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ABSTRACT

The Functional Single Nucleotide Polymorphism
(F-SNP) database integrates information obtained
from 16 bioinformatics tools and databases about
the functional effects of SNPs. These effects are
predicted and indicated at the splicing, transcrip-
tional, translational and post-translational level.
As such, the database helps identify and focus on
SNPs with potential deleterious effect to human
health. In particular, users can retrieve SNPs that
disrupt genomic regions known to be functional,
including splice sites and transcriptional regulatory
regions. Users can also identify non-synonymous
SNPs that may have deleterious effects on protein
structure or function, interfere with protein transla-
tion or impede post-translational modification.
A web interface enables easy navigation for
obtaining information through multiple starting
points and exploration routes (e.g. starting from
SNP identifier, genomic region, gene or target
disease). The F-SNP database is available at
http://compbio.cs.queensu.ca/F-SNP/.

INTRODUCTION

Much effort in current human genomics, epidemiology
and pharmacogenomics is focused on the identification
of genetic variations that are responsible for common and
complex diseases. Specifically, single nucleotide poly-
morphisms (SNPs), which are substitutions of a single
nucleotide at a specific position on the genome, are in
the forefront of such studies, as they form the majority
of genetic variations in the human population. Reliable
identification of disease-causing SNPs is expected to
enable early diagnosis, personalized treatment and tar-
geted drug design.
The F-SNP database gathers computationally predicted

functional information about SNPs, particularly aiming to
facilitate identification of disease-causing SNPs in associa-
tion studies. Due to the large overhead of large-scale

genotyping and analysis, it is often required, when
conducting association studies, to prioritize SNPs in a
target genomic region based on their potential functional
effects (1). Typically, SNPs occurring in functional
genomic regions such as protein coding or regulatory
regions are more likely to cause functional distortion and,
as such, more likely to underlie disease-causing variations.
Current bioinformatics tools examine the functional
effects of SNPs only with respect to a single biological
function. Therefore, much time and effort is required from
researchers to separately use multiple tools and interpret
the (often conflicting) predictions.

To help expedite the process, the F-SNP database aims
to provide a comprehensive collection of functional
information about SNPs, using a large variety of publicly
available tools and resources. Specifically, it provides
information about potential deleterious effects of SNPs
with respect to four major biomolecular functional
categories, namely, splicing, transcription, translation
and post-translation. Moreover, for assessing the
deleterious effect of SNPs along each functional category,
F-SNP integrates multiple tools that are based on dif-
ferent algorithms, data and resources. No single tool can
yet capture all the possible effects of SNPs on even
one biological function (2). Providing predictions from
multiple diverse methods thus helps to better assess
the functional impact of each SNP. Researchers can
also use the raw predictions provided by F-SNP to
implement their own tool for evaluating functional effects
of SNPs.

Another distinguishing feature of the F-SNP database
is its integration of human-disease databases to facilitate
identification of potential disease-causing SNPs as genetic
markers in association studies. The F-SNP database
provides a web interface that takes as input either a
disease, a gene, a genomic region or a SNP identifier.
If the input is a specific disease, its candidate genes,
obtained from the integrated human-disease databases,
are provided with their SNP information. Thus, research-
ers interested in a specific disease can retrieve a list of all
the candidate genes relevant to this disease along with
functional information for all the SNPs within each
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candidate gene as predicted by a variety of bioinformatics
tools.

The current version of the F-SNP database contains the
functional information for 559 322 SNPs in 18 282 genes
relevant to 85 major human diseases. Currently, func-
tional assessment of SNPs is done by 16 bioinformatics
tools and databases. The following sections describe the
procedure used for constructing the F-SNP database,
provide a brief description of its current contents, and
explain the web-based interface.

DATABASE CONSTRUCTION

SNPs and genes

We downloaded the dataset of 11 811 594 human SNPs
and their annotations from the dbSNP (build 126) (3) and
Ensembl (release 42) (4) databases. We also downloaded
a list of 38 550 human genes along with their primary
information such as gene symbol, alias names, chromo-
somal location and gene type from NCBI Entrez Gene
(downloaded 12 December 2006).

SNP to gene mapping

To link SNPs with specific genes, for each gene, SNPs
located along the gene region (including 5 kb upstream
and 5 kb downstream) were identified. A total of 4 043 147
SNPs are thus mapped to 23 630 human genes.

Gene to disease mapping

We retrieved from NCBI’s Genes and Disease site the list
of 85 human genetic disorders, categorized by the 16 body
parts that they affect (downloaded 29 January 2007). To
link candidate genes with the 85 diseases, we downloaded

the dataset of a gene-disease map from NCBI’s OMIM
database (downloaded 3 January 2007) (5). Accordingly,
2374 genes were mapped to 85 human genetic disorders.

Assessing the functional effects of SNP

Using a variety of publicly available bioinformatics tools,
we assess the functional effects of SNPs along the
following four major categories: protein coding, splicing
regulation, transcriptional regulation and post-translation
effects. The tools, PolyPhen (as of 15 August 2007) (6),
SIFT (as of 15 August 2007) (7), SNPeffect (version 2.0)
(8), SNPs3D (as of 15 August 2007) (9) and LS-SNP (as of
15 August 2007) (10) are used to identify non-synonymous
deleterious SNPs; ESEfinder (release 3.0) (11), RescueESE
(as of 15 August 2007) (12), ESRSearch (as of 15 August
2007) (13) and PESX (as of 15 August 2007) (14) are used
to identify SNPs in exonic splice regions; The Ensembl
database (release 42) (4) is used to identify nonsense
SNPs and SNPs in intronic splice sites; TFSearch (ver. 1.3)
(15) and Consite (as of 15 August 2007) (16) are used to
identify transcriptional regulatory SNPs in promoter
regions; The Ensembl (release 42) (4) and GoldenPath
(downloaded 12 December 2006) (17) databases are used
to identify SNPs in other transcriptional regulatory
regions (e.g. microRNA, cpgIslands); KinasePhos (as of
15 August 2007) (18), OGPET (ver. 1.0) (19) and
Sulfinator (as of 15 August 2007) (20) are used to examine
post-translation modification sites. In addition, genomic
regions that are conserved across multiple species are
identified using GoldenPath (downloaded 12 December
2006) (17), and are used as described below. The complete
list of 16 integrated tools and databases is provided in
Table 1.

Table 1. Bioinformatics tools and databases integrated into F-SNP (Release 1.0. August 2007)

Functional category Tool URL

Protein coding PolyPhen (6) http://genetics.bwh.harvard.edu/pph/data/index.html
SIFT (7) http://blocks.fhcrc.org/sift/SIFT.html
SNPeffect (8) http://snpeffect.vib.be/index.php
SNPs3D (9) http://www.snps3d.org/modules.php?name=SNPtargets
LS-SNP (10) http://alto.compbio.ucsf.edu/LS-SNP/Queries.html
Ensembl (4) http://www.ensembl.org/index.html

Splicing regulation ESEfinder (11) http://rulai.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi
RescueESE (12) http://genes.mit.edu/burgelab/rescue-ese/
ESRSearch (13) http://ast.bioinfo.tau.ac.il/
PESX (14) http://cubweb.biology.columbia.edu/pesx/
Ensembl (4) http://www.ensembl.org/index.html

Transcriptional regulation TFSearch (15) http://www.cbrc.jp/research/db/TFSEARCH.html
Consite (16) http://asp.ii.uib.no:8090/cgi-bin/CONSITE/consite/
GoldenPath (17) http://genome.ucsc.edu/
Ensembl (4) http://www.ensembl.org/index.html

Post-translation KinasePhos (18) http://kinasephos.mbc.nctu.edu.tw/
OGPET (19) http://ogpet.utep.edu/
Sulfinator (20) http://www.expasy.ch/tools/sulfinator/

Conserved region GoldenPath (17) http://genome.ucsc.edu/

For each possible functional category into which a SNP may be classified, the table provides the tools that examine this function, and the URL from
which the respective tool is available (as of August 2007). The category Conserved Region in the last row is not a functional category in-and-of itself,
but is informative in determining the effect of SNPs on splicing and transcriptional regulation.
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Summarizing the functional importance of SNPs

In addition to providing the raw output from the 16
integrated tools stating the functional effects of SNPs,
F-SNP also denotes a subset of the assessed SNPs as
‘functional’ SNPs; these are SNPs that are predicted by
a majority of the integrated tools to be deleterious with
respect to at least one biological function of a gene or
a gene product.
Figure 1 illustrates the assessment process. We note that

in the case of SNPs within regulatory regions, for instance,
‘transcription factor binding site’ or ‘exonic splicing
regulatory regions’ (as shown in the two middle boxes in
Figure 1), we additionally examine whether the region is
conserved across multiple species (chimp/dog/mouse/rat/
chicken/zebrafish/fugu) to determine whether the SNP is
functional. This strategy is mainly used because there is a
high rate of false positive findings by in silico prediction
tools due to the short length of such sequences (typically
6–8-mer) (12). The additional information about con-
served regions across multiple species is thus used as a way
to filter out possible false-positive predictions (2,11–14).

DATABASE CONTENTS

The F-SNP database, release 1.0 (August 2007), contains
the assessed functional information for 559 322 SNPs
within 18 282 candidate genes for 85 human diseases.
Detailed statistics of the current F-SNP database are
provided in Table 2. The database will be continuously
updated to provide functional information about addi-
tional SNPs.

WEB INTERFACE

The F-SNP database is available at http://compbio.cs.
queensu.ca/F-SNP/. The user can search the database
by SNP identifier, gene, disease or chromosomal regions.
Figure 2 shows an example of results obtained from an
interactive search concerned with breast cancer.

Search by SNP identifier

To obtain information about a single SNP the database
can be searched by providing the SNP’s rs-identifier from
dbSNP (build 126) (3). The resulting page provides the

Figure 1. Decision procedure for functional SNP assessment. Each SNP is examined for deleterious effects with respect to each functional category
(i.e. protein coding, splicing regulation, transcriptional regulation and post-translation—as shown in the top part of the figure). For each category,
a series of tests is executed to determine whether the SNP has a functional impact. First the type (coding, intronic, etc.) of the genomic region
is identified, using data from dbSNP (3) and Ensembl (4). Once this is determined, other tests are performed. For example, to assess if a SNP has
a deleterious effect on protein coding, it first must be located on a coding region. Ensembl (4) is used to examine if this is a nonsense mutation,
in which case the SNP is considered to be deleterious. Otherwise—if the SNP is a missense mutation, it is further tested by five different tools
[PolyPhen (6), SIFT (7), SNPeffect (8), SNPs3D (9) and LS-SNP (10)] to check if the non-synonymous substitution is deleterious. A majority vote
among these tools concludes the process, and identifies the SNP as either having a potentially deleterious functional impact (denoted ‘functional’
in the figure) or not.

Table 2. Statistics of functionally assessed SNPs in F-SNP, Release 1.0

(August 2007)

Functional category Number of
assessed SNPs

Number of
potentially
deleterious SNPs

Protein coding 154 140 66 899
Splicing regulation 73 051 8 075
Transcriptional

Regulation
453 710 78 296

Post-translation 64 736 4 477
Total 559 322 115 356

For each functional category, the number of SNPs for which the
function has been assessed using the 16 tools and databases integrated
into F-SNP is shown in the middle column. The number of SNPs
indicated by F-SNP to be potentially deleterious is shown on the
right.
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primary information about the SNP along with its
assessed functional information. The primary information
includes the chromosomal location of the SNP, alleles,
ancestral allele, validation status, type of genomic region,
links to external databases namely dbSNP (build 126) (3),
NCBI MapView (homo sapiens build 125), Ensembl
(release 42) (4), Ensembl Contig (as of 15 August 2007),

UCSC Genome Browser (March 2006 assembly) (17),
HapMap (Rel 21a/phase II) (21) and GeneCards (ver.
2.37) (22), and the flanking sequence around the SNP.
The functional information provided for each SNP
includes functional category, integrated tools used, pre-
diction results and the detailed output from each
predictive tool.

Figure 2. Example of an F-SNP search session. (a) The initial search page is displayed, where the user selected the disease type to be Cancers, and
the specific disease to be Breast cancer (Search by disease). (b) Results obtained after clicking the Submit button in panel (a), namely a list of genes
associated with Breast cancer along with their associated chromosome location, known related disorders, and links to OMIM. The BRCA1 link
(circled) is selected and clicked. (c) A detailed description of SNPs associated with BRCA1 is produced (demonstrating results of Search by gene).
The SNP whose identifier is rs28897699 (circled)—indicated by a ‘+’ mark to have associated functional information—is selected and clicked.
(d) Information about the SNP rs28897699 is presented (demonstrating results of Search by SNP ID).
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Search by gene

To find the SNPs located within a specific gene region, the
database can be searched by providing the HUGO name
of the gene or of its protein. If no official HUGO name
matches the input keyword, alias gene names (registered
in NCBI Entrez Gene) are examined for the search.
A table with all the SNPs linked to the gene is then
produced, where a green ‘+’ mark is shown next to each
SNP for which the functional effects have been assessed,
and a red ‘+’ mark further indicates that the SNP was
determined to have a potentially deleterious functional
effect. The user can then click on each SNP to obtain the
detailed functional information about it.

Search by disease

To identify SNPs that may be related to a specific disease
the user can select the disease category and name.
A table with all the genes relevant to the disease is
produced. The user can then click on each gene to go to
the gene-information page. As described earlier, the gene-
information page lists all the SNPs linked to the gene, for
which the user can retrieve further information.

Search by chromosomal region

To study SNPs along a chromosomal region the user can
provide the chromosome number, along with start/end
positions. A table with all the SNPs within the region is
produced and, as explained earlier, a ‘+’ mark indicates
the SNPs for which functional effects have been assessed.
Again, the user can click on each SNP to obtain further
information.

CONCLUSIONS AND FUTURE WORK

The F-SNP database is a comprehensive resource collect-
ing computationally obtained functional information
about SNPs. The information is given in four levels,
namely, protein coding, splicing regulation, transcrip-
tional regulation and post-translation. As effective asso-
ciation studies largely depend on prioritizing the SNPs to
be examined and studied, we expect that F-SNP will serve
as a one-stop tool for selecting potential disease-causing
SNP markers for association studies. The functional
information provided for SNPs will be regularly updated
as other prediction tools and biomolecular experiments
become available. We also plan to integrate additional
human-disease databases to include a broader spectrum of
common and complex diseases.
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