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Abstract. Despite recent advances in clinical oncology, prostate cancer
remains a major health concern in men, where current detection tech-
niques still lead to both over- and under-diagnosis. More accurate predic-
tion and detection of prostate cancer can improve disease management
and treatment outcome. Temporal ultrasound is a promising imaging
approach that can help identify tissue-specific patterns in time-series of
ultrasound data and, in turn, differentiate between benign and malignant
tissues. We propose a probabilistic-temporal framework, based on hid-
den Markov models, for modeling ultrasound time-series data obtained
from prostate cancer patients. Our results show improved prediction of
malignancy compared to previously reported results, where we identify
cancerous regions with over 88% accuracy. As our models directly repre-
sent temporal aspects of the data, we expect our method to be applicable
to other types of cancer in which temporal-ultrasound can be captured.

1 Introduction

Prostate cancer is the most widely diagnosed form of cancer in men [1]. The
American Cancer Society predicts that one in seven men will be diagnosed
with prostate cancer during their lifetime. Initial assessment includes measuring
Prostate Specific Antigen level in blood serum and digital rectal examination. If
either test is abnormal, core needle biopsy is performed under Trans-Rectal Ul-
trasound (TRUS) guidance. Disease prognosis and treatment decisions are then
based on grading, i.e., assessing the degree of cancer-aggressiveness in the biopsy
cores. TRUS-guided biopsy often leads to a high rate (∼30%) of false negatives
for cancer diagnosis as well as to over- and under-estimation of the cancer grade.
Extensive heterogeneity in morphology and pathology of prostate adenocarci-
noma are additional challenging factors for making an accurate diagnosis.

While improved prostate-cancer screening has reduced mortality rates by
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45% over the past two decades [3], inaccurate diagnosis and grading have re-
sulted in a surge in over-treatment. Notably, radical over-aggressive treatment
of prostate-cancer patients leads to a decline in their quality of life. For indolent
prostate cancer, such aggressive treatment should be avoided as active surveil-
lance has proven to be an effective disease management course [13]. Accurate
identification and grading of lesions and their extent – especially using low cost,
readily accessible technology such as ultrasound – can, therefore, significantly
contribute to appropriate effective treatment. To achieve this, methods must be
developed to guide TRUS biopsies to target regions likely to be malignant. The
task of differentiating malignant tissue from its surrounding tissue is referred to
in the literature as tissue-typing or characterization. In this paper we propose a
new method that utilizes ultrasound time-series data to characterize malignant
vs. benign tissue obtained from prostate-cancer patients.

Most of the research on ultrasound-based tissue characterization focuses on
analysis of texture- [5] and spectral-features [4] within single ultrasound frames.
Elastography [8], another ultrasound technique, aims to distinguish tissue types
based on their measured stiffness in response to external vibrations. A differ-
ent way of utilizing ultrasound is by acquiring radio-frequency (rf) time series,
which is a sequence of ultrasound frames captured from sonication of tissue over
time, without moving the tissue or the ultrasound probe. Frequency domain
analysis of rf time series has shown promising results for tissue characterization
in breast and prostate cancer. Moradi et al. [10] used the fractal dimension of
rf time series as features and employed Bayesian and neural network classi-
fiers for ex-vivo characterization of prostate tissue. More recently, Imani et al.
[7] combined wavelet features and mean central frequency of rf time-series to
characterize in-vivo prostate tissue using SVMs. Neither of these lines of work
have explicitly modeled the temporal aspect of the time-series data and utilized
it for tissue characterization. In a recent study [11] we have suggested that the
temporal aspect of the data may carry useful information if directly captured.

Here we carry the idea forward, presenting a new method for analyzing rf
time series, using a probabilistic temporal model, namely, a hidden Markov
model, hmm [12], specifically representing and making use of the temporal as-
pect of the data. We apply the method to differentiate between malignant and
benign prostate tissue and demonstrate its utility, showing an improved per-
formance compared to previous methods. Probabilistic temporal modeling, and
hmms in particular, have been applied to a wide range of clinical data. They
are typically used to model a time-dependent physiological process (e.g. heart-
beats [2]), or the progression of disease-risk over time [6]. hmms are also used
within and outside the biomedical domain to model sequence-data such as text
[9], proteins, DNA sequences and others. Here we use them to model rf time
series where time does have an impact on the ultrasound data being recorded.
We next describe our rf time-series data and its representation, followed by
a tissue-characterization framework. We then present experiments and results
demonstrating the effectiveness of the method.



Fig. 1: Ultrasound rf-frames collected from a prostate-cancer patient over time. Solid
red dots indicate the same location across multiple frames. The time series for this
location is shown at the bottom right. A grid dividing each frame into rois is shown
on the left-most frame. Pathology labels for malignant/benign rois are also shown.

2 RF Time Series Data

rf time series record tissue-response to prolonged sonication. These responses
consist of reflected ultrasound echo intensity values. Fig. 1 shows ultrasound
image-frames collected from prostate sonication over time (each such frame is
referred to as an rf frame). The boundary of the prostate is encircled in white.
The solid red dots indicate the same location within the prostate over time,
while the dotted blue arrows point to the corresponding echo intensity values.
The sequence of echo intensities obtained from the same point in the prostate
over time makes up an rf time series (bottom right of the Figure). Due to
the scattering phenomenon in ultrasound imaging, very small objects such as
individual cells cannot be identified using single rf values. As such, we partition
each rf frame using a grid into small regions, where each window in the grid is
referred to as a Region of Interest (roi), and comprises multiple rf values. In
this work, we use the same dataset as Imani et al [7], and adopt the same roi
size 1.7x1.7mm2, which corresponds to 44x2 rf values. The 88 rf values within
each grid-window in a single frame recorded at time t, are averaged to produce
a single value representing each roi at the corresponding time-point t.

The image data consists of in-vivo rf frames gathered from 9 prostate-cancer
patients who have undergone radical prostatectomy6. Prior to the surgery, 128
rf frames recorded over a time-period of 4 seconds, were gathered from each
patient. A grid is overlaid on each of the frames, rois are obtained as described
above, and for each roi, Rk, a 128-long time series Rk = 〈Rk1,. . ., Rk128〉 is
created. Each point Rkt in the series corresponds to the average intensity of that
roi in the rf-frame recorded at time t, where 1≤ t≤128. While the number of
patients is relatively low, the total number of rois per patient is quite high (see
Table 1), thus providing sufficient data to support effective model-learning.

As commonly done in time series analysis, we map the series associated with
each roi, Rk, to its first-order difference series, i.e. the sequence of differences
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Table 1: The distribution of malignant and benign rois over the 9 patients.

Patient P1 P2 P3 P4 P5 P6 P7 P8 P9 Total

Malignant rois 42 29 18 64 35 28 23 30 17 286

Benign rois 42 29 18 61 35 29 23 30 17 284

between pairs of consecutive time-points. To simplify the modeling task, we
further discretize the difference series, by placing the values into 10 equally-
spaced bins, where the values in the lowest bin are all mapped to 1, and those
at the top-most bin are mapped to 10. We denote the sequence obtained by
discretizing Rk, as 〈Ok1, ..., Ok128〉. Our experiments suggest that 10 bins are
sufficient for obtaining good classification performance.

To create a gold-standard of labeled malignant vs benign regions we use
whole-mount histopathology information. To obtain such information, following
prostatectomy, the tissues are formalin-fixed and imaged using mri. The tissues
are then cut into ∼4mm slices, and further processed to enable high resolution
microscopy. Two clinicians then assign (in consensus) the appropriate labels to
the malignant and to the benign areas within each slice. A multi-step rigorous
registration process, in which mri images are used as an intermediate step, is
employed to overlay the labeled histopathology images on the in-vivo ultrasound
frames (see [7] for additional details). This registration process results in an as-
signment of a pathology label to each roi, indicating whether it is malignant or
benign. Fig. 1 shows several examples of such labeled rois. We use the same 570
labeled rois as in [7], of which 286 are malignant and 284 benign. Table 1 sum-
marizes the data. The rf time-series associated with the labeled rois are used
as training and test data for building a probabilistic model for distinguishing
between benign and malignant tissues, as described in the next section.

3 Probabilistic Modeling Using Hidden Markov Models

hmms are often used to model time series where the generating process is un-
known or prone to variation and noise. The process is viewed as a sequence
of stochastic transitions between unobservable (hidden) states; some aspects of
each state are observed and recorded. As such, the states may be estimated
from the observation-sequence [12]. A simplifying assumption underlying the
use of these models is the Markov property, namely, that the state at a given
time-point depends only on the state at the preceding point, conditionally inde-
pendent of all other time points. In this work we view a tissue response value
recorded in an rf frame and discretized as discussed above, as an observation;
employing the Markov property, we assume each such value depends only on
the response recorded at the frame directly preceding it, independent of any
earlier responses. Formally, an hmm λ consists of five components: A set of N
states, S = {s1, . . . , sN}; a set of M observation symbols, V = {v1, . . . , vM};
an NxN stochastic matrix A governing the state-transition probability, where
Aij =Pr(statet+1 = si|statet = sj), 1 ≤ i, j ≤N , and statet is the state at time
t; an NxM stochastic-emission matrix B, where Bik =Pr(obt = vk|statet = si),
1 ≤ i≤N, 1 ≤ k ≤M , denoting the probability of observing vk at state si; an



N -dimensional stochastic vector π, where for each state si, πi = Pr(state1 =si),
denotes the probability to start the process at state si. Learning a model λ
from a sequence of observations O = o1, o2, . . . , o128, amounts to estimating
the model parameters (namely, A, B & π), to maximize log[Pr(O|λ)], i.e. the
observations’ probability given the model λ. In practice, π is fixed such that
π1 =Pr(state1 = s1) = 1 & πj = 0 for j 6= 1, i.e. s1 is always the first state. In
the experiments reported here, we also fix the matrix A to an initial estimate
based on clustering (as described below), while the matrix B is learned using
the Baum-Welch algorithm [12].

The hmms we develop, as illustrated in Fig. 2, are ergodic models consisting
of 5 states and 10 observations. A small number of states allows for a compu-
tationally efficient model while typically leading to good generalization beyond
the training set. We determined the number of states by experimenting with
2-6 state models (and a few larger ones with > 10 states). The classification
performance of 5-state models was higher than that of others. Moreover, each
of the 5 states is associated with a distinct emission probability distribution,
which is not the case when using additional/fewer states. The observation set,
as discussed in section 2, consists of 10 observation symbols v1, ..., v10, each of
which corresponds to a discretized interval of first-order difference values of the
rf time-series.

For tissue classification, we learn two hmms – one for representing series
obtained from malignant tissue, denoted λM , and the other for benign tissue,
denoted λB . We use supervised learning to learn the models’ parameters, where
the training and test data consist of the time-series corresponding to the rois
that were labeled as malignant and benign (described in Sec. 2). To train each
model, we use a leave-one-patient-out cross-validation strategy, partitioning each
set of roi time-series ( malignant for λM , benign for λB) into training and test
sets. In each cross-validation run the rois of one of the 9 patients are left-out
as a test-set, while the rois of the other 8 patients are used to train the hmm.
Malignant rois are used to train λM , while λB is trained on benign rois. Given
a test-sequence, roitesti , each of the two models assigns it a log probability,
log(Pr(ROItesti |λc)), (c ∈ {M,B}) – a measure indicating how likely the model
is to have generated the time-series. The class label assigned to ROItesti , Ctesti ,
is the one whose model maximizes the log probability, that is:

Ctesti = arg max
c∈{M,B}

(log(Pr(ROItesti |λc))), 1 ≤ i ≤ L, where L is the # of

test-rois. Practically, if the log-odds log
Pr(ROItesti |λB)

Pr(ROItesti |λM ) is positive, ROItesti is

classified as malignant, otherwise it is classified as benign. In Section 4, we use
the log-odds as a basis for heat-maps to visualize the results (Fig. 3).

To learn the two models, each of the models is initialized, and its observa-
tion matrix B is then iteratively updated until convergence, in accordance with
the Baum-Welch method. Model initialization is based on clustering the values
within all the discretized training time-series into 5 clusters, cl1,. . ., cl5, where 5
is the number of states. Based on the assignment of each value to its respective
cluster, we estimate the transition probability Ai,j where 1 ≤ i, j ≤ 5 as the



Fig. 2: Example of hmms learned from A) malignant rois, and B) benign rois. Nodes
represent states. Edges are labeled by transition probabilities; Emission probabilities
are shown to the right of each model. Edges with probability ≤ 0.2 are not shown.

data-frequency of observing a value from cluster cli followed by a value from
cluster clj within all the time series in the respective training set. Since the
model is not left-to-right, the transitions can be in either direction. A similar
estimation process is applied for initializing the observation matrix B.

To assess our method’s performance, we apply each of the trained models
(trained over roi time-series obtained from 8 patients) to assign labels over the
test data (the rois of the left-out patient), and calculate the average standard
measures accuracy, sensitivity and specificity of the assigned labels with respect
to the ground-truth in the gold-standard. The learnt hmms provides a summary
of the course of changes in rf values that each of the tissue types goes through
in response to the prolonged sonication.

4 Results and Discussion

As explained above, we train 9 pairs of hmms – one malignant and one benign
– where for each pair, the training is done on data obtained from 8 of the 9
patients. Each pair of hmms is then used for classifying the rois of the left-out
9th (test) patient. Fig. 2 shows an example of such a pair of learned hmms, where
the left one was trained on time-series obtained from malignant rois while the
one on the right was trained on benign ones. The transition probabilities are
shown on the edges while emission probabilities for each state are shown as
histograms. The figure shows that in both models, each state is characterized
by its own markedly distinct observation distribution. Moreover, the most likely

Fig. 3: Top: rf frames overlaid with malignant/benign pathology labels. Bottom:
Heat-map images based on our learned models, where each roi color is assigned based
on the log-odds ratio calculated for its respective time-series. The left three columns are
rf frames from patients P1 (col 1) and P5 (col 2, 3) while the frames in the rightmost
column are from Patient P7, for whom we noted a lower performance.



Table 2: The classification performance using hmms. The numbers in parentheses show
the respective result reported by [7] for the same patient.

Patient P1 P2 P3 P4 P5 P6 P7 P8 P9 Average

Accuracy
82.1
(82)

96.5
(71)

100
(88)

93.6
(95)

90
(86)

85.9
(86)

69.5
(N/A)

78.3
(80)

97.1
(85)

88.1 ±9

Sensitivity
100
(100)

96.5
(68)

100
(76)

87.5
(90)

97.1
(100)

82.1
(81)

65.2
(N/A)

73.3
(98)

100
(84)

89.1 ±12

Specificity
64.2
(62)

96.5
(74)

100
(100)

100
(100)

82.8
(71)

89.6
(90)

73.9
(N/A)

83.3
(61)

94.1
(84)

87.1 ±11

path transitioning through the malignant model alternates primarily between
the states s1 and s5 possibly via s2, where s5 is the most central state, that
is, the one most likely to be visited. In contrast, the benign model alternates
primarily between the states s1, s3 and s4, with s3 being the most central state.
Notably the emission distribution associated with s5 in the malignant model is
very different from that associated with s3 in the benign one, hence these two
states are not equivalent. The clear distinction between the two models means
that time series obtained from malignant roi’s form a certain typical pattern of
changing values, while time series obtained from benign roi’s form a different
typical pattern, and our models do capture the difference.

The classification results for all test patients are shown in Table 2. The aver-
age accuracy is 88.1%, whereas the average sensitivity and specificity are 89.1%
and 87.1%, respectively. The results clearly indicate that for the majority of
rois, our trained models can correctly distinguish between rois obtained from
malignant tissue and those obtained from benign tissue. Moreover, for most cases
our performance either matches or significantly improves upon that of an earlier
method [7] that used SVMs and did not explicitly model the temporal aspect
of the time-series. We note that for patient P8 our sensitivity is significantly
lower, although our specificity is much higher, which amounts to a comparable
overall accuracy. An exception to the high level of performance is clearly ob-
served for patient P7, for whom the classification performance is significantly
lower than that obtained for all other patients. Further investigation showed
that this patient was not included in the earlier reported results [7], because
the ground-truth registration of the histology labels of malignant tissue was not
accurate. The fact that mis-labeled rois are not well-distinguished based on the
models learned from other patient data serves as further evidence for the fact
that the models indeed capture the salient differences between rf echos emitted
by benign vs malignant tissue. The top row of Fig. 3 shows several examples
of rf frames obtained from different patients overlaid with malignant/benign
labels. The bottom row shows corresponding images of heat-maps based on our
results. Each roi, is assigned a color reflecting the log-odds ratio calculated for

its respective time-series Rx, log Pr(Rx|λB)
Pr(Rx|λM ) . The first three columns show rf

frames from P1 (1st column) and P5 (2nd, 3rd columns), all of which show that
the heat-maps match the original annotations almost perfectly. The fourth col-
umn shows an rf frame from P7. Despite inaccuracies in the gold-standard for
this image, our model still identifies correctly the benign regions, while showing
most of the malignant regions about equally likely to be malignant or benign.



5 Conclusion

We introduced a new approach for tissue-classification in prostate cancer, based
on modeling temporal aspects of tissue-response to prolonged sonication. Repre-
senting the two tissue types (malignant/benign), each as a probabilistic-temporal
model learned from patients’ data (training-set) allows for accurate labeling of
test-data obtained from another patient. Our results indicate that temporal pat-
terns, captured by our models, help differentiate between rf time series obtained
from malignant vs. benign tissues, with an average accuracy of over 88%. As a
next step we plan to take into account the heterogeneity in benign tissue, as
well as incorporate cancer grades to support a more refined categorization of
tissue types. This study takes a first step using such models, and is limited by a
relatively small number of patients for which we have reliably annotated whole-
mount tissue images. In the future we shall increase the number of patients,
and include anatomical-data indicating the zones from which rois are selected.
Beyond prostate cancer, we expect our method to be applicable to other types
of cancer such as breast and liver.
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