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Abstract

Large-scale annotation efforts typically involve several experts who may disagree with each other. We propose an approach
for modeling disagreements among experts that allows providing each annotation with a confidence value (i.e., the
posterior probability that it is correct). Our approach allows computing certainty-level for individual annotations, given
annotator-specific parameters estimated from data. We developed two probabilistic models for performing this analysis,
compared these models using computer simulation, and tested each model’s actual performance, based on a large data set
generated by human annotators specifically for this study. We show that even in the worst-case scenario, when all
annotators disagree, our approach allows us to significantly increase the probability of choosing the correct annotation.
Along with this publication we make publicly available a corpus of 10,000 sentences annotated according to several cardinal
dimensions that we have introduced in earlier work. The 10,000 sentences were all 3-fold annotated by a group of eight
experts, while a 1,000-sentence subset was further 5-fold annotated by five new experts. While the presented data represent
a specialized curation task, our modeling approach is general; most data annotation studies could benefit from our
methodology.
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Introduction

Virtually every large-scale biological project today, ranging

from creation of sequence repositories, collections of three-

dimensional structures, annotated experiments, controlled vocab-

ularies and ontologies, or providing evidence from the literature in

organism-specific genome databases, utilizes manual curation.

A typical curation task in biology and medicine involves a group

of experts assigning discrete codes to a datum, an experimental

observation, or a text fragment. For example, curators of the PubMed

database assign topics to each article that is registered in the database.

These topics are encoded in a hierarchical MESH terminology [1] to

ensure that curators have a consistent way to define an article’s

content. Other curation examples include annotation of function of

genes and proteins, description of genetic variation in genomes, and

cataloguing human phenotypes. A standard approach to assessing

quality of curation involves computation of inter-annotator agree-

ment [2], such as a kappa-measure [3].

Manual curation is tedious, difficult, and expensive. It typically

requires annotation by multiple people with variable attitudes,

productivity, stamina, experience, tendency to err, and personal

bias. Despite its difficulties and the imprecision in outcome,

curation is critical. Existing curation approaches can be improved

and enhanced with careful experimental design and appropriate

modeling. This study aims to address the following questions:

N How can we account for, and possibly utilize, annotator

heterogeneity?

N What should we do with several conflicting annotations? (They

are often wastefully discarded.)

N How can we quantify confidence in the quality of any

particular annotation?

In this study we propose a holistic approach to quantify our certainty

in individual annotations for a group of several annotators, which

allows to retain the complete dataset as a basis for training and

testing machine learning methods.

Specifically, we suggest an internally consistent way to design

annotation experiments and analyze curation data. We created

two alternative probabilistic models for such analysis, tested these

models with computer simulations, and then applied them to the

analysis of a newly annotated corpus of roughly 10,000 sentences.

Each sentence in this corpus was annotated by three experts. To

test the utility of our computational predictions, we randomly

sampled a subset of 1,000 sentences (out of the original 10,000) to

reannotate by five new experts. Using these two rounds of

annotation, we evaluated the models’ predictions by comparing

the three-experts-per-sentence results against the ‘‘gold standard’’

eight-experts-per-sentence analysis.

Methods

Corpus: Two cycles of annotations
First, to generate the corpus, our homemade scripts extracted

10,000 full sentences randomly from diverse scientific texts,
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making sure that all sentences are distinct and that section-specific

and topic-specific constraints are met. Specifically, we randomly

selected 1,000 sentences from the PubMed database, which at the

time of our analysis stored 8,039,972 article abstracts (note that

not every PubMed entry comes with an abstract). We also sampled

9,000 sentences from the GeneWays corpus (368,331 full-text

research articles from 100 high-impact biomedical journals). We

put the following constraints on these 9,000 sentences: 2,100

sentences were sampled from articles related to WNT pathways,

apoptosis, or schizophrenia research (700 sentences per topic, with

random sampling within each pool of topic-specific articles). The

remaining 6,900 sentences were sampled with restriction on article

section: 20% of the sentences came from abstracts, 10% from

introductions, 20% from methods, 25% from results, and 25%

from article discussion sections. We did not process sentences in

any way before the annotation. Because the current study is not

concerned with automatic annotation of sentence fragments per

se, we do not elaborate on machine-learning features that we

described in our earlier study [4].

Second, we randomly reordered the 10,000 sentences and

partitioned them into eight equal-size sets. We arranged eight

annotators recruited for the first cycle of analysis into eight 3-

annotator groups, assigning to each group a unique sentence set.

This way each annotator analyzed three sets of sentences, and

utilizing the loop-design of the analysis (see Figure 1A) we were

able to computationally compare annotators’ performances with

each other. This concluded the first cycle of annotation. The part

of this corpus on which all three annotators perfectly agreed, as

well as the part on which at least two out of the three agreed, were

used for training, testing and analyzing supervised machine

learning methods for automatic annotation assignment, in a

recent study, reported elsewhere [4].

As the models for annotation reliability introduced here are

based on the above corpus, to reliably validate the models, we

performed a second cycle of annotation. To do this, we recruited

five additional annotators, sampled a subset of 1,000 random

sentences out of the original 10,000, and asked the new annotators

to annotate the 1,000-sentence subset. The result of the second

cycle of annotation was a 1,000-sentence set that was annotated by

five annotators per sentence in the second cycle and by three

annotators per sentence in the first cycle.

The whole annotated corpus is publicly available along with this

manuscript (see Dataset S1).

Rationale for producing the corpus
When defining guidelines for our present annotation effort [5]

we aimed at distinguishing among several types of scientific

statements, varying across multiple dimensions. Specifically, we

tried to distinguish commonplace knowledge from original

conclusions, high certainty statements from uncertain ones,

experimentally supported evidence from speculations, and

scientific statements from methodological or meta-statements.

The goal of this effort was to generate a manually annotated

corpus that can be further used to train computers to

automatically perform well-defined annotation tasks at a large

scale.

In the long run, we hoped to learn to automatically highlight

portions of research articles that fit a particular search goal. Such a

goal can be, for example, to identify all original conclusions

supported by experiments. Another plausible goal (out of many

imaginable) is to find the scientific statements made with high

certainty, with or without experimental support. A tool of this kind

would be a useful addition to the armamentarium of a biomedical

text-miner.

Annotations
We asked experts to annotate sentences along the following six

dimensions (with two of them, polarity and certainty, combined),

described in great detail in an earlier article [5] :

N Focus allowed values G, M, and S for generic (‘‘Financial support

was provided by X agency’’), methodology (‘‘In this application

we used an RT-PCR technique.’’), and science (‘‘Our

experiments support the former of the two hypotheses.’’),

respectively; Combinations such as GM, GS, MS, and GMS

are allowed when necessary.

N Evidence allowed codes E0, E1, E2, and E3, where E0 is the

complete lack of evidence and E3 is direct evidence present in

the sentence. E1 and E2 are somewhat in between: E1

corresponds to a claim of evidence that is implied but is not

supported by a reference to other publications or by original

data, while E2 represents the case of an explicit reference

within the sentence to other publications.

N Polarity (P and N for positive and negative) and certainty (0, 1, 2, 3)

are combined such that 0 is completely uncertain and 3 is

absolutely certain, in positive and negative directions. As such,

the seven possible codes (N3, N2, N1, N0, P0, P1, P2, and P3)

correspond to increasing positive certainty.

N Trend or direction captures changes in a quantity or a process

described in the sentence, such as the increase or decrease of a

particular property. Only a minority of the sentences was

annotated with trend/direction codes and for this reason we

do not analyze them here.

N For number of fragments in the sentence, we asked annotators to

break the sentence into fragments each time one of the above

properties changed, see Table 1. (The number of sentence

fragments does not formally belong to the list of annotation

types that we defined for this study. Nevertheless, this property

of annotations follows directly from fragmentation of sentences

according to our guidelines and therefore can serve as a

legitimate annotation dimension.)

In addition, each annotation of a dimension is allowed to

have code Error, indicating erroneously extracted or jumbled

sentence.

As the focus of this work is the construction of models for

annotation correctness, we next describe these models.

Author Summary

Data annotation (manual data curation) tasks are at the
very heart of modern biology. Experts performing curation
obviously differ in their efficiency, attitude, and precision,
but directly measuring their performance is not easy. We
propose an experimental design schema and associated
mathematical models with which to estimate annotator-
specific correctness in large multi-annotator efforts. With
these, we can compute confidence in every annotation,
facilitating the effective use of all annotated data, even
when annotations are conflicting. Our approach retains all
annotations with computed confidence values, and
provides more comprehensive training data for machine
learning algorithms than approaches where only perfect-
agreement annotations are used. We provide results of
independent testing that demonstrate that our method-
ology works. We believe these models can be applied to
and improve upon a wide variety of annotation tasks that
involve multiple annotators.

Bayesian Analysis of Biomedical Annotations
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Models
Folk wisdom of modeling. Time and energy permitting, we

could design an infinite number of mathematical models to

compete in describing the same real-life process. Every model with

a circumspect number of parameters and computable probabilities

must unavoidably incorporate simplifying assumptions.

Nevertheless, some models portray reality better than their

rivals, and some models are efficient enough to become

practically useful. Our goal was to develop a model that is

sufficiently realistic, demonstrably useful and easy to implement.

We believe that we succeeded in this paper in achieving this goal.

Grouping annotators. The experimental design incorporated

in our present analysis is a special case of incomplete block design

suggested by Frank Yates [6]; the specific loop design version is due to

Kerr and Churchill, 2001 [7].

Our task in this study was to infer correct annotation for each

multi-annotator experiment by estimating annotator-specific error

rates. It is important to note that the correctness of an annotation

is not an observable or known attribute of the data, as we have no

direct way to identify which annotation is correct. We thus must

view the underlying correctness (or incorrectness) of each

annotation as a hidden or, as often referred to in the Bayesian

framework, latent variable.

While we focus here on text data, sampled from research

articles, and annotated by eight experts along certain pre-defined

dimensions, the ideas presented are not specific to this task. The

same experimental approach is applicable to cases where the

number of annotators as well as the type of data and nature of the

annotation task are different.

As described earlier, to obtain expert annotations, we used

10,000 randomly ordered sentences, partitioned into eight equal-

size sets. Each set was annotated by three of the annotators.

Annotators were grouped following a loop design (see Figure 1I):

That is, the first group included annotators 1, 2, and 3, the second

2, 3, and 4, and so on, with the eighth group consisting of

annotators 8, 1, and 2.

Figure 1. Two stages of our analysis: annotation (I) and inference (II). First, we used a loop design of experiments to generate annotation
data and to estimate the annotator-specific correctness parameters (I). Second, we used the correctness parameter estimates obtained to resolve
annotation conflicts and estimate the posterior probability associated with each alternative annotation (II). The probabilistic model is depicted as a
dark prism. We had eight annotators grouped into three-annotator groups in such a way that each annotator participated in exactly three groups and
all groups were different. This ensured that we could recover correctness estimates for all eight annotators even though some of them (for example,
annotators 2 and 7) never annotated the same fragment of text. (Size of symbols representing hypothetical correctness parameter estimates is
intended to indicate the magnitude of the corresponding value.)
doi:10.1371/journal.pcbi.1000391.g001

Bayesian Analysis of Biomedical Annotations
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To estimate annotator-specific accuracies and to use these

correctness estimates to infer the correct annotation (see Figure 1, I

and II), we developed probabilistic models, symbolized by a prism

in Figure 1. We designed and tested two quite different

probabilistic models based on the same data (see Figure 2). Both

models are generative, which means they can be used to generate

artificial data. Both models represent the task of annotating a

single-sentence by a triplet of annotators, and both allow us to

express annotator-specific correctness. However, the two models

differ in their complexity (number of independent parameters),

and in the underlying generative process that they represent.

Importantly, in the computation of the likelihood value for both

models, we used the informative prior distribution for the model

parameters, hx
m, namely, the beta-distribution with parameters

a = 2 and b = 1, (see [8], p. 37 in v. 2):

P hx
m~j a,bj

� �
~

ja{1 1{jð Þ b{1ð Þ

B a,bð Þ , ð1Þ

that roughly corresponds to the assumption that an average

annotator tends to be correct in more than 50% of her

annotations. (This assumption is used to decrease the number of

equal-height modes of the posterior distribution under each

model. If we drop the assumption, situation where all annotators

are incorrect – given the observed perfect agreement in a triplet of

annotators – will be as likely as situation where all annotations are

correct.) The detailed equations for both models are given in the

Text S1. The equations, while somewhat cumbersome, are

straightforward to derive and easy to implement and compute.

The two models: Rationale. Clearly, annotation of data by

experts is not really a stochastic process. However, formally

modeling the annotation generation process using a probabilistic

generative model can account for disagreements and uncertainty

inherent to this task, which involves subjective judgment by

multiple individuals. A generative model is tightly coupled with a

putative probabilistic process that is assumed to generate the data

(in this case, the annotated corpus). Different assumptions about

the generative process, may give rise to different probabilistic

generative models. In particular, we considered two scenarios.

One (Model A) is parsimonious in the number of parameters, but

more cumbersome and less intuitive in terms of the underlying

generation process. The other (Model B) is simpler and more

intuitive, but involves a larger number of parameters. We thus

focus first on Model B.

Model B, assumes that for each datum to be annotated, the

correct value of annotation is defined first – by sampling from a

distribution of correct annotations. The observed individual

Table 1. Example of a sentence from the dataset, annotated by 5 independent annotators (sentence 10835394_70).

Annotations 3 fragments (A, B, C) 5 annotators (A1–A5)

Number of sentence fragments A1: 1

A2: 2

A3: 1

A4: 2

A5: 2

Evidence A |A1:E3|A2:E3|A3:E3|A4:E3|A5:E3 A1: A|E3 B|E3 C|E3

B |A1:E3|A2:E1|A3:E3|A4:E3|A5:E3 A2: A|E3 B|E1 C|E1

C |A1:E3|A2:E1|A3:E0|A4:E0|A5:E3 A3: A|E3 B|E3 C|E0

A4: A|E3 B|E3 C|E0

A5: A|E3 B|E3 C|E3

Focus A |A1:S|A2:S|A3:S|A4:S|A5:G A1: A|S B|S C|S

B |A1:S|A2:S|A3:S|A4:S|A5:G A2: A|S B|S C|S

C |A1:S|A2:S|A3:S|A4:S|A5:G A3: A|S B|S C|S

A4: A|S B|S C|S

A5: A|G B|G C|G

Polarity-Certainty A |A1:P3|A2:P3|A3:P2|A4:P2|A5:P3 A1: A|P3 B|P3 C|P3

B |A1:P3|A2:P3|A3:P2|A4:P2|A5:P3 A2: A|P3 B|P3 C|P3

C |A1:P3|A2:P3|A3:P2|A4:P3|A5:P3 A3: A|P2 B|P2 C|P2

A4: A|P2 B|P2 C|P3

A5: A|P3 B|P3 C|P3

Annotations in the context of the real sentence are as follows:
The phenotypes of mxp19 (Fig 1B) |A2:**1SP3E3| and mxp170 (data not shown) homozygotes and hemizygotes (data not shown) are identical,
|A3:**1SP3E3| |A4:**1SP3E3| |A5:**1GP3E3| suggesting that mxp19 and mxp170 are null alleles. |A1:**1SP3E3| |A2:**2SP3E1| |A3:**1SP2E0| |A4:**2SP2E0|
|A5:**2GP2E3|
The minimum number of sentence fragments required to represent these annotations is three:
A = ‘‘The phenotypes of mxp19 (Fig 1B)’’
B = ‘‘and mxp170 (data not shown) homozygotes and hemizygotes (data not shown) are identical,’’
C = ‘‘suggesting that mxp19 and mxp170 are null alleles.’’
Annotators’ identities are concealed with codes A1, A2, A3, A4, and A5.
doi:10.1371/journal.pcbi.1000391.t001

Bayesian Analysis of Biomedical Annotations
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annotations are then generated by sampling their values from

another distribution that differs for different annotators, and for

the distinct correct annotation values.

An alternative scenario, corresponding to Model A, is more

artificial and a bit more cumbersome. In this case, the first step of

the data generation is to decide for each annotator whether or not

she is correct. Next, given the annotator’s correctness indicators,

an inter-annotator agreement pattern is decided probabilistically.

(Note that at this stage all that is determined is an agreement

pattern, i.e. which annotators must agree and which must

disagree, but the precise annotation values are unknown.) Finally,

another probabilistic process is used to generate the actual

annotation values given the agreement patterns. Model A does

not require estimating the distribution of correct annotations.

We considered other data-generation scenarios but will not

discuss them here.

Both models have their pros and cons. Ultimately, a model is

validated by its practical utility; it is likely that each of our models

can show superior performance over the other given a favorable

configuration of a specific data set. We thus implemented and

thoroughly tested both models. We focus here on Model B and

only briefly describe Model A. For details regarding Model A the

reader is referred to the Text S1.

Model A. The idea behind Model A is that for each

sentence and each triplet of annotators, the generation of

annotations follows a three-stage stochastic process, see Figure 2,

Model A. Given three annotators (i, j, and k), the first stage
assigns each of the three annotators his/her probability of being

Figure 2. Graphic outline of the two generative models of text annotations introduced in this study (A and B).
doi:10.1371/journal.pcbi.1000391.g002
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correct, giving rise to a three-dimensional annotator-correctness

vector, Tijk.

The second stage of the annotation-generating process

involves producing an agreement pattern, Aijk, conditioned on

the state of Tijk (see Text S1).

The third stage of data generation involves producing a triplet

of observed annotations, Vijk, given the agreement pattern, Aijk.

Model B. Model B is based on a simpler underlying

generation process (see Figure 2 (model B)). Rather than

focusing on the annotators probability to be correct and on their

probability to agree with each other, the model directly accounts

for the probability that annotations are correct. A set of

parameters, denoted by cj, (for each annotation value j),

represent the probability that each annotation value is correct.

The same set of parameters is assumed to apply to the entire

collection of sentences. For example, if the allowed annotation

values are 1, 2, and 3, the probabilities that the corresponding

annotations are correct could be, for example, c1 = 0.4, c2 = 0.35,

and c3 = 0.25, which sum to 1, thus forming a probability

distribution, as required.

Further, for the ith annotator (i = 1, 2, …, 8), we introduce a

matrix of probabilities, denoted l(i)
x|y, that defines the probability

that this annotator assigns annotation value x to a text fragment

with correct annotation y. A hypothetical perfect annotator would

have the matrix l(i)
x|y equal to the identity matrix, with ones on the

diagonal and zeros elsewhere.

Generating mock annotations is a simple two-stage process. In

the first stage, we sample the correct value of the annotation for

each sentence fragment using parameters cz. In the second
stage, using the known values of l(i)

x|y, l(j)
x|y, and l(k)

x|y, we

sample the observed annotation values for a triplet of annotators, i,

j, and k.

To speed up computation and to ease direct comparison with

Model A, we implemented both complete and simplified versions of

Model B. In the simplified version, we kept the c-parameters

unchanged but postulated that l(k)
y|y = hk and l(k)

x|y = (12hk)/(m21)

for all x?y, where m is the total number of distinct annotation values,

and hk is the expected correctness of the kth annotator. We refer to

this simplified version of our B-model as B-with-thetas. While these h-

parameters have the same meaning as h-parameters in Model A, the

two models have quite different properties as is evidenced by out

experiments, shown in the following sections.

Formally stated, the joint probability that the annotations

provided by the three evaluators are correct (under Model B) is

given by:

P C~y, Vi~vi, Vj~vj , Vk~vk Hj
� �

~P C~y Hjð Þ

|P Vi~vi C~y,Hjð Þ

|P Vj~vj C~y,Hj
� �

|P Vk~vk C~y,Hjð Þ

~cyl
ið Þ

vi yj l
jð Þ

vj yj l
kð Þ

vk yj :

ð2Þ

Here C denotes the random variable that represents the correct

value for the given instance of annotation, Vi, Vj, and Vk are

random variables representing the annotation values assigned by

the three annotators, and H are the parameters of Model B. So

long as the correct value is unknown, the likelihood of the three

annotations given the model parameters is obtained by integration

over all possible correctness values:

P Vi~vi, Vj~vj , Vk~vk Hj
� �

~
X

y

P C~y Hjð Þ

|P Vi~vi C~y,Hjð Þ

|P Vj~vj C~y,Hj
� �

|P Vk~vk C~y,Hjð Þ

~
X

y

P C~y, Vi~vi, Vj~vj , Vk~vk Hj
� �

~
X

y

cyl
ið Þ

vi yj l
jð Þ

vj yj l
kð Þ

vk yj :

ð3Þ

When the parameter values are known (estimated), we can

compute the posterior distribution of correct values given the

observed annotations and parameter values:

P C~y Vi~vij , Vj~vj , Vk~vk, H
� �

~
P C~y, Vi~vi, Vj~vj , Vk~vk Hj
� �

P Vi~vi, Vj~vj , Vk~vk Hj
� �

~
cyl

ið Þ
vi yj l

jð Þ
vj yj l

kð Þ
vk yj

P
m

cml
ið Þ

vi mj l
jð Þ

vj mj l
kð Þ

vk mj

:

ð4Þ

Finally, we can directly compare annotator-specific correctness

under Model A (h’s) with analogous values computed under Model

B using the following relation under Model B:

hx~
X

y

P C~y Hjð ÞP Vx~y C~y,Hjð Þ

~
X

y

cyl
xð Þ

y yj :
ð5Þ

Results

Comparing the two models
Despite the apparent complexity of the generative process under

Model A, in its simplest form the model requires only one

parameter per annotator for any number of allowed annotation

values. In contrast, for Model B, given n permissible annotation

values, there are n21 independent values of c’s and one

independent value of l(i)
x|x for each annotator. As a result, for

the number of fragments in a sentence that allows 9 values, Model

B requires optimization of a likelihood function depending on 16

free parameters (584 for the full model), whereas the likelihood for

Model A depends only on 8 (11 for the full model).

It is well known that if we estimate parameters using numerical

function optimization over a fixed-sized dataset, it is much easier

and quicker to obtain the maximum-likelihood estimates when the

number of model parameters is small. As the number of

parameters increases, the data is typically insufficient to uniquely

Bayesian Analysis of Biomedical Annotations
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determine the parameter values, and parameter estimates may

widely vary. As our experiments with simulated data illustrate (see

below), the number of local optima grew exponentially with the

number of permitted annotation values for Model B. While Model

A also had multiple optima, their number was smaller, and only

one optimum occurred within the parameter area where all

annotators performed with correctness .0.5.

The multimodal shape of our likelihood functions is a direct

consequence of the inability to directly observe or determine the

correctness of annotation values. Multimodal likelihood surfaces

are a common feature of models involving latent variables (e.g., see

[9] ), suggesting that multiple explanations are possible for the

same data and each corresponds to a mode on the likelihood

surface. Moreover, the larger the number of parameters, the larger

the number of possible configurations explaining the same dataset.

One additional advantage of Model A is, when we annotate the

same fragment of text along multiple dimensions, Model A can

easily be altered to allow for non-independence among distinct

types of annotations. (See Text S1 for details.)

Simulating data from either model; estimating
parameters under both

To test our methodology, before applying it to real annotator

data, we conducted a study in which data were simulated from one

of the models and then parameters were estimated under both (see

Figure 3). When we obtained simulated data from Model A, the

parameters estimated for Model A clustered nicely along a perfect

diagonal (given that both true values and the initial optimization

values of the correctness parameters were .0.5) (yellow circles in

Figure 3A). The parameters for Model B produced a much greater

scatter of likelihood values, with better likelihood estimates closer

to the expected values (blue circles in Figure 3A). This result (along

with additional repeated-estimation analysis) indicates that poorer

likelihood values for Model B correspond to convergence to the

numerous local optima on the B-model likelihood surface. In one

example (detailed in the Text S1), we made 300 estimates under

Model B for the same simulated dataset (3 allowed annotation

values). The estimation search ended in the same local optimum

only 2 times out of 300; 298 sets of estimates were all distinct from

each other.

When simulation was performed by generating data under

Model B, the parameters estimated for Model A tended to be more

widely scattered than when the data was simulated under Model A

(yellow circles in Figure 3B). Nevertheless, Model A estimates still

tend to follow the diagonal of the plot. As expected, when

estimation for Model B was initialized at the true parameter

values, the resulting estimates grouped tightly around the perfect-

estimate diagonal (black circles in Figure 3B). However, when

estimation under Model B was initialized at a random point in the

parameter space, (blue circles in Figure 3B), estimation scatter

became extreme due to convergence on local optima.

The simulations indicate that we can indeed obtain reasonable

estimates of the annotator correctness parameters, and this was

practically easier with Model A. Estimating parameters for Model

B was computationally more expensive, requiring the estimation of

many more parameters, while frequently settling into local optima.

As such, we use Model A and the simplified B-with-thetas to

analyze our real annotator data.

Analysis of real data
Figure 4 shows estimates of key parameters for Model A using

approximately 10,000 sentences, each annotated by three

annotators. Figure 4A shows maximum likelihood estimates of

the correctness parameters for the eight annotators (the first round

of evaluation) and four dimensions of annotation.

Surprisingly, not only did the value of correctness vary

significantly among annotators, but the same annotator’s

correctness fluctuated widely across the annotation tasks. The

same annotator could perform extremely well at one annotation

task and terribly at another (see Figures 4A and 5A for results of

analysis under models A and B-with-thetas, respectively). We

observed very similar absolute values of correctness and nearly

identical patterns of annotator-specific correctness across dimen-

sions under the two models. Thus, it is more likely that the

features of our annotator correctness estimates reflect properties

of annotator performance rather than being artifacts of model

design.

Estimates of conditional probabilities of agreement patterns

given correctness status (denoted by a’s, see Figure 4B–E) and

estimates of code frequencies (denoted by v’s, see Figure 4F–I) also

tell an interesting story. As we have noted previously [4],

frequencies of annotation values for each dimension were far

from uniform: The probability was almost 0.75 that a sentence

would be annotated as having a single fragment (Figure 4F).

Similarly, there was a greater than 0.60 chance that a fragment

would contain either no reference to experimental evidence at all

(E0) or direct evidence (E3), but not a value in between (E1 and

E2, see Figure 4G); a 0.55 chance that the sentence would be

annotated as having scientific focus (Figure 4H); and a greater

than 0.75 chance that the fragment would contain the most certain

positive statement (Figure 4I). Distributions of the code-frequency

values, v’s, were mirrored fairly closely by the annotation

correctness distributions (c-distributions), estimated for Model B-

with-thetas, Figure 5 (B–E).

The direct consequence of the skewed distribution of annotation

codes is that under Model A the probability of random

convergence to incorrect annotation values was high. Consider

the conditional probabilities of agreement patterns given correct-

ness states for the number of fragments in the sentence (Figure 4B).

When all three annotators had incorrect annotations (III), the most

likely observed agreement pattern was a perfect consensus (aaa,

Figure 4B). Other dimensions of annotation showed a similar

trend (Figure 4C–E). Why are these observations important?

Because, depending on the annotation task, relying on annotator

consensus annotations can lead to accepting erroneous annota-

tions, while a proper stochastic modeling can rectify the problem.

The online Text S1 provides all equations required to identify

the annotation with the highest posterior probability for each

annotated fragment of text.

While there are numerous approaches for comparison of models

in terms of their goodness-of-fit to data (e.g. [10] ), we do not apply

them in our comparison of models A and B, because comparison

of the raw log-likelihood values makes application of more

sophisticated approaches unnecessary. Indeed, when we apply

both models to our real annotator data, the most complicated

version of Model A (namely, A-with-alphas) has 11 parameters to

resolve the number of sentence fragments while the simplest

version of Model B has 16 parameters. The best log-likelihood

values we achieved after performing hundreds of independent runs

of our random-start likelihood-maximization processes with A-

with-alphas and B-with-thetas were 219,215.544 and 222,897.744,

respectively. It is clear, even without any more sophisticated

model-selection approaches, that the simple Model A fits the data

orders of magnitude better than the more complicated Model B.

The simplified Model A (219,289.269), as expected, does not fit

the data as well as its parameter-enriched version, but still

significantly better than Model B. Curiously, estimates of
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Figure 3. Simulation-estimation experiments assuming Model A (A) and Model B (B). We performed 1,00062 computational experiments
to generate annotation data under Model A (plot A) and under Model B (plot B), estimating parameters under both models in each case. Each of the
1,000 iterations per plot involved sampling a new set of the expected parameter values, generating artificial annotations using these expected values,
and then estimating parameters from these artificial data. In each simulation iteration we generated 10,000 sets of artificial annotations imitating
work of three annotators. Note that although Model B was not defined in terms of annotator-specific correctness parameters, these parameters can
be expressed easily as a function of the native parameters of Model B. (A) Simulations under Model A: For each simulated data set we produced two
different estimates, one with Model A and one with Model B. Model A estimation, starting with a random set of initial values with correctness
parameter values.0.5 each, reliably recovered the correctness parameter values (yellow dots). Estimation under Model B (blue dots) yielded a
significantly wider scatter of estimates, most likely because the hill-climbing algorithm used in this estimation got stuck in one of the numerous local
optima on the surface of posterior probability under Model B. Each round of parameter estimation produced two sets of three-annotator-specific
estimates, resulting in 6 plot data points. (B) Simulations under Model B: For each of the 1,000 simulated data sets we produced a triplet of estimates
(random starts under Models A and B, and start under Model B at the expected values of parameters). When started in the global-optimum mode
(black dots), estimation of Model B reliably resulted in near-perfect estimates of the correctness parameters, outperforming the estimated parameters
for Model A (yellow dots). However, when started with random parameter values for estimating under Model B, the estimates were widely scattered
(blue dots), corresponding to the numerous local optima associated with Model B. Each estimation round resulted in three sets of three-annotator-
specific estimates, represented as 9 separate data points in the plot.
doi:10.1371/journal.pcbi.1000391.g003
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annotator-specific accuracies (h-values) are virtually identical

under both versions of Model A (data not shown).

That said, it is important to note that comparison of models is

never absolute but is always relative to the data on which the

models are being compared. In other words, despite our

observations on the particular dataset, it is likely that there are

datasets on which the performance of the models is reversed.

Does it work?
The critical question regarding a study like this is whether the

suggested approach is actually useful. To compare model-based

predictions with external evaluations, we selected a random subset

of 1,000 sentences (out of the original 10,000) and recruited five

additional independent annotators to provide 5-fold re-annotation

of these 1,000 sentences.

The most obvious way to demonstrate the utility of our models

would be to re-evaluate predictions for cases where the three

original annotators provided three different annotations for the

same fragment of text, and compare these annotations to those

produced by the additional five independent annotators.

To understand details of the underlying computation, consider

the specific task of annotating the number of fragments in a

sentence. For example, the original three annotators had estimated

accuracies under the simplified Model A (h-values) of 0.91776,

0.91335, and 0.82234, and detected 2, 1, and 4 fragments in the

sentence, respectively (3-way disagreement). The correctness

values alone suggest that we should trust annotator 1 most and

annotator 3 least. We can further quantify our trust by computing

the posterior probabilities that each annotator is correct given this

particular triplet of annotators and annotation values.

The posterior probabilities (again, under simplified Model A)

that the correct number of sentence fragments is 2, 1, and 4 are

0.4223, 0.3989, and 0.1752, respectively. That is, we have more

than twice as much confidence that annotator 1 is right than that

annotator 3 is right. Furthermore, we have more than four times

the confidence that the correct number of fragments is either 1 or

2 as opposed to 4. To check the validity of our prediction, we

looked at five additional (independent) annotations for the same

sentence: 2, 2, 2, 2, and 1. Combining the original three

annotations with the five new ones, we obtained an 8-way

annotator vote value: 2. In this case, clearly, the 8-way vote

coincided with our maximum a posteriori probability (MAP)

prediction.

Due to the nature of our annotation protocol, where

annotations are assigned to fragments rather than to complete

sentences, the validity of polarity, focus, and evidence annotations was

confounded by the validity of sentence segmentation (see Table 1

for an example). When annotators disagreed on the number of

fragments and, especially on fragment boundaries, our analysis

had to deal with small spurious fragments. To clarify, consider the

case in which three annotators annotate a hypothetical sentence

consisting of just three one-letter words: ‘‘A B C.’’ The annotators

are allowed to break the sentence into fragments and annotate

fragments with one of two codes: 1 or 2. Suppose that annotator 1

broke the sentence into fragments ‘‘A’’ and ‘‘BC’’, annotating the

first fragment with code 1 and the second with code 2 – for brevity

we write this as A1|BC2. Similarly, evaluator 2 produced

annotation AB1|C2 – breaking the sentence also into a pair of

fragments, but, unlike annotator 1, grouping A and B. The third

evaluator did not break the sentence at all, assigning annotation 2

to the whole sentence: ABC2. In combining these annotations, in

order to enable analysis of the results, we first find the minimal

fragmentation that incorporates all breakpoints –in our case, A, B,

and C. Then we re-write the original annotations by transferring

codes from larger fragments to smaller ones: A1B1C2, A1B2C2,

and A2B2C2, for annotators 1, 2, and 3, respectively. As such, we

pooled all breakpoints from the annotators to determine the final

fragmentation and each of the original annotated fragments

propagates its annotation down to all the final fragments

composing it. We recognize that in future studies the segmentation

and annotation should be performed in two stages. The first stage

should focus on annotating boundaries of the fragments and

finding the maximum a posteriori boundary. The second stage

should involve annotation of fragment codes given the MAP

sentence fragmentation. Despite this additional noise, our analysis

below demonstrates that MAP predictions were significantly

enriched with correct answers.

The main difficulty with the practical application of Model B is

that even after a large number of numerical optimization runs,

starting with different initial values, we had no confidence that we

had identified the global optimum of the posterior probability.

Nevertheless, we used the set of parameter estimates marked with

the best likelihood value and the highest prior probability observed

in a set of about 100 independent runs. Our results show that even

these imperfect parameter estimates provide surprisingly robust

prediction results (see Table 2).

For evaluating the quality of our model-specific predictions we

need to establish a baseline corresponding to a naı̈ve random-

predictor method. If we consider only three-way annotation

disagreements, a naı̈ve random-predictor method would work by

sampling an annotation out of three choices with a uniform

probability (1/3). Similarly, the probability that two annotations

out of three include the correct answer (given that one of the three

answers is correct) is 2/3. Examining Table 1, we can immediately

see that the number of correct MAP predictions under both

models was almost invariably greater than the randomly expected

number (with the one exception of the two-best-predictions

analysis of Polarity—Certainty annotations).

Both models appear to do their prediction job extremely well,

with Model B-with-thetas performing marginally better. Despite

the relatively small numbers of test cases for each type of

annotation (31, 157, 108, and 87 three-way disagreements for

distinct annotation types, see Table 2), we observe highly

significant deviation from random prediction for each annotation

type. The majority of our model-specific p-values, computed with

Pearson’s chi-squared test, are smaller than 1023 and a few are

smaller than 1027 and 10210 (see Table 2), indicating the extreme

improbability that our prediction success is accidental.

While Model A fits the data better, Model A assumes that

annotations are dependent only on the agreement pattern of

judges and, given agreement pattern, are conditionally indepen-

dent of their correctness. We suspect this independence assump-

tion is violated to some extent and this explains Model B’s slight

advantage in predicting the eight judge results based on the three

judge data.

In summary, our method picks the correct prediction (as

determined by a larger panel of new additional independent

Figure 4. Estimates of parameters defined under Model A from real data. (A) Estimates of correctness parameter values for eight annotators
across multiple annotation types. (B–E) Estimates of a-parameters (conditional probabilities of agreement patterns given the correctness pattern). (F–
I) Estimates of v-values (frequencies of the annotation codes).
doi:10.1371/journal.pcbi.1000391.g004
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Figure 5. Estimates of parameters defined under Model B-with-thetas from real data. (A) Estimates of correctness parameter values for
eight annotators across multiple annotation types. While these values are different from those estimated under Model A, (Figure 4 A), the estimates
are clearly consistent across the two models. (B–E) Estimates of c-distributions, where ci is the probability that the ith annotation code is correct. Note
that c-distributions are similar but not identical to distributions of v-values shown in Figures 4 (F–I).
doi:10.1371/journal.pcbi.1000391.g005
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experts) much more frequently than random, proving that our

approach offers a practical aid to annotation tasks.

(Some) implementation details
We performed our probabilistic analysis using programs written

in MatLab (MathWorks); all corresponding scripts are available to

anyone interested.

For our numerical analysis of posterior probability distributions,

we used our own implementation of a simulated annealing

algorithm [11], the MatLab implementation of the multidimen-

sional simplex method, and common sense, see Dataset S2.

Discussion

Our analysis above, demonstrates the advantages of careful

experimental design, hopefully sufficiently so to convince the

biological data curation community regarding the value of an

experimental methodology in implementing and analyzing data

curation results. It appears that a comparison of curator

performance already justifies the effort, but the benefits go well

beyond quality control. Our analysis offers the possibility of

probabilistic data annotation, where alternative annotations are

presented with appropriate degrees of certainty. This represents

the plurality of opinions and disagreements among human

experts in a much more organic way than does exclusive,

deterministic (‘‘crisp’’) annotation. Our probabilistic, Bayesian

approach to data annotation allows preservation and use of all

annotation data, rather than the discarding conflicting parts.

Furthermore, probabilistic machine learning methods, such as

the maximum entropy and conditional random fields approach-

es, are well suited for imitating human curators and learning

from such annotations.

As is further exemplified in the following section, the

methodology described in this paper is directly applicable to a

wide spectrum of annotation tasks, such as annotation of large

fragments of text (articles, paragraphs, books), nucleotide sequenc-

es, phenotypes, three-dimensional models, and raw experiments.

One could even use it to compare computational methods, for

example, in the computational annotation of genomic regions, or

in the detection of copy number variation using expression array

data. In these applications, computation-generated predictions

take the role of annotators (with unknown accuracies) annotating

the same piece of data.

In the spirit of exploring mathematical symmetries [12], we

notice that extrema in likelihood optimization under Model B

form a permutation group that has n! group members for

annotation with n admissible values. We can show (see Text S1)

that every mode (solution) that belongs to the same permutation

group has exactly the same height (the maximum likelihood

value). We exploited this property in our implementation of the

Expectation-Maximization algorithm, as explained in the Text

S1. While each optimum has a corresponding permutation

group of equivalent solutions yielding the same probability for

the data, the likelihood surface is replete with local optima

which are not equivalent and which we cannot currently count

or characterize.

Both of the proposed models give rise to multiple solutions for

the same data, although Model B is especially rich in alternative

modes at the likelihood surface. At first we viewed this property

disparagingly. Later, however, we realized a positive aspect of this

multiplicity. It is true that a practical minded researcher looks for a

unique solution to a mathematical problem. However, reality can

often be explained in multiple ways. We can think of the multiple

solutions to a set of equations as merely an invitation to consider

alternative logically consistent ways to interpret data. This is not

an unprecedented situation: the famous field equations formulated

by Albert Einstein [13] allow for numerous solutions; each

consistent solution, discovered by different thinkers during the

Table 2. Comparison of two models, A and B-with-thetas, in terms of their efficiency of resolving three-way ties among three
annotators.

MAP coincides with the 3+5 majority vote
(expected by chance) [p-value]

Two highest a posteriori estimates coincide with
the 3+5 majority vote (expected by chance) [p-
value] Total

Model A Model B-with-thetas Model A Model B-with-thetas

Number of fragments 19 *** 22**** 30*** 29** 31

(31/3) (31/3) (62/3) (62/3)

[0.00096] [8.861026] [0.00038] [0.0015]

Evidence 62 70** 114 135**** 157

(157/3) (157/3) (314/3) (314/3)

[0.1] [0.0028] [0.1] [2.861027]

Focus 56**** 85**** 76 99**** 108

(108/3) (108/3) (216/3) (216/3)

[4.561025] [0] [0.4] [3.661028]

Polarity+Certainty 54**** 52**** 56 52 87

(29) (29) (58) (58)

[1.361028] [1.761027] [0.6] [0.2]

To test the models, we compare posterior distributions of correct annotations computed under each model with the majority vote obtained by combining the original 3
annotations with 5 additional annotations. The first pair of columns with numbers indicate matches of the maximum a posteriori (MAP) estimate of correct annotation
with the 8-evaluator majority vote. The second pair of columns with numbers indicate matches between the two best MAP predictions and the majority vote. Numbers
in parentheses indicate the number of matches expected if MAP predictions perform no better than random.
Note: * p,0.05; ** p,0.01; *** p,0.001; **** p,0.0001.
doi:10.1371/journal.pcbi.1000391.t002
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last century, suggested a unique view of the physical world with

profound and distinct philosophical implications.

Applying our modeling to problems of the real world
How can the real-world data curation efforts, such as Arabidopsis

thaliana annotation [14], Mouse Genome Database [15], UniProt

and Swiss-Prot [16], GenBank [17] and numerous other

repositories heavily used by bench biologists, benefit from our

methodology?

It would be naı̈ve on our part to expect that every curation team

in the world will immediately switch to annotating each piece of

data three times, using a loop design for multiple annotators (it

would be nice, though). However, it is likely to benefit the curation

teams to conduct small-scale annotation experiments, estimating

error rates specific to the task at hand and to the group of

annotator experts. Such estimates can be immediately used to

assign confidence to data annotated by a single expert with a

known correctness rate. Furthermore, estimates of annotator

correctness are useful in conducting randomized quality control

checks, where a randomly chosen datum is re-annotated by a

group of three annotators with known performance metrics. We

further illustrate the applicability of the method in the following

example.

Example of a realistic application
Consider a team of curators at the Jackson Laboratory in Bar

Harbor, Maine, working on curating mouse phenotypes for mouse

strains with genetic differences within corresponding genomes.

A genome of a given mouse strain can harbor a spectrum of

variations relative to the genome of another mouse strain. Mouse

phenotypes are arranged into a hierarchical terminology [15,18]

where each term is assigned to a unique code. While in some cases

assignment of genetic variation to a phenotype is clear and

unambiguous, in others the curators have to resolve some degree

of ambiguity of assignment of rearrangement to a specific gene or

genes (e.g., when multiple genes are affected) or of genetic

variation to a phenotype (e.g., when pleiotropic variation is

considered).

We can directly relate such an annotation task to our modeling

framework. Suppose that eight curators (1, 2, …, 8) are arranged

into eight groups of three experts each: (1, 2, 3), (2, 3, 4), (3, 4, 5),

…(7, 8, 1). We ask curators within the same group to assign discrete

phenotypic codes to the same subset of genetic variations. From the

annotated data we can estimate model parameters for Models A

and B as described in the paper, and estimate curator-specific

error rates.

Such error-rates are immediately useful in order to:

(1) provide feedback to the experts;

(2) assign confidence values to annotations produced by any

subset of the curators, and

(3) find the most likely correct annotation in cases of disagree-

ment.

The above example illustrates the applicability and potential

utility of the models within the setting of a current and ongoing

curation effort.

Supporting Information

Text S1 Detailed description of our modeling approaches.

Found at: doi:10.1371/journal.pcbi.1000391.s001 (2.01 MB PDF)

Dataset S1 Full dataset produced by the two-round annotation

effort described in this study.

Found at: doi:10.1371/journal.pcbi.1000391.s002 (1.79 MB ZIP)

Dataset S2 Complete set of MatLab programs required to

estimate model parameters (under both models described here)

and to compute the posterior distribution of correct annotation

values.

Found at: doi:10.1371/journal.pcbi.1000391.s003 (0.62 MB ZIP)
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