value are demonstrated
through two applications with which we have experimented,
namely, protein location prediction and protein function predic-
tion. The location prediction system, EpiLoc, has been shown to
predict the subcellular location of proteins as reliably as other
state-of-the-art systems. Moreover, it has been extensively tested
and also integrated with a sequence-based classifier resulting in
a highly accurate system for location prediction [4,54].

The function prediction system is still in its preliminary stages.
An early KNN classifier was developed as a first attempt to use a
text-based classification method as part of the CAFA challenge
for automated function prediction [44]; the results of using that
classifier on the CAFA challenge data are reported elsewhere [61].

Here we introduced the use of an SVM classifier for text-based
function prediction, which typically outperformed the KNN in the
5-fold cross-validation runs. Both text-based classifiers performed
significantly better than a simple baseline classifier that was based
on class-distribution. They also showed comparable, or even
higher, Precision and Recall compared to another baseline classifier
that uses sequence-similarity, for several molecular function and
biological process classes. These results suggest that text features
extracted from the biomedical literature contain information about
protein function beyond that evident in features obtained from
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protein sequences alone. As such, integrating text-based features
with sequence-based - as well as with other types of features, will
likely improve the performance of existing function prediction
systems.

We have pointed out that the performance of the function clas-
sifiers deteriorated for smaller classes, and noticed that in these
cases the current feature selection identifies rather generic charac-
teristic terms, due to the limited amount of associated text. Thus,
an important direction for future work is the study of possible
alternative statistics for selecting text features, which may prove
more effective in such cases. We also note that the function predic-
tion system was limited to categories at the second level of the GO
hierarchy, due to the insufficient number of proteins associated
with the deeper levels of GO. Once we improve the feature selec-
tion protocol to be effective even when there is a dearth of proteins
and abstracts associated with a class, we shall extend the system
by using categories at the lower levels of the GO hierarchy as func-
tion classes.

Both in the cross-validation studies shown here, and in the
CAFA challenge, the prediction performance for molecular function
was much higher than that obtained for biological process, which
suggests that text features work better for predicting the molecular
function of proteins than biological process. It is possible that
improved selection of characteristic terms, discussed above, will
also improve the performance over biological process classes.

We have focused throughout our presentation almost exclu-
sively on text-based classification. Indeed, we view text as an
important source of available information. However, we stress that
we do not “advocate” for the replacement of sequence-based pre-
dictions by text-based prediction. On the contrary, we believe that
integrating text with other sources of data can improve prediction as a
whole. We have demonstrated this point in the integrative system
SherLoc [54] and its successor SherLoc2 [4]. In the context of func-
tion prediction, our cross-validation results and the evaluation
results from the CAFA challenge suggest that the information
obtained from text features and that obtained from sequence fea-
tures complement each other. Thus, the text-based and the
sequence-based classifiers have different strengths and weak-
nesses. We therefore strongly believe that an integration of text-
and sequence-based classifiers can advance function prediction,
as well as other aspects of protein characterization.
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