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ABSTRACT

Motivation: Most computational methodologies for microRNA gene

prediction utilize techniques based on sequence conservation and/or

structural similarity. In this study we describe a new technique, which is

applicable across several species, for predicting miRNA genes. This

technique is based on machine learning, using the Naı̈ve Bayes clas-

sifier. It automatically generates a model from the training data, which

consistsofsequenceandstructure informationofknownmiRNAsfroma

variety of species.

Results: Our study shows that the application of machine learning

techniques, along with the integration of data from multiple species is

auseful andgeneral approach formiRNAgeneprediction.Basedonour

experiments, we believe that this new technique is applicable to an

extensive range of eukaryotes’ genomes. Specific structure and

sequence features are first used to identify miRNAs followed by a

comparative analysis to decrease the number of false positives

(FPs). The resulting algorithm exhibits higher specificity and similar

sensitivity compared to currently used algorithms that rely on

conserved genomic regions to decrease the rate of FPs.

Availability: The BayesMiRNAfind program is available at http://

wotan.wistar.upenn.edu/miRNA

Contact: showe@wistar.org

Supplementary information: Supplementary data are available at

Bioinformatics online.

INTRODUCTION

MicroRNAs (miRNAs) are single-stranded, non-coding RNAs

averaging 21 nt in length. The mature miRNA is cleaved from a

70–110 nt ‘hairpin’ precursor with a double-stranded region con-

taining one or more single-stranded loops. MiRNAs target messen-

ger RNAs (mRNAs) for cleavage, repressing translation and

causing nascent protein degradation (Bartel, 2004).

Several computational approaches have been implemented for

miRNA gene prediction using methods based on sequence

conservation and/or structural similarity (Lim et al., 2003a, b;

Weber, 2005; Lai et al., 2003; Grad et al., 2003). Lim and others

(Lim et al., 2003a, b; Weber, 2005) developed a program, for

identification of miRNAs, called MiRscan with a 70% specificity

at a sensitivity of 50%. MiRscan uses seven miRNA features with

associated weights to build a computational tool, which assigns

scores to hairpin candidates. The weights are estimated using stat-

istics based on the previously known miRNAs from Caenorhabditis
elegans. Grad et al. (2003) developed a computational method using

sequence conservation and structural similarity to predict miRNAs

in the C.elegans genome. Lai et al. (2003) used similar ideas to

develop a different computational tool for the Drosophila genome,

called miRseeker. These efforts have recently been reviewed by

Bartel (2004). Others used homology searches for revealing paralog

and ortholog miRNAs (Weber, 2005; Lagos-Quintana, 2001; Lau

et al., 2001; Lee and Ambros, 2001; Pasquinelli et al., 2000). In

addition, Wang et al. (2005) developed a method based on sequence

and structure alignment for miRNA identification. The most

recent published work of which we are aware that uses machine

learning for miRNA discovery is by Nam et al. (2005). They

constructed a highly specific probabilistic model (HMM) whose

topology and states are handcrafted based on prior knowledge

and assumptions, and whose exact probabilities are derived from

the data.

In our study we present a machine learning approach based on the

Naı̈ve Bayes classifier for predicting miRNA genes. Our method

differs from previous efforts in two ways: (1) we generate the model

automatically and identify rules based on the miRNA gene structure

and sequence allowing prediction of non-conserved miRNAs and

(2) we use a comparative analysis over multiple species to

reduce the false positive (FP) rate. This allows for a trade-off

between sensitivity and specificity. Based on our experiments

with multiple genomes we believe that our method is applicable

to a wide variety of eukaryotes. The resulting algorithm demon-

strates higher specificity and similar sensitivity compared to

currently used algorithms, which use conserved genomic regions

to reduce FPs (Lim et al., 2003a, b; Lai et al., 2003; Grad et al.,
2003).

Like Nam et al. (2005), rather than relying on miRNAs homology

between related species, we directly use features of the miRNA

sequence and secondary structure. However in contrast to them,

we train a Naı̈ve Bayes classifier to identify miRNAs directly

from the data. In our system prior knowledge is used for initial

filtering of the data, but not for constructing the model. The Naive

Bayes classifier is a standard model with no domain-specific

assumptions (aside for the usual conditional independence assump-

tions inherent to the model). In addition, whereas Nam’s model was

trained and tested on a single type of data (136 Human miRNAs)�To whom correspondence should be addressed.
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with respect to a restricted set of negative examples, in our study,

we trained and tested the model using a variety of miRNAs from

multiple organisms. We note that the dataset used by Nam is strictly

a subset of the data used in our work. We demonstrate here that the

results obtained by training and testing, using arbitrarily selected

numbers of negative samples are highly sensitive to the size of the

negative set. We overcome this problem by using multiple sources

of miRNA. The major novelty of the work presented here is the

combination of data from multiple sources. By integrating data from

multiple species, we stabilize the learning process and, more

importantly, construct a model that is more likely to be applicable

to a variety of genomes.

Our results, as presented in this paper, demonstrate the specificity

of the algorithm for miRNA gene prediction and suggest that our

approach is comparable to, and even exceeds the performance of

other methods. The results also demonstrate the applicability of

machine learning methods for identifying common features in

DNA sequence.

MATERIALS AND METHODS

Reduction of the search space to stem–loops with

general structural features and generation of the

negative class

A machine learning training procedure for building a classifier typically

requires positive and negative examples. In our case it is clear that the

known miRNAs serve as the positive examples. However, it is more difficult

to decide which are the best negative examples for the training stage. To

produce high specificity in the selection of new candidate miRNAs, the

negative examples should be highly similar to the miRNA themselves.

Various techniques could be considered including (1) generating negative

examples by permuting the original known miRNA sequences, (2) randomly

selecting genomic sub-sequences from the whole genome where the relative

frequency of miRNAs is very low, (3) using samples from the mRNA 30-
untranslated region (30-UTR) region (Mignone et al., 2005). There is only

one predicted miRNA sequence in the 159 000 reported 30-UTR sequences in

UTRdb at http://www.ba.itb.cnr.it/UTR/. Only 35% of mammalian miRNAs

overlap annotated genes and 90% of these are intronic (Griffiths-Jones et al.,

2006) In addition, of the 114 C.elegans miRNAs annotated in Rfam (http://

microrna.sanger.ac.uk/cgi-bin/sequences/) none is located in a known

30-UTR and only four are described as exonic (30-UTRs are in exons)

while 97 are listed as intergenic or intronic. We conclude that miRNAs

are extremely rare in 30-UTRs and thus the third choice for generating a

filter that is later used to generate a negative class. These samples closely

resemble miRNAs except in particular features that we select.

Since miRNAs are highly conserved between species, we draw our

negative class sequences from highly conserved regions, as defined by

homology using the BLAT sequence alignment (Kent, 2002; Kent et al.,
2002). Beginning with these highly conserved sequences, we pass the

sequences through the 110 base sliding window, which filters for the

secondary structural features that define a typical miRNA (Fig. 1,

Steps 1–4). Candidate sequences which fail only one of the four structural

features (stem length; number of paired bases; hairpin length and free

energy) are retained for the class of negative examples.

The computational procedure (BayesmiRNAfind)

Figure 1 illustrates the pipeline of the computational procedure. Its main

component is the Naı̈ve Bayes algorithm (Mitchell, 1997).

The input (First stage) is a genomic sequence of any length. It could be the

whole genome or a sub-sequence. This is different from most existing

methods, which start with only conserved genomic segments (Lim et al.,

2003a, b; Weber, 2005; Lai et al., 2003). Use of pre-aligned genomic

sequences (conserved segments) reduces the search space, at the cost of

making the algorithm less general. Although most miRNAs are phylogen-

etically conserved, putative miRNAs that are not conserved between species

will not be predicted by methods that use only conserved regions of the

genome (Lim et al., 2003b; Lai et al., 2003; Grad et al., 2003; Wang et al.,

2005).

MiRNAs are processed from a precursor that forms a stem–loop structure.

In the second stage of our process, the mfold program (Mathews et al., 1999;

Zuker, 2003) is used for the stem–loop predictions. A 110 nt sliding window

is moved along the input sequence and mfold generates the secondary

structure. Stem–loops that overlap are removed and the one candidate

with the lowest free energy is kept for the next step. The parameters

used for the prediction of potential stem–loops are based on the biogenesis

criteria mentioned in Ambros et al. (2003) and on our own analyses as shown

in Figures 3 and 4. We used two sequence sets to extract potential stem–loop

criteria: the first consisted of the miRNAs from Drosophila melanogaster,

C.elegans, Caenorhabditis briggsae, Homo sapiens, Mus musculus and
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Fig. 1. The computation procedure components. This figure illustrates the pipeline of the computational procedure with eight (8) stages. Its main component is

the Naı̈ve Bayes algorithm.
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Rattus norvegicus as shown in Table 1. The second, a negative set, consists

of random sequences from Human mRNA 30UTR regions (Mignone et al.,

2005). The first and the second stages of the computational procedure were

applied to both sets to generate the secondary structure and folding, yielding

719 miRNA stem–loops and 190 739 non-miRNA stem–loops.

In the next (Third) stage, a filter is applied to reduce the number of

potential stem–loops by discarding unlikely candidates. Four features are

considered for building a filter that can distinguish potential stem–loops:

(1) Stem length, (2) Folding free energy, (3) Base pairs and (4) Loop length

(Fig. 2). For each of these features a statistical histogram plot was generated

as shown in Figure 3. It is clear that none of them is a stand-alone criterion

for potential stem–loop predictions. Therefore, a combination of these

features has been used to generate a filter requiring stem–loops to satisfy

the following criteria:

(1) 42–85 nt stem length (the number of nucleotide in the upper stem

plus the lower stem arm).

(2) Atleast �25 kcal/mole of folding free energy.

(3) Loop length <26 nt.

(4) 16–45 base pairs (bp).

Stem–loops that satisfy all four criteria (Fig. 4) are retained for the next stage

of analysis. Expressed sequences that fail to satisfy this filter form a pool

from which negative examples are drawn for later use when training the

classifier. Figure 4 shows that �80% of the miRNAs satisfy all four

conditions and only �6% of the non-miRNAs. One could use stricter criteria

that may decrease the sensitivity and increase the specificity, or alternatively

use recomputed criteria based on organism-specific miRNA. For validation

of these four criteria for true miRNA stem–loops, a different set of negative

examples was used. Moreover, when we split the data using the first half to

train and the second half to test, similar results were observed.

So far, we have shown the way we built the potential stem–loops to be

used later for generating the negative class and for eliminating sequences

that are unlikely to contain potential miRNA genes. We next describe the

features that are extracted from the sequence and structure of the miRNA and

the non-miRNA examples for training the Naı̈ve Bayes classifier.

Definition of structural and sequence features

For the positive (miRNA) class, the 21 nt of the mature miRNA are mapped

into its associated stem–loop [generated by the mfold program (Zuker, 2003)]

and then the features are generated as described below. For the negative

(non-miRNA) class, we use a 21 nt sliding window (Fourth stage) to

represent the so-called mature miRNA candidate. Features are then extracted

for each 21 nt window. Our main assumption is that each true hairpin

precursor contains one mature miRNA located in one of its arms.

For a given 21 nt miRNA candidate, 62 secondary structure features are

derived from the hairpin (stem–loop), and 12 sequence-based features

(which we call ‘words’) are extracted from the candidate sequence. Next,

the hairpin (stem–loop) is split into three parts: foot, mature and head as

shown in Figure 10. For each of these parts the following features are

extracted:

(1) The number of base pairs.

(2) The number of bulges.

(3) The number of loops

(4) The number of asymmetric loops.

(5) Eight additional features represent the number of bulges of lengths 1–7

and those with lengths >7.

(6) Another set of eight features represents the number of symmetric loops

with lengths 1–7 and the eighth one representing those that have

lengths >7.

(7) The distance of the start of the mature miRNA candidate from the

first paired base of the foot and head part are two additional features

that are extracted.

(8) Nucleotide sequence ‘words’ with lengths 4–9 are extracted from

the candidate 21 nt sequence and from the reverse sequence. These

‘motif’ features are not fixed and influence the dimension of the

vector space. The dimension of that vector is determined, at a later

point, to be 62 plus the number of unique ‘words’ that are obtained. It

could include thousands of features. Those features are a result of the

criteria mentioned by Lim et al. (2003a, b), Weber (2005), Wang et al.

(2005), Ambros et al. (2003) and recently summarized by Bartel

(2004).

The weighted combination of these features is used for generating a model

that describes the miRNA class. This model is then utilized for predicting

novel miRNAs. Some of the generated features might be irrelevant to a

particular model. However, since the machine learning algorithm is able to

learn with noisy features and because a particular feature could be important

to a specific genome or miRNA class, we decided to provide as much

information as possible to the machine learning algorithm. This way, we

can generate a model that may identify biologically relevant structures that

were hitherto undiscovered. One could elect to reduce the number of fea-

tures, using feature selection techniques (Sahami et al., 1996), and still

obtain reasonable accuracy. An analysis of the most important features is

shown in the Supplementary information. In this study all of the generated

features were used for training the classifier.

Further performance analysis has been applied to evaluate the importance

of the structural features and the sequence features separately; an accuracy

increase of �10% has been observed when the two kinds of features are

combined.

Stage 5, Naı̈ve Bayes classifier

Naı̈ve Bayes is a classification model obtained by applying a relatively

simple method to a training dataset (Mitchell, 1997). A Naı̈ve Bayes

classifier calculates the probability that a given instance (example) belongs

to a certain class. It makes the simplifying assumption that the features

constituting the instance are conditionally independent given the class.

In practice, Naı̈ve Bayes often performs well, considering its simple

structure and ease of implementation. Given an example X, described by

its feature vector (x1, . . . , xn), we are looking for a class C that maximizes the

likelihood: P(X jC) ¼ P(x1, . . . , xn jC). The (Naı̈ve Bayes) assumption of

conditional independence among the features, given the class, allows us to

express this conditional probability P(X jC) as a product of simpler

probabilities:PðX jCÞ ¼
Qn

i¼1 Pðxi jCÞ.

Table 1. Dataset of discovered miRNAs

Species name #Mature

Drosophila melanogaster 79

Drosophila pseudoobscura 68

Caenorhabditis elegans 117

Caenorhabditis briggsae 78

Gallus gallus 101

Homo sapiens 207

Mus musculus 212

Rattus norvegicus 177

Zea Mays 40

Oryza sativa 134

Arabidopsis thaliana 114

Danio rerio 26

Epstein Barr virus 6

Total 1359
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We used the Rainbow (McCallum, 1996, http://www.cs.cmu.edu/

mccallum/bow) program to train the Naı̈ve Bayes classifier. To combine

the numeric features identified in the stem–loops and the sequence features

(‘words’) in the miRNA candidate sequence, a dictionary of all the ‘words’

was generated and the frequency of each ‘word’ in the dictionary is used.

Training the classifier

A challenge in training the Naı̈ve Bayes classifier (Fifth stage) is the imbal-

ance between the number of positive and negative examples in the training

data. An unbalanced distribution of the data could result in poor performance

in the classification task. Previous studies in machine learning suggest meth-

ods that can be applied to deal with this kind of dataset (Japkowicz and

Stephen, 2002).

Initially, we carefully chose the proportion of positive and negative

examples to include in the training set and considered miRNAs derived

from only one genome. This under-sampling approach was used to determine

the appropriate proportions of positive and negative examples to include. In

the next section, we demonstrate that combining all known miRNAs from a

variety of species actually improves the performance of the classifier, mak-

ing the performance more robust to changes in the proportion of positive and

negative examples in the training set. We thus include all known miRNAs

Fig. 2. Partition of stem–loop into three parts: foot, mature and head and features to determine potential stem–loops. For a given 21 nt miRNA candidate, different

secondary structure features are derived from each part.

(a) (b)

(c) (d)

Fig. 3. Distribution of miRNAs and non-miRNAs for each feature of the potential stem–loop filter is shown in statistical histogram plots. Four features are

considered for building a filter that can distinguish potential stem–loop: (a) number of base pairs, (b) folding free energy, (c) loop length and (d) stem length.
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from several species, in the training set, and then apply our computational

procedure to the various genomes, using the Naı̈ve Bayes classification

model that had been generated through the training. The output of the

Naı̈ve Bayes classifier (Fifth stage) is a pair of lists. The first list contains

candidates that are assigned to the miRNA class, while the second contains

candidates that are assigned to the non-miRNA class. The first list is sub-

sequently refined by the next steps of the computational procedure.

Stage 6, Picking the best candidate from each

stem–loop

A 21 nt sliding window representing the mature miRNA is moved along each

stem–loop in the fourth stage of the computational procedure to generate the

mature miRNA candidates. Each stem–loop generates a number of candid-

ates. However, our initial assumption was that only one mature miRNA is

associated with each stem–loop. Since different candidates that have been

generated from one stem–loop may be predicted by the Naı̈ve Bayes clas-

sifier to be a potential mature miRNA, we implemented an analyzer (Sixth

stage) to pick the mature miRNA candidate with the highest score among all

the candidates corresponding to one stem–loop. Further analysis is carried

out on overlapping stem–loops that have been produced from the overlap-

ping windows, which were generated at Stage 2 of the computational pro-

cedure (Fig. 1). From each family of overlapping stem–loops, only the one

with the highest scoring mature miRNA is retained.

Stage 7, setting the Naı̈ve Bayes score filter with the

Mouse sequence

In the following sections we show that our computational procedure has high

accuracy (high sensitivity and specificity) at finding known miRNA genes.

However, we are still interested in further reducing the number of FP

predictions, since the data to be examined at this point could reach millions

of examples. Even with a small percentage of FPs, tens of thousands of

predictions could be generated, making it difficult to validate these predic-

tions in the laboratory. Thus, further analysis was applied to determine the

appropriate threshold for eliminating FP predictions.

The Naı̈ve Bayes classifier assigns a score to each mature miRNA

candidate and classifies it into one of the two predefined classes: the miRNA

and the non-miRNA. Figure 5 shows the distribution of the Naı̈ve Bayes

scores (NBSs) for the true positive (TP) and the FP using Mouse sequences

(see sub-section ‘miRNAs from Mouse’ for information about the experi-

ments). It is obvious that the 0.99999 (10e � 5) NBS is the appropriate

threshold to reduce FP predictions. This value and others have been embed-

ded, as additional filters, in our computational procedure at Stage 7.

Stage 8, conservation filter

The conservation of similar functional regions among evolutionarily related

species can also be utilized to eliminate FP predictions. For each candidate

precursor sequence (110 nt), a conservation measurement is obtained, with

respect to a reference genomic sequence, using the BLAT program (Kent,

2002). Precursors which are highly conserved with respect to the reference

genome (�90%) are retained while those which are not conserved at this

level are rejected. Figure 6 shows the distribution of this conservation score

applied to all of the 224 known miRNAs from the Mouse genome against

Human, Chimpanzee and Fugu genomes. The Fugu genome was also used by

Lim et al. (2003b) to reduce the FP prediction.

It is obvious from Figure 6 that a conservation score >0.9 is appropriate to

use as a filter in our computational procedure (Stage 8) when we use the

Human or the Chimpanzee as the reference genome. One may also use the

Fugu genome as a reference sequences for eliminating even more FP pre-

dictions, but it is expected that we would then begin to lose true potential

candidate miRNAs. The choice of reference sequences and conservation

score should vary with the new sequence being tested. We emphasize

that the use of this filter is only to reduce the final number of predictions,

and one would not use it if the outcome of Stage 6 is small enough for testing

in the laboratory.

RESULTS

Evaluation of performance

To evaluate classification performance, several experiments have

been executed as described in the following sections.

miRNAs from C.elegans In this experiment we aimed to identify

miRNAs in the C.elegans genome. The 117 miRNAs from the

Fig. 4. The histogram shows the distribution of miRNAs and non-miRNAs

for the combined four features characterizing potential stem-loops (stem

length; folding free energy; loop length; base pairs) for potential stem–loop

predictions. A combination of these features has been used to generate a filter

requiring stem–loops to satisfy the following criteria: (1) stem length: 42–85

nt (the number of nt in the upper stem plus the lower stem arm); (2) folding

free energy: at least �25 kcal/mol (3) loop length <26 nt and (4) 16–45 bp.

Fig. 5. Distribution of Naı̈ve Bayes scores over the miRNAs class and the

negative class frommouse sequences. This figure shows the distribution of the

NBSs for the true positive (%TP) and the false positive (%FP) rates using

Mouse sequences.
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C.elegans genome were used as positive examples (Table 1) for

training the Naı̈ve Bayes classifier. For generating the negative

examples, 300 sequences were randomly selected from the

C.elegans/C.briggsae BLAT alignment [obtained from the UCSC

genome Browser (http://genome.ucsc.edu/index.html) (Kent et al.,
2002) on January 10, 2005 (version May 2003)]. The third and the

fourth stages of the computational procedure (Fig. 1) were then

applied to generate 434 955 negative examples.

The Naı̈ve Bayes classifier was trained multiple times. In each

training epoch, a set of 105 known miRNAs (90% of the positive

data) were randomly selected from the 117 known C.elegans
miRNAs and used as positive examples. We varied the number

of negative examples across different sets of experiments, randomly

choosing a set of 50, 75, 100, 125, 150, 175, 200, 300, 400, 500 or

1000 from the pool of negative examples (434, 955). The test was

performed over the remaining 10% from the miRNA class and

the remaining negative examples. The evaluation procedure was

repeated 1000 times. The results are shown in Figure 7a. Using

150 samples from the negative data yielded �83% sensitivity and

�96% specificity. Increasing the number of negative examples in

the training set resulted in an increase in the classifier specificity and

a decrease in its sensitivity. Using 300 examples from the negative

class, the classifier reached �43% sensitivity and �99% specificity.

It is clear that there is lack of stability in sensitivity as the number

of negative examples grows. To verify that the stability does not

change with respect to the number of positive examples, we altered

the split of the training/testing portions, e.g. using 80% of the

positive examples, with no significant difference.

Additional evaluation was implemented by 5-fold cross valida-

tion (repeated 100 times). The 117 known miRNAs served as the

positive examples and 100, 200 or 1000 negative examples were

selected from the negative pool. Receiver operating characteristic

(ROC) (Metz, 1978) curves were generated and the area under the

curves calculated. Results were 0.997, 0.992 and 0.960 respectively.

The plot of the ROC curve for the 200 negative examples is

shown in Figure 7b.

MiRNAs from Mouse The 224 known Mouse miRNAs down-

loaded from Rfam (Griffiths-Jones, 2004) were used as positive

examples. We used 300 random sequences highly conserved

between Mouse, Rat, Human, Dog and Chicken [using multiple

alignment, May 2004, downloaded from USCS (Kent et al.,

2002)]. By applying the third and the fourth stages of the compu-

tational procedure on those sequences, 239 674 stem–loops were

generated to serve as a pool of negative examples for training the

Naı̈ve Bayes classifier.

The Naı̈ve Bayes classifier was trained with 90% (201 miRNA) of

the positive miRNA data and with 50, 75, 100, 125, 150, 175, 200,

300, 400, 500 or 1000 negative examples chosen randomly from the

pool of 239 674 negative examples. The test was done with the

remaining 10% from the miRNA class and the remaining negative

examples. The evaluation procedure was repeated 1000 times, and

the results are reported in Figure 8a. Using 150 samples from the

negative data yielded �97% sensitivity and �91% specificity. As

observed before, an increase in the number of negative examples in

the training set leads to an increase in the classifier specificity and a

decrease in its sensitivity. Again, it is obvious that there is lack of

stability as the number of negative examples grows. For verifying

the stability in the face of changes to the positive set, we again

employed different splits of the training/testing portions, e.g. using

80% of the positive examples, with no significant change being

observed.

Evaluation by 5-fold cross validation (repeated 100 times) was

carried out using 224 known miRNA as the positive examples and

100, 200 or 1000 examples from the negative pool. ROC curves

were generated and the area under the curves calculated. The results

were 0.966, 0.980 and 0.965 respectively. The curve for the 200

negative examples is shown in Figure 8b.

Combining miRNAs from different species

We have so far shown the learning procedure applied to miRNA

from a single species. The results demonstrated high specificity, but

sensitivity was reduced with an increase in the number of negative

examples. We now demonstrate that sensitivity benefits signific-

antly in terms of both values and robustness, from combining mul-

tiple sets of miRNAs in the training data.

The currently known miRNAs from different species were

downloaded from Rfam (Griffiths-Jones, 2004), (Table 1). 1359

mature miRNAs and 1420 precursor miRNAs served as positive

examples. The difference between the number of mature and

precursor miRNA stems from the fact that sequences for several

mature miRNAs are found in more than a single precursor. The

Fig. 6. Distribution of candidate Mouse miRNA sequence conservation scores in three species. This figure illustrates the distribution of the BLAT conservation

score applied to all of the 224 known miRNAs from the Mouse genome against Human, Chimpanzee and Fugu genomes.
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10 redundant precursors were removed from the dataset. The pool of

negative examples is the same as the one described in sub-section

‘miRNAs from Mouse’.

The Naı̈ve Bayes classifier was trained with 90% of the known

miRNAs, and different numbers of negative examples that were

randomly chosen from the pool of the negative examples (239 674).

The test was performed with the remaining 10% from the miRNAs

class and the remaining negative examples. The evaluation proced-

ure was repeated 1000 times over 50, 75, 100, 125, 150, 175, 200,

300, 400, 500, 1000, 2000, 3000, 4000, 5000, 10 000, 20 000,

30 000, 40 000, 50 000 and 55 000 negative examples (Fig. 9a).

Once again we used 5-fold cross validation (repeated 100 times)

for further evaluation with the 1420 known miRNA serving as the

positive examples and 1000, 2000, 10 000, 20 000 or 30 000

negative examples selected from the negative example pool. The

calculated areas under the ROC are 0.697, 0.897, 0.986, 0.982 and

0.978 respectively. The plot for the 10 000 negative examples is

shown in Figure 9b.

The results shown in Figure 9 demonstrate that the classifier

resulting from using all the miRNA sequences was more robust

to changes in the size of the training set, than the ones trained

using only the miRNAs from C.elegans or Mouse. Our explanation

is that the distribution of the positive data used for training the

classifier better represents the variety of miRNA classes. It is

clear that when we provided more examples for training and for

testing the classifier demonstrated better generalization. Using

miRNA from multiple species for training allows our model to

be applied to any genome, as it incorporates more informa-

tion associated with different miRNA classes that may appear in

different species.

Fig. 8. Prediction performance as a function of size of the negative class for mouse miRNAs. %TN is the true negative ratio and %TP is the true positive ratio.

(a) The shown results are for the Naı̈ve Bayes classifier that was trained with 90% of the positive data Mouse miRNAs and with 50, 75, 100, 125, 150, 175, 200,

300, 400, 500 or 1000 negative examples chosen randomly from the pool of the negative examples (239, 674). The test was done with the remaining 10% from the

miRNA class and the remaining negative examples. The evaluation procedure was repeated 1000 times. (b) The ROC curve for 5-fold cross validation (repeated

100 times) using 200 negative examples; the area under the ROC curve is 0.996.

Fig. 7. Prediction performance as a function of size of the negative class for the C.elegans miRNAs. %TN is the true negative ratio and %TP is the true positive

ratio. (a) The shown results are for the Naı̈ve Bayes classifier that was trained multiple times. In each training epoch, a set of 105 known miRNAs (90% of the

positive data) was randomly selected from the 117 known C.elegans miRNAs and used as positive examples. A varied number of negative examples across

different sets of experiments, randomly choosing a set of either 50, 75, 100, 125, 150, 175, 200, 300, 400, 500 or 1000 from the pool of the negative examples

(434 955) was used. The test was performed over the remaining 10% from the miRNA class and the remaining negative examples. The evaluation procedure was

repeated 1000 times. (b) The ROC curve for 5-fold cross validation (repeated 100 times) using 200 negative examples; the area under the ROC curve is 0.992.
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Predicting miRNA genes in the Mouse genome

As input for this test, we used only the forward strand from the

Mouse/Human BLAT alignments downloaded from UCSC [Mouse

annotation: mm6, March 2005, NCBI Build 34 and Human annota-

tion: hg17, May 2004, NCBI Build 35 (Kent et al., 2002)]. The

computation was run on a parallel compute cluster with 100 nodes

(http://core.pcbi.upenn.edu/tools/liniactools.html). The computa-

tion took 956 253 min of computer time (6.64 days elapsed time).

The classifier was trained using the 1420 known miRNAs from all

species and 30 000 negative examples, as described above. The

whole computational procedure was applied (Fig. 1) and the results

are shown in Figures 10 and 11. Out of the 212 known mature

miRNAs from the Mouse genome, 135 are on the forward DNA

strand, and we kept track of those 135 miRNAs in our analysis, since

we only analyzed the forward strand. For the conservation filter, we

used the Human and Fugu genomes and 2909 miRNA precursors

downloaded from Rfam (Release 7.0: June 2005) (Griffiths-Jones,

2004). Figure 10 shows the results as they are produced through the

various stages of the Naı̈ve Bayes analyzer pipeline. Stem–loop

candidates were reduced to 265 935 from 21 974 811, a 100-fold

reduction between stages 1 and 6, while retaining 100% of the 135

known miRNA genes.

The rest of the computational procedure, Stages 7 and 8 of

Figure 10, is expanded in Figure 11, showing the application of

a combination of conservation filters and species-specific feature

rules. There are three main steps following the Naı̈ve Bayes analyzer

stage. For each step, we examined the values of the NBS filter. As

the score increased, we reduced the percentage of TP predictions, as

well as the number of predicted new miRNA genes to be tested.

In Step 1, we defined additional rules, that are based on the

135 captured miRNAs from the Mouse and built new rules as

follows: (1) at least 60 nt stem length, (2) at least 25 bp, (3) at least

�26 kcal/mol of folding free energy, (4) at least 9 nt hairpin length

and (5) at least a 0.9 NBS. These rules are now more specific to the

Mouse genome, since the previous rules were extracted using

multiple species. Applying these rules at the level of 10e � 7 of

the NB score we detected 30% of the known miRNA genes and

predicted 1466 miRNAs (of which 135 are already known).

In Step 2, before any additional Mouse-specific rules were

applied, a conservation filter using the Human genome, as a refer-

ence (score 0.6 of conservation level), was applied reducing the

number of candidates to 21 174 and finding 99 of the 135 Mouse
miRNA genes. The subsequent application of the mouse-specific

rules at a cutoff of 10e � 7 then resulted in only 379 candidates,

which included 244 new genes not counting the 40 predicted known

Mouse genes.

The left-most box in Figure 11 shows the results if conservation

with all known miRNAs from different species is used as a filter

(See Supplementary Information for the new predictions). There are

218 (83 new genes) predictions with 100% (135/135) prediction

sensitivity. Our conclusion from these experiments is that the algo-

rithm is able to identify the known miRNA with 100% sensitivity at

the Naı̈ve Bayes analyzer stage. However, owing to the large num-

ber of new predictions, we use additional filters to reduce the total

number of predictions decreasing the sensitivity to different levels

depending on the level of filtering.

Fig. 10. Results from applying the computational procedure to the forward

strand from the Mouse/Human genome. The classifier was trained using the

1420 known miRNAs from all species and 30 000 negative examples. The

number of stem–loops retained at stage 2–6 is shown as well as the number of

captured Mouse known miRNA genes (in parentheses).

Fig. 9. Accuracy of prediction as a function of size of the negative class, for all miRNAs. %TN is the true negative ratio and %TP is the true positive ratio. (a) The

shown results are for the Naı̈ve Bayes classifier that was trained with 90% of the known miRNAs from different species, and different numbers of negative

examples that were randomly chosen from the pool of the negative examples (239 674). The test was performed with the remaining 10% from the miRNAs class

and the remaining negative examples. The evaluation procedure was repeated 1000 times, and the results for 50, 75, 100, 125, 150, 175, 200, 300, 400, 500, 1000,

2000, 3000, 4000, 5000, 10 000 20 000, 30 000, 40 000, 50 000 and 55 000 negative examples are shown. (b) The ROC curve for 5-fold cross validation using

(repeated 100 times) 10 000 negative examples; the area under the ROC curve is 0.986.
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DISCUSSION

In this paper we present BayesmiRNAfind, a computational

approach that predicts miRNAs based on their secondary structure

and sequence. Our approach is more general than previously

described algorithms, as it is not specific to a particular species.

Instead, the program is based on using the sequence and structure of

the known miRNAs for a specific genome as the input. Based on this

data, the program uses machine learning to build a Naive Bayes

classifier. It is likely that the computational procedure can be further

improved by using other machine learning models such as SVM, or

combinations of methods. The use of additional biological informa-

tion to identify new miRNA genes could also be used to increase the

sensitivity and the specificity of perditions. An example is the

identification of conserved 8mer motifs in 30-UTRs as potential

miRNA binding sites and subsequent identification of new

miRNA genes specific to those sites (Xie et al., 2005). The require-

ment that a putative miRNA contain a mature sequence comple-

mentary to a sequence in a known 30-UTR might reduce false

predictions enough to eliminate the need for a conservation filter.

As mentioned in the Introduction, the most recent work applying

machine learning is by Nam et al. (2005). They use 5-fold cross

validation on 1000 negative examples and 136 known miRNAs

from Human with a threshold P ¼ 0.033, reporting 73% sensitivity,

96% specificity and 0.936 area under the ROC curve. Our reported

results demonstrate a higher sensitivity and specificity. For

example, for the C. elegans genome, with 150 negative examples

we obtained �83% sensitivity and �96% specificity. Using the

Mouse genome and data with the same number of negative

Fig. 11. Results of combining filters from the computational procedure (NBS ¼ Naı̈ve Bayes score). Three main steps following the Naı̈ve Bayes analyzer

stage are shown. For each step, the values of the NBS filter are examined. As the NBS increased, the percentage of TP predictions is reduced as well as the

number of predicted new miRNA genes to be tested.
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examples we obtained �97% sensitivity and �91% specificity.

Similarly, the area under the ROC curve exceeds previously repor-

ted results. It is clear that our method improves upon the state-of-

the-art according to all measures used. The performance on Human

is expected to be similar to that of Mouse.

In conclusion, our study shows that the application of a relatively

simple machine learning technique while integrating data from

multiple species can be a powerful approach for prediction

of miRNA genes. We believe that this approach will enable the

prediction of miRNA genes in organisms in which none has yet

been identified so far.
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