
Journal of Arti�cial Intelligence Research 16 (2002) 167-207 Submitted 3/01; published 3/02

Learning Geometrically-Constrained Hidden Markov Models for

Robot Navigation: Bridging the Topological-Geometrical Gap

Hagit Shatkay hagit.shatkay@celera.com

Informatics Research Group,

Celera Genomics, Rockville, MD 20850

Leslie Pack Kaelbling lpk@ai.mit.edu

Arti�cial Intelligence Laboratory

Massachusetts Institute of Technology, Cambridge, MA 02139

You will come to a place where the streets are not marked.
Some windows are lighted but mostly they're darked.
A place you could sprain both your elbow and chin!
Do you dare to stay out? Do you dare to go in?...
And if you go in, should you turn left or right...
or right-and-three-quarters? or, maybe, not quite?...
Simple it's not, I'm afraid you will �nd,
for a mind-maker-upper to make up his mind.

Oh, the Places You'll Go, Dr. Seuss.

Abstract

Hidden Markov models (hmms) and partially observable Markov decision processes
(pomdps) provide useful tools for modeling dynamical systems. They are particularly
useful for representing the topology of environments such as road networks and o�ce
buildings, which are typical for robot navigation and planning. The work presented
here describes a formal framework for incorporating readily available odometric infor-
mation and geometrical constraints into both the models and the algorithm that learns
them. By taking advantage of such information, learning hmms/pomdps can be made
to generate better solutions and require fewer iterations, while being robust in the face
of data reduction. Experimental results, obtained from both simulated and real robot
data, demonstrate the e�ectiveness of the approach.

1 Introduction

This work is concerned with robots that need to perform tasks in structured environments.
A robot moving in the environment su�ers from two main limitations: its noisy sensors prevent
it from con�dently knowing where it is, while its noisy e�ectors prevent it from knowing with
certainty where its actions will take it. We concentrate here on structured environments, which
can in turn be characterized by two main properties: such environments consist of vast un-
eventful and uninteresting areas, and are interspersed with relatively few interesting positions or
situations. Consider for instance a robot delivering a bagel in an o�ce building. The interesting
situations are the doors and the intersections in the building hallways, as well as the various

c2002 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Shatkay & Kaelbling

positions where the bagel might be with respect to the robot's arm (e.g., the robot is holding
the bagel, puts it down, etc.) Most other aspects of the environment, such as the desk positions
in the o�ces, are inconsequential for the bagel delivery task.

A natural way to represent the combination of such an environment and the robot's interactions
with it, is as a probabilistic automaton, in which states represent interesting situations, and
edges between states represent the actions leading from one situation to another. Probability
distributions over the transitions and over the possible observations the robot may perceive at
each situation model the robot's noisy e�ectors and sensors, respectively.

Such models are formally known as pomdp (partially observable Markov decision process) mod-
els, and have been proven useful for robot planning and acting under the inherent world un-
certainty (Simmons & Koenig, 1995; Nourbakhsh, Powers, & Birch�eld, 1995; Cassandra, Kael-
bling, & Kurien, 1996).

Despite much work on using such models, the task of learning them directly and automatically
from the data has not been widely addressed. Research concerning this immediate topic to date
consists mostly of the work done by Simmons and Koenig (1996b). The assumption underlying
their work was that a human provides a rather accurate topological model of the states and
their connections, and the exact probability distributions are then learned on top of this model,
using a version of the Baum-Welch algorithm (Rabiner, 1989). Another interesting approach to
the acquisition of topological models is that of Thrun and B�ucken (1996a,1996b; Thrun, 1999),
who focused on extracting deterministic topological maps from previously acquired geometrical-
grid-based maps, where the latter were learned directly from the data. Further discussion of
related research on both the geometrical and the topological approaches, in their probabilistic
and deterministic versions, is given in the next section.

The work reported here is the �rst successful attempt we are aware of to learn purely probabilistic-
topological models, directly and completely from recorded data, without using previous human-
provided or grid-based models. It is based on using weak geometric information, recorded by
the robot, to help learn the topology of the environment, and represent it as a probabilistic
model. Therefore, it directly bridges the historically perceived gap between topological and
geometrical information, and addresses the claim presented in Thrun's work (1999) that the
main shortcoming of the topological approach is its failure to utilize the inherent geometry of
the learnt environment.

Most robots are equipped with wheel encoders that enable an odometer to record the change in
the robot's position as it moves through the environment. This data is typically very noisy and
inaccurate. The oors in the environment are rarely smooth, the wheels of the robot are not
always aligned and neither are the motors, the mechanics is imperfect, resulting in slippage and
drift. All these e�ects accumulate, and if we were to mark the initial position of the robot, and
try to estimate its current position based on summing a long sequence of odometric recordings,
the resulting estimate will be incorrect. That is, the raw recorded odometric information is
not an e�ective tool, in and of itself, for determining the absolute location of the robot in the
environment.

While our approach is not aimed at determining absolute locations, the idea underlying it is that
this weak odometric information, despite its noise and inaccuracy, still provides geometrical cues
that can help to distinguish between di�erent states, as well as to identify revisitation of the
same state. Hence, such information enhances the ability to learn topological models. However,

168

Learning Geometrically-Constrained HMMs

the use of geometrical information requires careful treatment of geometrical constraints and
directional data. We demonstrate how the existing models and algorithms can be extended to
take advantage of the noisy odometric data and the geometrical constraints. The geometrical
information is directly incorporated into the probabilistic topological framework, producing a
signi�cant improvement over the standard Baum-Welch algorithm, without the need for human-
provided model.

The rest of this paper is organized as follows: Section 2 provides a survey of previous work in
the area of learning maps for robot navigation, and briey refers to earlier work on learning
automata; Section 3 presents the formal framework for this work; Section 4 presents the main
aspects of our iterative learning algorithm, while Section 5 describes the strategies for selecting
the initial point from which the iterative process begins; Section 6 presents experimental results
obtained from both simulated and real robot data in traditionally hard-to-learn environments.
The experiments demonstrate that our algorithm indeed converges to better models with fewer
iterations than the standard Baum-Welch method, and is robust in the face of data reduction.

2 Approaches to Learning Maps and Models

The work presented here lies in the intersection between the theoretical area of learning compu-
tational models|in particular, learning automata from data sequences|and the applied area of
map acquisition for robot navigation. We concentrate here on surveying the work in the latter
area, pointing out the distinction between our approach and its predecessors. We briey review
some results from automata and computational learning theory. A more comprehensive review
of theoretical results is given by Shatkay (1999).

2.1 Modeling Environments for Robot Navigation

In the context of maps and models for robot navigation, a distinction is usually made between two
principal kinds of maps: geometric and topological. Geometric maps describe the environment
as a collection of objects or occupied positions in space, and the geometric relationships among
them. The topological framework is less concerned with the geometrical positions, and models
the world as a collection of states and their connectivity, that is, which states are reachable from
each of the other states and what actions lead from one state to the next.

We draw an additional distinction, between world-centric1 maps that provide an \objective"
description of the environment independent of the agent using the map, and robot-centric models
which capture the interaction of a particular \subjective" agent with the environment. When
learning a map, the agent needs to take into account its own noisy sensors and actuators and try
to obtain an objectively correct map that other agents could use as well. Similarly, other agents
using the map need to compensate for their own limitations in order to assess their position
according to the map. When learning a model that captures interaction, the agent acquiring the
model is the one who is also using it. Hence, the noisy sensors and actuators speci�c to the agent
are reected in the model. A di�erent model is likely to be needed by di�erent agents. Most
of the related work described below, especially within the geometrical framework, is centered
around learning objective maps of the world rather than agent-speci�c models. We shall point
out in this survey the work that is concerned with the latter kind of models.

Our work focuses on acquiring purely topological models, and is less concerned with learning
geometrical relationships between locations or objects, or objective maps, although geometrical

1. We thank Sebastian Thrun for the terminology.

169

Shatkay & Kaelbling

relationships do serve as an aid in our acquisition process. The concept of a state used in this
topological framework is more general than the concept of a geometrical location, since a state
can include information such as the battery level, the arm position etc. Such information, which
is of great importance for planning, is non-geometrical in nature and therefore cannot be readily
captured in a purely geometrical framework. The following sections provide a survey of work
done both within the geometrical framework and within the topological framework, as well as
combinations of the two approaches.

2.2 Geometric Maps

Geometric maps provide a description of the environment in terms of the objects placed in it
and their positions. For example, grid-based maps are an instance of the geometric approach.
In a grid-based map, the environment is modeled as a grid (an array), where each position in
the grid can be either vacant or occupied by some object (binary values placed in the array).
This approach can be further re�ned to reect uncertainty about the world, by having grid cells
contain occupancy probabilities rather than just binary values. A lot of work has been done on
learning such grid-based maps for robot navigation through the use of sonar readings and their
interpretation, by Moravec and Elfes and others (Moravec & Elfes, 1985; Moravec, 1988; Elfes,
1989; Asada, 1991).

An underlying assumption when learning such maps is that the robot can tell (or �nd out)
where it is on the grid when it obtains a sonar reading indicating an object, and therefore can
place the object correctly on the grid. A similar localization assumption, requiring the robot
to identify its geometrical location, underlies other geometric mapping techniques by Leonard
et al. (1991), Smith et al. (1991), Thrun et al. (1998b) and Dissanayake et al. (2001), even
when an explicit grid is not part of the model. Explicit localization can be hard to satisfy.
Leonard et al. (1991) and Smith et al. (1991) address this issue through the use of geometrical
beacons to estimate the location of the robot. In what is known as the Kalman �lter method, a
Gaussian probability distribution is used to model the robot's possible current location, based
on observations collected up to the current point, (without allowing the re�nement of previous
position estimates based on later observations). Research in this area has recently been extended
in two directions: Leonard and Feder (2000) partition the task of learning one large map into
learning multiple smaller map-sections, thus addressing the issue of computational e�ciency.
Dissanayake et al. (2001) conduct a theoretical study of the approach and show its convergence
properties. The latter may lead to computational e�ciency by identifying the cases for which a
steady-state solution can be readily obtained, accordingly bounding the number of steps required
by the algorithms to reach a useful solution in these cases.

Work by Thrun et al. (1998a) uses a similar probabilistic approach for obtaining grid-based maps.
This work is re�ned (Thrun et al., 1998b) to �rst learn the location of signi�cant landmarks in
the environment and then �ll in the details of the complete geometrical grid, based on laser range
scans. The latter work extends the approach of Smith et al. , by using observations obtained
both before and after a location has been visited, in order to derive a probability distribution
over possible locations. To achieve this, the authors use a forward-backward procedure similar
to the one used in the Baum-Welch algorithm (Rabiner, 1989), in order to determine possible
locations from observed data. The approach resembles ours both in the use of the forward-
backward estimation procedure, and in its probabilistic basis, aiming at obtaining a maximum
likelihood map of the environment. It still signi�cantly di�ers from ours both in its initial
assumptions and in its �nal results. The data assumed to be provided to the learner includes

170

Learning Geometrically-Constrained HMMs

both the motion model and the perceptual model of the robot. These consist of transition and
observation probabilities within the grid. Both of these components are learnt by our algorithm,
although not in a grid context but in a coarser-grained, topological framework. The end result of
their algorithm is a probabilistic grid-based map, while ours is a probabilistic topological model,
as further explained in the next section.

In addition to being concerned only with locations, rather than with the richer notion of state,
a fundamental drawback of geometrical maps is their �ne granularity and high accuracy. Geo-
metrical maps, particularly grid-based ones, tend to give an accurate and detailed picture of the
environment. In cases where it is necessary for a robot to know its exact location in terms of
metric coordinates, metric maps are indeed the best choice. However, many planning tasks do
not require such �ne granularity or accurate measurements, and are better facilitated through a
more abstract representation of the world. For example, if a robot needs to deliver a bagel from
o�ce a to o�ce b, all it needs to have is a map depicting the relative location of a with respect to
b, the passageways between the two o�ces, and perhaps a few other landmarks to help it orient
itself if it gets lost. If it has a reasonably well-operating low-level obstacle avoidance mechanism
to help it bypass ower pots and chairs that it might encounter on its way, such objects do
not need to be part of the environment map. Just as a driver traveling between cities needs to
know neither his longitude and latitude coordinates on the globe, nor the location of the speci�c
houses along the way, the robot does not need to know its exact location within the building
nor the exact location of various items in the environment, in order to get from one point to
another. Hence, the e�ort of obtaining such detailed maps is not usually justi�ed. In addition
the maps can be very large, which makes planning|even though planning is polynomial in the
size of the map|ine�cient.

2.3 Topological Maps and Models

An alternative to the detailed geometric maps are the more abstract topological maps. Such
maps specify the topology of important landmarks and situations (states), and routes or tran-
sitions (arcs) between them. They are concerned less with the physical location of landmarks,
and more with topological relationships between situations. Typically, they are less complex and
support much more e�cient planning than metric maps. Topological maps are built on lower-
level abstractions that allow the robot to move along arcs (perhaps by wall- or road-following),
to recognize properties of locations, and to distinguish signi�cant locations as states; they are
exible in allowing a more general notion of state, possibly including information about the
non-geometrical aspects of the robot's situation.

There are two typical strategies for deriving topological maps: one is to learn the topological
map directly; the other is to �rst learn a geometric map, then to derive a topological model
from it through some process of analysis.

A nice example of the second approach is provided by Thrun and B�ucken (1996a, 1996b; Thrun,
1999), who use occupancy-grid techniques to build the initial map. This strategy is appropriate
when the primary cues for decomposition and abstraction of the map are geometric. However,
in many cases, the nodes of a topological map are de�ned in terms of other sensory data (e.g.,
labels on a door or whether or not the robot is holding a bagel). Learning a geometric map �rst
also relies on the odometric abilities of a robot; if they are weak and the space is large, it is very
di�cult to derive a consistent map.

171

Shatkay & Kaelbling

In contrast, our work concentrates on learning a topological model directly, assuming that ab-
straction of the robot's perception and action abilities has already been done. Such abstractions
were manually encoded into the lower level of our robot navigational software, as described in
Section 6. Work by Pierce and Kuipers (1997) discusses an automatic method for extracting
abstract states and features from raw perceptual information.

Kuipers and Byun (1991) provide a strategy for learning deterministic topological maps. It works
well in domains in which most of the noise in the robot's perception and action is abstracted
away, learning from single visits to nodes and traversals of arcs. A strong underlying assumption
for these strategies, when building the map, is that the current state can be reliably identi�ed
based on local information, or based on distance traversed from the previous well-identi�ed
state. These methods are unable to handle situations in which long sequences of actions and
observations are necessary to disambiguate the robot's state.

Mataric (1990) provides an alternative approach for learning deterministic topological maps,
represented as distributed graphs. The learning process again relies on the assumption that the
current state can be distinguished from all other states based on local information which includes
compass and sonar readings. Uncertainty is not modeled through probability distributions.
Instead, matching of current readings to already existing states is not required to be exact, and
thresholds of tolerated error are set empirically. Another di�erence from the work presented
here, is that while we learn the complete probabilistic topology of the environment, in Mataric's
work the overall topology of the graph is assumed in advance to be a linear list, and additional
edges are added during the learning process. No probability distribution is associated with the
edges, and a mechanism for choosing which edge to take is determined as part of the goal seeking
process, and is not part of the model itself.

Engelson and McDermott (1992) learn \diktiometric" maps (topological maps with metric rela-
tions between nodes) from experience. The uncertainty model they use is interval-based rather
than probabilistic, and the learned representation is deterministic. Ad hoc routines handle prob-
lems resulting from failures of the uncertainty representation.

We prefer to learn a combined model of the world and the robot's interaction with the world;
this allows robust planning that takes into account likelihood of error in sensing and action. The
work most closely related to ours is by Koenig and Simmons (1996b, 1996a), who learn pomdp
models (stochastic topological models) of a robot hallway environment. They also recognize
the di�culty of learning a good model without initial information; they solve the problem by
using a human-provided topological map, together with further constraints on the structure
of the model. A modi�ed version of the Baum-Welch algorithm learns the parameters of the
model. They also developed an incremental version of Baum-Welch that can be used on-line.
Their models contain very weak metric information, representing hallways as chains of one-meter
segments and allowing the learning algorithm to select the most probable chain length. This
method is e�ective, but results in large models with size proportional to the hallways' length,
and strongly depends on the quality of the human-provided initial model.

2.4 Learning Automata from Data

Informally speaking, an automaton consists of a set of states and a set of transitions that lead
from one state to another. In the context of this work, the automaton states correspond to the
states of the modeled environments, and the transitions, to the state changes due to actions
performed in the environment. Each transition of the automaton is tagged by a symbol from an

172

Learning Geometrically-Constrained HMMs

input alphabet, �, corresponding to the action or the input to the system that caused the state
transition. Classical automata theory (e.g., Hopcroft & Ullman, 1979) distinguishes between
deterministic and non-deterministic automata. If, for each alphabet symbol �, there is a single
edge tagged by it, going out of each state, the automaton is deterministic. Otherwise, the
transition between states is not uniquely determined by the input symbol and the automaton is
non-deterministic. If we augment each transition edge of a non-deterministic automaton with a
probability of taking it given a certain input, �, the resulting automaton is called probabilistic.

The basic problem of learning �nite deterministic automata from given data can be roughly
described as follows: Given a set of positive and a set of negative example strings, S and T

respectively, over alphabet �, and a �xed number of states k, construct a minimal deterministic
�nite automaton with no more than k states that accepts S and does not accept T . This problem
has been shown to be np-complete (Gold, 1978). Despite the hardness, positive results have
been shown possible under various special settings. Angluin (1987) showed that if an oracle can
answer membership queries and provide counterexamples to conjectures about the automaton,
there is a polynomial time learning algorithm from positive and negative examples. Rivest
and Schapire (1987, 1989), provide several e�ective methods, that under various settings, learn
deterministic automata that are correct with high probability. While the above work deals with
learning from noise-free data, Basye, Dean and Kaelbling (1995) presented several algorithms
that, with high probability, learn input-output deterministic automata, when the data observed
by the learner is corrupted by various forms of noise.

In all these cases, the learned automaton is deterministic rather than probabilistic. The basic
learning problem in the probabilistic context is to �nd an automaton that assigns the same
distribution as the true one to data sequences, using training data S, that was generated by
the true automaton. Another form of a learning problem is that of �nding a probabilistic
automaton � that assigns the maximum likelihood to the training data S; that is, an automaton
that maximizes Pr(Sj�).
Abe and Warmuth (1992) show that �nding a probabilistic automaton with 2 states, even when
a small error with respect to the true model is allowed with some probability (the probably
approximately correct, or PAC, learning model), cannot be done in polynomial time with poly-
nomial number of examples, unless np = rp. From their work arises the broadly accepted
conjecture, which has not yet been proven, that learning hidden Markov Models is hard even
in the pac sense. There are two ways to address this hardness: one is to restrict the class of
probabilistic models learned, while the other is to learn unrestricted hidden Markov models with
good practical results but with no pac guarantees on the quality of the result.

Work by Ron et al. (1994, 1995, 1998) pursues the �rst approach, learning restricted classes of
automata, namely, acyclic probabilistic �nite automata, and probabilistic �nite su�x automata.
Both classes are useful for various applications related to natural language processing, and can
be learned in polynomial time within the pac framework.

The second approach, which is the one predominantly taken in this work, is to learn a model that
is a member of the complete unrestricted class of hidden Markov models. Only weak guarantees
exist about the goodness of the model, but the learning procedure may be directed to obtain
practically good results. This approach is based on guessing an automaton (model), and using
an iterative procedure to make the automaton �t better to the training data. One algorithm
commonly used for this purpose is the Baum-Welch algorithm (Baum, Petrie, Soules, & Weiss,
1970), which is presented in detail by Rabiner (1989). The iterative updates of the model are

173

Shatkay & Kaelbling

based on gathering su�cient statistics from the data given the current automaton, and the
update procedure is guaranteed to converge to a model that locally maximizes the likelihood
function Pr(datajmodel). Since the maximum is local, the model might not be close enough
to the true automaton by which the data was generated, and a challenging problem is to �nd
ways to force the algorithm into converging to higher-likelihood maxima, or at least to make
it converge faster, facilitating multiple guesses of initial models, thus raising the probability
of converging to higher-likelihood maxima. Such an approach is the one taken in the work
presented here.

We assume, throughout this paper, that the number of states in the model we are learning is
known. This is not a very strong assumption since there are methods for learning the number of
states. Regularization methods for deciding on the number of states and other model parameters,
are discussed, for instance, in Vapnik's book (1995). We do not address this issue here.

The rest of the work describes our approach to learning topological models. We use noisy
odometric information that is readily available in most robots. This geometrical information is
typically not used by topological mapping methods. We demonstrate how a topological model
and the algorithm used to learn it can be extended to directly incorporate this weak odometric
information. We further show that by doing so, we can avoid the use of human-provided a priori
models and still learn stochastic environment models e�ciently and e�ectively.

3 Models and Assumptions

This section describes the formal framework for our work. It starts by introducing the classic
hiddenMarkov model. The model is then extended to accommodate noisy odometric information
in its most na��ve form, ignoring information about the robot's heading and orientation, and later
adapted to accommodate heading information.

We concentrate here on describing models and algorithms for learning hmms, rather than
pomdps. This means that the robot has no decisions to make regarding its next action at
every state; only one action can be executed at each state. In our experiments, a human opera-
tor gave the action command associated with each state to the robot when gathering the data.
Note that the action is not necessarily the same one for every state, e.g., the robot is told to
always turn right in state 1 and move forward at state 2. However, at each state only one ac-
tion can be taken. The extension to complete pomdps, which we have implemented, is through
learning an hmm for each of the possible actions; it is straightforward although notationally
more cumbersome, thus we limit the discussion here to hmms.

3.1 HMMs { The Basics

A hidden Markov model consists of states, transitions, observations and probabilistic behavior,
and is formally de�ned as a tuple � = hS;O;A;B; �i, satisfying the following conditions:

� S = fs0; : : : ; sN�1g is a �nite set of N states.

� O = fo0; : : : ; oM�1g is a �nite set of M possible observation values.

174

Learning Geometrically-Constrained HMMs

� A is a stochastic transition matrix, with Ai;j = Pr(qt+1 = sjjqt = si), where 0� i; j�N�1.

qt is the state at time t. For every state si,
N�1X
j=0

Ai;j = 1.

Ai;j holds the transition probability from state si to state sj.

� B is a stochastic observation matrix, with Bj;k=Pr(vt=okjqt=sj), where 0 � j � N � 1;

0 � k �M � 1. vt is the observation recorded at time t. For every state sj ,
M�1X
k=0

Bj;k = 1.

Bj;k holds the probability of observing ok while being at state sj.

� � is a stochastic initial distribution vector, with �i = Pr(q0 = si), 0 � i � N � 1.
N�1X
i=0

�i = 1.

�i holds the probability of being in state si at time 0, when starting to record observations.

This model corresponds to a world whose actual state at any given time t, qt 2 S, is hidden
and not directly observable, but some observable aspects of the state, vt 2 O, are detected and
recorded when the state is visited at time t. An agent moves from one hidden state to the
next according to the probability distribution encoded in matrix A. The observed information
in each state is governed by the probability matrix B. Although our work is concerned with
discrete observations, the extension to continuous observations is straightforward and has been
well addressed in work on hidden Markov models (Liporace, 1982; Juang, 1985).

Simply stated, the problem of learning an hmm is that of \reverse engineering" a hidden Markov
model for a stochastic system from the sampled data, generated by the system. We formalize
the learning task in Section 4.1. The next section extends hmms to account for geometric
information.

3.2 Adding Odometry to Hidden Markov Models

The world is composed of a �nite set of states. There is a fundamental distinction in our
framework between the term state and the term location. The state of the robot does not
directly correspond to its location. A state may include other information, such as the robot's
battery level or its orientation in that location. A robot standing in the entrance to o�ce 101
facing right is in a di�erent state than a robot standing in the same place facing left; similarly,
a robot standing with a bagel in its arm is in a di�erent state from the same robot being in the
same position without the bagel.

The dynamics of the world are described by state-transition distributions that specify the prob-
ability of making transitions from one state to the next as a result of a certain action. There
is a �nite set of observations that can be perceived in each state; the relative frequency of each
observation is described by a probability distribution and depends only on the current state.
In our model, observations are multi-dimensional; an observation is a vector of values, each
chosen from a �nite domain. That is, we factorize the observation associated with each state
into several components. For instance, as demonstrated in Section 6.1, we view the observation
recorded by the robot when standing in an o�ce environment as consisting of three components,
corresponding to the three cardinal directions: front, left and right. In this example, the obser-
vation vector is thus 3-dimensional. It is assumed that the vector's components are conditionally
independent, given the state.

175

Shatkay & Kaelbling

In addition to the above components, each state is assumed to be associated with a position in a
metric space. Whenever a state transition is made, the robot records an odometry vector, which
estimates the position of the current state relative to the previous one. For the time being we as-
sume that the odometry vector consists of readings along the x and y coordinates of a global coor-
dinate system, and that these readings are corrupted with independent normal noise. The latter
independence assumption is not a strict one, and can be relaxed by introducing a complete co-
variance matrix, although we have not done this in this work. In Section 3.3 we extend the odom-
etry vector to include information about the heading of the robot, and drop the global coordinate
framework.
Note that the odometric relationship characterizes a transition rather than a state and, as
described below, receives a di�erent treatment than the observations that are associated with
states.

There are two important assumptions underlying our treatment of odometric relations between
states: First, that there is an inherent \true" odometric relation between the position of every
two states in the world; second, that when the robot moves from one state to the next, there
is a normal, 0-mean noise around the correct expected odometric reading along each odometric
dimension. This noise reects two kinds of odometric error sources:

{ The lack of precision in the discretization of the real world into states (e.g. there is a rather
large area in which the robot can stand which can be regarded as \the doorway of the AI
lab").

{ The lack of precision of the odometric measures recorded by the robot, due to slippage,
friction, disalignment of the wheels, imprecision of the measuring instruments, etc.

To formally introduce odometric information into the hidden Markov model framework, we
de�ne an augmented hidden Markov model as a tuple � = hS;O;A;B;R; �i, where:

� S = fs0; : : : ; sN�1g is a �nite set of N states.

� O =
Ql
i=1Oi is a �nite set of observation vectors of length l. The ith element of an

observation vector is chosen from the �nite set Oi.

� A is a stochastic transition matrix, with Ai;j = Pr(qt+1 = sjjqt = si), 0� i; j �N � 1.

qt is the state at time t. For every state si,
N�1X
j=0

Ai;j = 1.

Ai;j holds the transition probability from state si to state sj .

� B is an array of l stochastic observation matrices, with Bi;j;k = Pr(Vt[i] = okjqt = sj);
1 � i � l; 0 � j � N � 1; ok 2 Oi; Vt is the observation vector at time t; Vt[i] is its i

th

component.

Bi;j;k holds the probability of observing ok along the ith component of the observation
vector, while being at state sj .

� R is a relation matrix, specifying for each pair of states, si and sj , the mean and variance
of the D-dimensional2 odometric relation between them. �(Ri;j[m]) is the mean of the mth

2. For the time being we consider D to be 2, corresponding to (x; y) readings.

176

Learning Geometrically-Constrained HMMs

component of the relation between si and sj and �2(Ri;j [m]), the variance. Furthermore,

R is geometrically consistent: for each component m, the relation �m(a; b)
def
= �(Ra;b[m])

must be a directed metric, satisfying the following properties for all states a, b, and c:

� �m(a; a) = 0;

� �m(a; b) = ��m(b; a) (anti-symmetry); and
� �m(a; c) = �m(a; b) + �m(b; c) (additivity) :

This representation of odometric relations reects the two assumptions, previously stated,
regarding the nature of the odometric information. The \true" odometric relation between
the position of every two states is represented as the mean. The noise around the correct
expected odometric relation, accounting for both the lack of precision in the real-world
discretization and the inaccuracy in measurement, is represented through the variance.

� � is a stochastic initial probability vector describing the distribution of the initial state.
For simplicity it is assumed here to be of the form h0; : : : ; 0; 1; 0; : : : ; 0i, implying that there
is one designated initial state, si, in which the robot is always started.

This model extends the standard hidden Markov model described in Section 3.1 in two ways:

� It facilitates observations that are factored into components, and represented as vectors.
These components are assumed to be conditionally independent of each other given the
state. Such factorization, together with the conditional independence assumption, allows
for a simple calculation of the probability of the complete observation vector from the
probabilities of its components. It therefore results in fewer probabilistic parameters in
the learnt model than if we were to view each observation vector, consisting of a possible
combination of component-values as a single \atomic" observation.

� It introduces the odometric relation matrix R and constraints over its components. Using
R and the constraints over it, as explained in Section 4, has proven useful for learning the
other model parameters, as demonstrated in Section 6.

3.3 Handling Directional Data

We further extend the model to accommodate directional changes in addition to the positional
changes. There are two issues stemming from directional changes while moving in an environ-
ment: the need for non-traditional distributions to model directional changes, and the need
to correct for the cumulative rotational error which severely interferes with location estimation
within a global coordinate framework. A detailed discussion of these two problems and their
solution is given in an earlier paper by the authors (Shatkay & Kaelbling, 1998). For the sake
of completeness, we briey review these two issues here.

3.3.1 Circular Distributions

The robot's change in direction as it moves through the environment is expressed in terms of the
angular change with respect to its original heading. Since angular measures are inherently cir-
cular, treating them as \normally distributed", and using the standard procedures for obtaining
su�cient statistics from the data is not adequate. As a trivial example, if we were to average

177

Shatkay & Kaelbling

173 00

−179 00
−3

11<x , y >

33<x , y >

22<x , y >

θ2
θ3

θ1

x

y

1

-1

-1 1

Figure 1: Simple average of two angles, depicted

as vectors to the unit circle. The average angle is

formed by the dashed vector.

Figure 2: Directional data represented as angles

and as vectors on the unit circle.

the two angular readings, 173� and �179�, using simple average we obtain the angle �3�, which
is far from the intuitive �180�, as illustrated in Figure 1.

To address the circularity issue, we use the von Mises distribution, which is a circular version of
the normal distribution, to model the change in heading between two states, as explained below.

A collection of changes in heading within a two dimensional space can be represented in terms
of either Cartesian or polar coordinates. Using a Cartesian system, n changes in headings can
be recorded as a sequence of 2-dimensional vectors, (hx1; y1i; : : : hxn; yni), on the unit circle,
as shown in Figure 2. The same changes can also be represented as the corresponding angles
between the radii from the center of the unit circle and the X axis, (�1; : : : ; �n), respectively.
The relationship between the two representations is:

xi = cos(�i); yi = sin(�i) ; (1 � i � n) :

The vector mean of the n points, hx; yi, is calculated as:

x =

Pn
i=1 cos(�i)

n
; y =

Pn
i=1 sin(�i)

n
: (1)

Using polar coordinates, we can express the mean vector in terms of angle, �, and length, a,
where (except for the case x = y = 0):

� = arctan(
y

x
); a = (x2 + y2)

1
2 :

The angle � is the mean angle, while the length a is a measure (between 0 and 1) of how
concentrated the sample angles are around �. The closer a is to 1, the more concentrated the
sample is around the mean, which corresponds to a smaller sample variance.

Intuitively, a satisfactory circular version of the normal distribution would have a mean for
which the maximum likelihood estimate is the average angle as calculated above. In a way
analogous to Gauss' derivation of the Normal distribution, von Mises developed such a circular
version (Gumbel, Greenwood, & Durand, 1953; Mardia, 1972), which is de�ned as follows:

De�nition: A circular random variable, �, 0 � � � 2�, is said to have the von Mises
distribution with parameters � and �, where 0 � � � 2� and � > 0, if its probability density

178

Learning Geometrically-Constrained HMMs

function is:

f�;�(�) =
1

2�I0(�)
e� cos(���) ;

where I0(�) is the modi�ed Bessel function of the �rst kind and order 0:

I0(�) =
1X
r=0

1

r!2
(
1

2
�)2r : (2)

The parameters � and � correspond to the distribution's mean and concentration respectively.

While other circular-normal distributions do exist, the von Mises has the desirable estimation
procedure alluded to earlier: Given a set of heading samples, angles �1; : : : �n, from a von Mises
distribution, the maximum likelihood estimate � for � is:

� = arctan(
y

x
) ;

where y, x are as de�ned in Equation 1.

The maximum likelihood estimate for the concentration parameter, �, is the � that satis�es:

I1(�)

I0(�)
= max[

1

n

nX
i=1

cos(�i � �); 0] ;

where I1 is the modi�ed Bessel function of the �rst kind and order 1:

I1(�) =
1X
r=0

1

r!(r + 1)!
(
1

2
�)2r+1 : (3)

Further information about the estimation procedure is beyond the scope of this paper and can
be found elsewhere (Gumbel et al., 1953; Mardia, 1972).

To conclude, we assume that the change in heading �� is von Mises-distributed, around a mean
� with concentration parameter �. This assumption is reected in the model learning procedures
as explained later in Section 4.2.3. The change in heading h��(a; b); ��(a; b)i between each pair
of states (a; b) completes the set of parameters included in the relation matrix R which was
introduced earlier in Section 3.2.

3.3.2 Cumulative Rotational Error

We tend to think about an environment as consisting of landmarks �xed in a global coordinate
system and corridors or transitions connecting these landmarks. This idea underlies the typical
maps constructed and used in everyday life. However, this view of the environment may be
problematic when robots are involved.

Conceptually, a robot has two levels at which it operates; the abstract level, in which it centers
itself through corridors, follows walls and avoids obstacles, and the physical level in which motors
turn the wheels as the robot moves. In the physical level many inaccuracies can manifest
themselves: wheels can be unaligned with each other resulting in a drift to the right or to the
left, one motor can be slightly faster than another resulting in similar drifts, an obstacle under
one of the wheels can cause the robot to rotate around itself slightly, or uneven oors may cause

179

Shatkay & Kaelbling

- recorded position
- actual position

ε−ε

Figure 3: A robot moving along the solid arrow, while correcting for drift in the direction of the dashed

arrow. The dotted arrow marks its recorded change in position.

the robot to slip in a certain direction. In addition, the measuring instrumentation for odometric
information may not be accurate in and of itself. At the abstract level, corrective actions are
constantly executed to overcome the physical drift and drag. For example, if the left wheel is
misaligned and drags the robot leftwards, a corrective action of moving to the right is constantly
taken in the higher level to keep the robot centered in the corridor.

The phenomena described above have a signi�cant e�ect on the odometry recorded by the robot,
if such data interpreted with respect to one global framework. For example, consider the robot
depicted in Figure 3. It drifts to the left ��� when moving from one state to the next, and
corrects for it by moving �� to the right in order to maintain itself centered in the corridor.

Let us assume that states are 5 meters apart along the center of the corridor, and that the center
of the corridor is aligned with the Y axis of the global coordinate system. The robot steps back
and forth in the corridor from one state to the next. Whenever the robot reaches a state, its
odometry reading changes by hx; y; �i along the hX;Y; headingi dimensions, respectively. As the
robot proceeds, the deviation with respect to the X axis becomes more and more severe. Thus,
after going through several transitions, the odometric changes recorded between every pair of
states, if taken with respect to a global coordinate system, become larger and larger. Similar
problems of inconsistent odometric changes recorded between pairs of states can arise along any
of the odometric dimensions. It is especially severe when such inconsistencies arise with respect
to the heading, since this can lead to mistakenly switching movement along the X and the Y
axes, as well as confusion between forwards and backwards movement (when the deviation in
the heading is around 90� or 180� respectively).

In early work (Shatkay & Kaelbling, 1997) we assumed perpendicularity of the corridors, which
was taken advantage of while the robot collected the data. Odometric readings were recorded
with respect to a global coordinate system, and the robot could re-align itself with the origin after
each turn. A trajectory of odometry recorded under this perpendicularity assumption by our
robot Ramona, along the x and y axes is given in Figure 4. The sequence shown was recorded
while the robot drove repeatedly around a loop of corridors. Further details about the data
gathering process are provided in Section 6. In contrast, Figure 5 shows a trajectory of another
sequence of odometric readings recorded by Ramona, driving through the same corridors, without
using the perpendicularity assumption. The data collected under the latter setting is subjected
to cumulative rotational error.

180

Learning Geometrically-Constrained HMMs

200 400 600 800 1000

200

400

600

800

1000

1200

-2500 -2000 -1500 -1000 -500 500 1000

500

1000

1500

2000

2500

3000

Figure 4: Sequence gathered by Ramona, perpen-

dicularity assumed.

Figure 5: Sequence gathered by Ramona, no per-

pendicularity assumed.

Such data can be handled through state-relative coordinate systems (Shatkay & Kaelbling, 1998).
The latter implies that each state si has its own coordinate system, as shown in Figure 6: the
origin is anchored in si, the Y axis is aligned with the robot's heading in the state (denoted by
bold arrows in the �gure), and the X axis is perpendicular to it. This is in contrast to a global
coordinate system which is anchored in the initial starting state. Within the global coordinate
system, the relations recorded may vary greatly among multiple instances of the same transition
between the same pair of states. By using the state-relative system, the recorded and learned
relationship between each pair of states, hsi; sji, is reliable, despite the fact that it is based on
multiple transitions recorded from si to sj.

Under state-relative coordinate systems, the geometric relation stored in Rij , (which was in-
troduced in Section 3.2), is expressed for each pair of states, si and sj, with respect to the
coordinate system associated with state si. Accordingly, the constraints imposed over the x and
y components of the relation matrix must be speci�ed with respect to the explicit coordinate
system used, as explained below.

Given a pair of states a and b, we denote by �hx;yi(a; b) the vector h�(Ra;b[x]); �(Ra;b[y])i. Let
us de�ne Tab to be the transformation that maps an hxa; yai point represented with respect to
the coordinate system of state a, to the same point represented with respect to the coordinate
system of state b, hxb; ybi.
More explicitly, let ��ab be the mean change in heading from state a to state b. Applying Tab to
a vector hxa

ya
i results in the vector hxb

yb
i as follows:

*
xb

yb

+
= Tab

*
xa

ya

+
=

*
xa cos(�

�
ab)� ya sin(�

�
ab)

xa sin(�
�
ab) + ya cos(�

�
ab)

+
:

The consistency constraints within this framework must be restated as:

� �hx;yi(a; a) = h0; 0i;
� �hx;yi(a; b) = �Tba[�hx;yi(b; a)] (anti-symmetry);
� �hx;yi(a; c) = �hx;yi(a; b) + Tba[�hx;yi(b; c)] (additivity).

181

Shatkay & Kaelbling

x∆

y∆

∆θ
Si

Sj

y

x

Figure 6: A robot in state Si, faces in the Y -axis direction; the relation Si,Sj is wrt Si's coordinate
system.

These consistency constraints are the ones that need to be enforced by our learning algorithm
which constructs the hmm. It is important to note that the transformation T itself does not
constitute a set of additional parameters that need to be learnt. Rather, it is calculated in terms
of the heading-change parameter, ��, which is already an integral part of the relation matrix we
have de�ned in Sections 3.2 and 3.3.1.

We have introduced the basic formal model that we use for representing environments and
the robot's interaction with them. In the following section we state the learning problem and
describe the basic algorithm for learning the model from data.

4 Learning HMMs with Odometric Information

This section formalizes the learning problem for hmms, and discusses how odometric information
is incorporated into the learning algorithm. An overview of the complete algorithm is provided
in the Appendix for this paper.

4.1 The Learning Problem

The learning problem for hidden Markov models can be generally stated as follows: Given an
experience sequence E, �nd a hidden Markov model that could have generated this sequence and
is \useful" or \close to the original" according to some criterion. An explicit common statistical
approach is to look for a model � that maximizes the likelihood of the data sequence E given
the model. Formally stated, it maximizes Pr(Ej�). However, given the complicated landscape
of typical likelihood functions in a multi-parameter domain, obtaining a maximum likelihood
model is not feasible. All studied practical methods, and in particular the well-known Baum-
Welch algorithm (Rabiner (1989) and references therein) can only guarantee a local-maximum
likelihood model.

Another way of evaluating the quality of a learned model is by comparing it to the true model.
We note that stochastic models (such as hmms) induce a probability distribution over all obser-
vation sequences of a given length. The Kullback-Leibler (Kullback & Leibler, 1951) divergence
of a learned distribution from a true one is a commonly used measure for estimating how good a

182

Learning Geometrically-Constrained HMMs

learned model is. Obtaining a model that minimizes this measure is a possible learning goal. The
culprit here is that in practice, when we learn a model from data, we do not have any \ground
truth" model to compare the learned model with. Still, we can evaluate learning algorithms by
measuring how well they perform on data obtained from known models. It is reasonable to ex-
pect that an algorithm that learns well from data that is generated from a model we do have, will
perform well on data generated from an unknown model, assuming that the models indeed form
a suitable representation of the true generating process. We discuss the Kullback-Leibler (kl)
divergence in more detail in Section 6.2 in the context of evaluating our experimental results.

To summarize, the learning problem as we address it in this work is that of obtaining a model
by attempting to (locally) maximize the likelihood, while evaluating the results based on the
kl-divergence with respect to the true underlying distribution, when such a distribution is
available.

4.2 The Learning Algorithm

The learning algorithm starts from an initial model �0 and is given an experience sequence E;
it returns a revised model �, which (locally) maximizes the likelihood P (Ej�). The experience
sequence E is of length T ; each element, Et, for 0 � t � (T � 1), is a pair hrt; Vti, where rt is the
observed relation vector along the x, y and � dimensions, between the states qt�1 and qt, and Vt
is the observation vector at time t.

Our algorithm extends the standard Baum-Welch algorithm to deal with the relational in-
formation and the factored observation sets. The Baum-Welch algorithm is an expectation-
maximization (em) algorithm (Dempster, Laird, & Rubin, 1977); it alternates between

� the E-step of computing the state-occupation and state-transition probabilities, and �,
at each time in the sequence given E and the current model �, and

� the M-step of �nding a new model, �, that maximizes P (Ej�; ; �),
providing monotone convergence of the likelihood function P (Ej�) to a local maximum.
However, our extension introduces an additional component, namely, the relation matrix R. It
can be viewed as having two kinds of observations: state observations (as the ordinary hmm |
with the distinction that we observe integer vectors rather than integers) and transition observa-
tions (the odometry relations between states). The latter must satisfy geometrical constraints.
Hence, an extension of the standard update formulae, as described below, is required.

4.2.1 State-Occupation Probabilities

Following Rabiner (1989), we �rst compute the forward (�) and backward (�) matrices. �t(i)
denotes the probability density value of observing E0 through Et and qt = si, given �; �t(i) is
the probability density of observing Et+1 through ET�1 given qt = si and �. Formally:

�t(i) = Pr(E0; : : : ;Et; qt = sij�) ;
�t(i) = Pr(Et+1; : : : ;ET�1jqt = si; �) :

When some of the measurements are continuous (as is the case with R), these matrices contain
probability density values rather than probabilities.
The forward procedure for calculating the � matrix is initialized with

�0(i) =

(
bi0 if �i = 1

0 otherwise ;

183

Shatkay & Kaelbling

and continued for 0 < t � T�1 with

�t(j) =

N�1X
i=0

�t�1(i)Ai;jf(rtjRi;j)b
j
t : (4)

The expression f(rtjRi;j) denotes the density at point rt according to the distribution represented

by the means and variances in entry i; j of the relation matrix R, while bjt is the probability of
observing vector vt in state sj; that is, b

j
t =
Ql
i=0Bi;j;vt[i].

The backward procedure for calculating the � matrix is initialized with �T�1(j)=1, and continued
for 0� t<T�1 with

�t(i) =

N�1X
j=0

�t+1(j)Ai;jf(rt+1jRi;j)b
j
t+1 : (5)

Given � and �, we now compute for each given time point t the state-occupation and state-
transition probabilities, and �. The state-occupation probabilities, t(i), representing the
probability of being in state si at time t given the experience sequence and the current model,
are computed as follows:

t(i) = Pr(qt = sijE; �) =
�t(i)�t(i)PN�1

j=0 �t(j)�t(j)
: (6)

Similarly, �t(i; j), the state-transition probabilities from state i to state j at time t given the
experience sequence and the current model, are computed as:

�t(i; j) = Pr(qt = si; qt+1 = sj jE; �)

=
�t(i)Ai;jb

j
t+1f(rt+1jRi;j)�t+1(j)

N�1X
i=0

N�1X
j=0

�t(i)Ai;jb
j
t+1f(rt+1jRi;j)�t+1(j)

: (7)

These are essentially the same formulae appearing in Rabiner's tutorial (Rabiner, 1989), but
they also take into account the density of the odometric relations.

In the next phase of the algorithm, the goal is to �nd a new model, �, that maximizes the likeli-
hood conditioned on the current transition and observation probabilities, Pr(Ej�; ; �). Usually,
this is simply done using maximum-likelihood estimation of the probability distributions in A

and B by computing expected transition and observation frequencies. In our model we must also
compute a new relation matrix, R, under the constraint that it remain geometrically consistent.
Through the rest of this section we use the notation v to denote a reestimated value, where v
denotes the current value.

4.2.2 Updating Transition and Observation Parameters

The A and B matrices can be straightforwardly reestimated. Ai;j is the expected number of
transitions from si to sj divided by the expected number of transitions from si, and Bi;j;k is the
expected number of times ok is observed along the ith dimension when in state sj , divided by
the expected number of times of being in sj:

Ai;j =

PT�2
t=0 �t(i; j)PT�2
t=0 t(i)

; Bi;j;k =

PT�1
t=0 �[Vt[i]=ok]t(j)PT�1

t=0 t(i)
: (8)

The expression �c denotes an indicator function with value 1 if condition c is true and 0 otherwise.

184

Learning Geometrically-Constrained HMMs

-6 -4 -2 2 4 6

PQ

-8 -6 -4 -2 2 4 6 8

-7.5

-5

-2.5

2.5

5

7.5

P

Q

Figure 7: Examples of two sets of normally distributed points with constrained means, in 1 and in 2
dimensions.

4.2.3 Updating Relation Parameters

When reestimating the relation matrix, R, the geometrical constraints induce interdependencies
among the optimal mean estimates as well as between optimal variance estimates and mean
estimates. Parameter estimation under this form of constraints is almost untreated in main-
stream statistics (Bartels, 1984) and we found no previous existing solutions to the estimation
problem addressed here. As an illustration for the issues involved in estimation under constraints
consider the following estimation problem of 2 normal means:

Example 4.1 The data consists of two sample sets of points P =fp1; p2; : : : ; png and Q =
fq1; q2; : : : ; qkg, independently drawn from two distinct normal distributions with means �P ; �Q
and variances �2P ; �

2
Q, respectively. We are asked to �nd maximum likelihood estimates for the

two distribution parameters. Moreover, we are told that the means of the two distributions are
related, such that �Q=��P , as illustrated in Figure 7. If not for the latter constraint, the task
is simple (DeGroot, 1986), and we have:

�P =

Pn

i=1 pi

n
; �2P =

Pn

i=1(pi � �P)
2

n
;

and similarly for �Q and �2Q. However, the constraint �P =��Q requires �nding a single mean, �,
and setting the other one to its negated value, ��. Intuitively, when choosing such a maximum
likelihood single mean, the more concentrated sample should have more e�ect, while the more
varied sample should be more \submissive." Thus, the overall sample deviation from the means
would be minimized and the likelihood of the data maximized. Therefore, there is a mutual
dependence between the estimation of the mean and the estimation of the variance.

Since the samples are independently drawn, their joint likelihood function is:

f(P;Qj�P ; �Q; �2P ; �2Q) =
nY
i=1

e

�(pi��P)2

2�2
Pp

2��P
�

kY
j=1

e

�(qj��Q)2

2�2
Qp

2��Q
:

By taking the derivatives of this joint log-likelihood function, with respect to �P , �P and �Q, and
equating them to 0, while using the constraint �Q = ��P , we obtain the following set of mutual
equations for maximum likelihood estimators:

�P =
(�2Q

Pn
i=1 pi)� (�2P

Pk
j=1 qj)

n�2Q + k�2P
; �Q = ��P ;

�2P =

Pn
i=1(pi � �P)

2

n
; �2Q =

Pk
j=1(qj + �P)

2

k
:

185

Shatkay & Kaelbling

By substituting the expressions for �P and �Q into the expression for �P , we obtain a cubic equa-
tion which is cumbersome, but still solvable (in this simple case). The solution provides a maxi-
mum likelihood estimate for the mean and variance under the constraint �Q=��P : 2

We now proceed to the actual update of the relation matrix under constraints. For clarity, we
initially discuss only the �rst two geometrical constraints, and discuss the additivity constraint in
Section 4.3. Recall that we concentrate here on the enforcement of global constraints, appropriate
under the perpendicularity assumption, although the same idea is applied in the case of state-
relative constraints.

Zero distances between states and themselves are trivially enforced, by setting all the diagonal
entries in the R matrix to 0, with a small variance.

Anti-symmetry within a global coordinate system is enforced by using the data recorded along
the transition from state sj to si as well as from state si to sj when reestimating �(Ri;j). As
demonstrated in Example 4.1, the variance has to be taken into account, leading to the following
set of mutual equations:

�mi;j =

PT�2
t=0

�
rt[m]�t(i;j)

(�mi;j)
2 � rt[m]�t(j;i)

(�mj;i)
2

�
PT�2

t=0

�
�t(i;j)
(�mi;j)

2 +
�t(j;i)
(�mj;i)

2

� ; (9)

(�mi;j)
2 =

PT�2
t=0 [�t(i; j)(rt[m]� �mi;j)

2]PT�2
t=0 �t(i; j)

: (10)

For the x and y dimensions, (m = x; y), this amounts to a complicated but still solvable cubic
equation. However, in the more general case, when accounting for the orientation of the robot,
and also when complete additivity is enforced, we do not obtain such closed form reestimation
formulae.

To avoid these hardships, we use a lag-behind update rule; the yet-unupdated estimate of the
variance is used for calculating a new estimate for the mean, and this new mean estimate is
used to update the variance, using Equation 10.3 Thus, the mean is updated using a variance
parameter that lags behind it in the update process, and the reestimation Equation (9) needs to
use �m rather than �m as follows:

�mi;j =

PT�2
t=0

h
rt[m]�t(i;j)

(�m
i;j

)2 � rt[m]�t(j;i)
(�m

j;i
)2

i
PT�2

t=0

h
�t(i;j)
(�m

i;j
)2 +

�t(j;i)
(�m

j;i
)2

i : (11)

As we have shown (Shatkay, 1999), this lag-behind policy is an instance of generalized em (McLach-
lan & Krishnan, 1997). The latter guarantees monotone convergence to a local maximum of the
likelihood function, even when each \maximization" step increases rather than strictly maxi-
mizes the expected likelihood of the data given the current model.

Similarly, the reestimation formula for the von Mises mean (�) and concentration (�) parameters
of the heading change between states si and sj is the solution to the equations:

��i;j = arctan

0
BBBB@

T�2X
t=0

[sin(rt[�])(�t(i; j)�i;j � �t(j; i)�j;i)]

T�2X
t=0

[cos(rt[�])(�t(i; j)�i;j + �t(j; i)�j;i)]

1
CCCCA

3. A similar approach, termed one step late update, is taken by others applying em to highly non-linear opti-
mization problems (McLachlan & Krishnan, 1997).

186

Learning Geometrically-Constrained HMMs

I1[�
�
i;j]

I0[�
�
i;j]

= max

"PT�2
t=0 [�t(i; j) cos(rt[�]� ��i;j)]PT�2

t=0 �t(i; j)
; 0

#
; (12)

where I0 and I1 are the modi�ed Bessel functions as de�ned by Equations 2 and 3 in Section 3.3.1.

Again, to avoid the need to solve the mutual equations, we take advantage of the lag-behind strat-
egy, updating the mean using the current estimates of the concentration parameters, �i;j; �j;i,
as follows:

��i;j = arctan

 PT�2
t=0 [sin(rt[�])(�t(i; j)�i;j � �t(j; i)�j;i)]PT�2
t=0 [cos(rt[�])(�t(i; j)�i;j + �t(j; i)�j;i)]

!
; (13)

and then calculating the new concentration parameters based on the newly updated mean, as
the solution to Equation 12, through the use of lookup-tables.

A possible alternative to our lag-behind approach is to update the mean as though the assump-
tion �j;i = �i;j holds. Under this assumption, the variance terms in Equation 9 cancel out, and
the mean update is independent of the variance once again. Then the variances are updated as
stated in Equation 10, without assuming any constraints over them. This approach was taken
in earlier stages of this work (Shatkay & Kaelbling, 1997, 1998). The lag-behind strategy is
superior, both according to our experiments, and due to its being an instance of generalized em.

4.3 Enforcing Additivity

Note that the additivity constraint directly implies the other two geometrical constraints4. Thus,
enforcing it results in complete geometrical consistency. We present here the method for directly
enforcing additivity through the reestimation procedure along the x and y dimensions. For the
heading dimension we describe how complete geometrical consistency is achieved through the
projection of anti-symmetric estimates onto a geometrically-consistent space. As before, to
simplify the presentation, we focus on the case of global coordinate systems. The same basic
idea applies to state-relative coordinate systems, but the relationship used to recover the mean
�ij from individual state coordinates is more complex.

4.3.1 Additivity in the x, y dimensions

The main observation underlying our approach is that the additivity constraint is a result of the
fact that states can be embedded in a geometrical space. That is, assuming we have N states,
s0; : : : ; sN�1, there are points on the X, Y and � axes, x0; : : : ; xN�1, y0; : : : ; yN�1, �0; : : : ; �N�1,
respectively, such that each state, si, is associated with the coordinates hxi; yi; �ii. Assuming
one global coordinate system, the mean odometric relation from state si to state sj can be
expressed as: hxj � xi; yj � yi; �j � �ii.

During the maximization phase of the em iteration, rather than try to maximize with respect
to N2 odometric relation vectors, h�Xij , �Yij, ��iji, we reparameterize the problem. Speci�cally,
we express each odometric relation as a function of two of the N state positions, and maximize
with respect to the unconstrained, N state positions. For instance, for the X dimension, rather
than search for N2 maximum likelihood estimates for �xij, we use the maximization step to �nd
N 1-dimensional points, x0; : : : ; xN�1. We can then calculate �xij = xj � xi. Moreover, since
all we are interested in is �nding the best relationships between xi and xj, we can �x one of

4. f�(a; a)=�(a; a)+�(a; a)g) (�(a; a)=0) ; f(�(a; a)=0) ; (�(a; a)=�(a; b)+�(b; a))g) (�(a; b) = ��(b; a)).

187

Shatkay & Kaelbling

the xi's at 0 (e.g. x0 = 0), and �nd optimal estimates for the remaining N�1 state positions.
The variance reestimation remains as before, and the lag-behind policy is used to eliminate the
interdependency between the update of the mean and the variance parameters.

4.3.2 Additive Heading Estimation

Unfortunately, the reparameterization described above is not feasible for estimation of changes
in heading, due to the von Mises distribution assumption over the heading measures. By repa-
rameterizing ��ij as �j � �i and trying to maximize the likelihood function with respect to the �
parameters, we obtain a set of N�1 trigonometric equations with terms of the form cos(�j)�sin(�i)
which do not enable simple solution.

As an alternative, it is possible to use the anti-symmetric reestimation procedure described
earlier, followed by a perpendicular projection operator, mapping the resulting headings vector
h��00; : : : ; ��ij ; : : : ; ��N�1;N�1i, 0 � i; j � N�1, which does not satisfy additivity, onto a vector of
headings within an additive linear vector space. Simple orthogonal projection is not satisfactory
within our setting, since it simply looks for the additive vector closest to the non-additive one.
This procedure ignores the fact that some of the entries in the non-additive vector are based on
a lot of observations, and are therefore more reliable, while other, less reliable ones, are based on
hardly any data at all. Intuitively, we would like to keep the estimates that are well accounted
for intact, and adapt the less reliable estimates to meet the additivity constraint. More precisely,
there are heading-change estimates between states that are better accounted for than others, in
the sense that the transitions between these states have higher expected counts than transition
between other states (higher

P
t �t(i; j)). We would like to project the non-additive heading

estimates vector onto a subspace of the additive vector space, in which the vectors have the same
values as the non-additive vector in the entries that are well-accounted for, that is, those with
the highest values of

P
t �t(i; j). The di�culty is that the latter subspace is not a linear vector

space (for instance, it does not satisfy closure under scalar multiplication), and the projection
operator over linear spaces cannot be applied directly. Still, this set of vectors does form an
a�ne vector space, and we can project onto it using an algebraic technique, as explained below.5

De�nition A�Rn is an n-dimensional a�ne space if for all vectors va2A, the set of vectors:
A� va

def
= fua � vajua 2 Ag is a linear space.

Hence, we can pick a vector in an a�ne space, va12A, and de�ne the translation Ta : A ! V ,
where V is a linear space, V = A � va1 . This translation is trivially extended for any vector
v0 2 Rn, by de�ning Ta(v

0) = v0 � va1 . In order to project any vector v 2 Rn onto A, we apply
the translation Ta to v and project Ta(v) onto V , which results in a vector P(Ta(v)) in V . By
applying the inverse transform T�1a to it, we obtain the projection of v on A, as demonstrated
in Figure 8. The linear space in the �gure is the two dimensional vector space fhx; yij y = �xg,
and the a�ne space is fhx; yij y = �x+4g. The transform Ta consists of subtracting the vector
h0; 4i. The solid arrow corresponds to the direct projection of the vector v onto the point P(v)
of the a�ne space. The dotted arrows represent the projection via translation of v to Ta(v), the
projection of the latter onto the linear vector space, and the inverse translation of the result,
P(Ta(v)), onto the a�ne space.

5. Many thanks to John Hughes for introducing us to this technique.

188

Learning Geometrically-Constrained HMMs

-2 2 4

-4

-2

2

4

6

v

Ta(v)

P(v)

P(Ta(v))

<x,-x>

<x,-x+4>

Figure 8: Projecting v onto the a�ne vector space fhx; yij y = �x+ 4g.

Although the procedure for preserving additivity over headings is not formally proven to pre-
serve monotone convergence of the likelihood function towards a local maximum, our extensive
experiments consisting of hundreds of runs have shown that monotone convergence is preserved.

5 Choosing an Initial Model

Typically, in instances of the Baum-Welch algorithm, an initial model is picked uniformly at
random from the space of all possible models, perhaps trying multiple initial models to �nd dif-
ferent local likelihood maxima. An alternative approach we have reported (Shatkay & Kaelbling,
1997) was based on clustering the accumulated odometric information using the simple k-means
algorithm (Duda & Hart, 1973), taking the clusters to be the states in which the observations
were recorded, to obtain state and observation counts and estimate the model parameters.

If perpendicularity is assumed when collecting the data, as shown in Figure 4, the k-means
algorithm assigns the same cluster (state) to odometric readings recorded at close locations,
leading to reasonable initial models. However, when this assumption is dropped, as illustrated
in Figure 5, the cumulative rotational error distorts the odometric location recorded within a
global coordinate system, so that the location assigned to the same state during multiple visits
varies greatly and would not be recognized as \the same" by a simple location-based clustering
algorithm. To overcome this, we developed an alternative initialization heuristics, which we call
tag-based initialization. It is based directly on the recorded relations between states, rather than
on states' absolute location. For clarity, the description here consists mostly of an illustrative
example, and concentrates on the case where global consistency constraints are enforced.

Given a sequence of observations and odometric readings E, we begin by clustering the odometric
readings into buckets. The number of buckets is at most the number of distinct state transitions
recorded in the sequence. The goal at this stage is to have each bucket contain all the odometric
readings that are close to each other along all three dimensions.

To achieve this, we start by �xing a predetermined, small standard deviation value along the x,
y, and � dimensions. Denote these standard deviation values �x; �y; �� respectively, (typically
�x = �y). The �rst odometric reading is assigned to bucket 0 and the mean of this bucket is
set to be the value of this reading. Through the rest of the process the subsequent odometric
readings are examined. If the next reading is within 1:5 standard deviations along each of the
three dimensions from the mean of some existing non-empty bucket, add it to the bucket and

189

Shatkay & Kaelbling

<-1, 98, 91.5>

µ1:

1

µ2:

<1996, -2.5, 89>

2

µ3:

<0.5, -99.5, 88.5>

3

µ4:

<-2001, 3, 90.5>

4

< -4, 102, 91 >
< 2, 94, 92 > <1994, 0, 88 >

< 1998, -5, 90 > < -2, -106, 91 >
< 3, -93, 86 > < -1999, -1, 94 >

< -2003, 7, 87 >

Figure 9: The bucket assignment of the example sequence.

update the bucket mean accordingly. If not, assign it to an empty bucket and set the mean of
the bucket to be this reading.

Intuitively, by using this heuristic each of the resulting buckets is tightly concentrated about
its mean. We note that other clustering algorithms (Duda & Hart, 1973) could be used at the
bucketing stage.

Example 5.1 We would like to learn a 4-state model from a sequence of odometric readings,
hx; y; �i as follows:

h2 94 92i; h1994 0 88i; h3 �93 86i; h�1999 1 94i;
h�4 102 91i; h1998 �5 90i; h�2 �106 91i; h�2003 7 87i :

As a �rst stage we place these readings into buckets. Suppose the standard deviation constant is
20. The placement is as shown in Figure 9. The mean value associated with each bucket is shown
as well. 2

The next stage of the algorithm is the state-tagging phase, in which each odometric reading,
rt, is assigned a pair of states, si; sj , denoting the origin state (from which the transition took
place) and the destination state (to which the transition led), respectively. In conjunction, the
mean entries, �ij, of the relation matrix, R, are populated.

Example 5.1 (cont.) Returning to the sequence above, the process is demonstrated in Fig-
ure 10. We assume that the data recording starts at state 0, and that the odometric change
through self transitions is 0, with some small standard deviation (we use 20 here as well). This
is shown on part A of the �gure.

Since the �rst element in the sequence, h2 94 92i, is more than two standard deviations away
from the mean �[0][0] and no other entry in the relation row of state 0 is populated, we pick 1
as the next state and populate the mean �[0][1] to be the same as the mean of bucket 1, to which
h2 94 92i belongs. To maintain geometrical consistency the mean �[1][0] is set to ��[0][1], as
shown in part B of the �gure. We now have populated 2 o�-diagonal entries, and the state
sequence is h0; 1i. The entry [0][1] in the matrix becomes associated with bucket 1, and this
information is recorded for helping with tagging future odometric readings belonging to the same
bucket.

The next odometric reading, h1994 0 88i, is a few standard deviations from any populated mean
in row 1 (where 1 is the current believed state). Hence, we pick a new state 2, and set the mean
�[1][2] to be �2|the mean of bucket 2|to which the reading belongs (Figure 10 C). The entry
[1][2] is recorded as associated with bucket 2. To preserve anti-symmetry and additivity, �[2][1]
is set to ��[1][2]. �[0][2] is set to be the sum �[0][1] + �[1][2], and �[2][0] is set to ��[0][2].

190

Learning Geometrically-Constrained HMMs

-179.5>
 95.5,
<1995,

 98,
 91.5>

<-1,

 2.5,
 -89>

<-1996,

 89>
 -2.5,
<1996,

 -91.5>
 -98,
< 1,

<-1995,
 -95.5,
 179.5>

<0,0,0>

<0,0,0>

<0,0,0>

<0,0,0>

<0,0,0>

<0,0,0>

<0,0,0>

<0,0,0>

 98,
 91.5>

<-1,
 95.5,
<1995,

 -179.5>

< 0.5,

 88.5>
 -99.5,

 99.5,
 -88.5>

<-0.5,

 177.5>

<1996.5,
 -102,

 102,
 -177.5>

<-1996.5,

<-1995,
 -95.5,
 179.5>

 -98,
 -91.5>

< 1,

 89>
 -2.5,
<1996,

 2.5,
 -89>

<-1996,

 4,
 91>

<-1995.5,

<0,0,0>

<0,0,0>

<0,0,0>

 -4,
 -91>

<1995.5,
<0,0,0>

 -91.5>

< 1,
 -98,

<0,0,0>

<0,0,0>

<0,0,0>

<0,0,0>

 98,
<-1,

 91.5>

Bucket(R[0][1]) = µ1

0 321 3210

1 1

2 2

3

0

3

0

A

S: 0. 1S: 0

B

,..., S:0, 1, 2, 3, 0, 1, 2, 3, 0

S: 0,1,2,3,0

µ4Bucket(R[3][0]) =

Bucket(R[2][3]) = µ3

32103210

0 0

1

2

3

1

2

3

C D

Bucket(R[1][2]) = µ2

S: 0,1,2,3S: 0, 1, 2

Figure 10: Populating the odometric relation matrix and creating a state tagging sequence.

Similarly, �[2][3] is updated to be the mean of bucket 3, causing the setting of �[3][2], �[1][3],
�[0][3], �[3][1], and �[3][0]. Bucket 3 is associated with �[2][3].

At this stage the odometric table is fully populated, as shown in part D of Figure 10. The state
sequence at this point is: h0; 1; 2; 3i. The next reading, h�1999 �1 94i, is within one standard
deviation from �[3][0] and therefore the next state is 0. Entry [3][0] is associated with bucket 4,
(the bucket to which the reading was assigned), and the state sequence becomes: h0; 1; 2; 3; 0i.
The next reading, being from bucket 1, is associated with the relation from state 0 that is tagged
by bucket 1, namely, state 1. By repeating this for the last two readings, the �nal state transition
sequence becomes h0; 1; 2; 3; 0; 1; 2; 3; 0i: 2

Note that the process described in the above illustration was simpli�ed. In the general case,
we need to take into account the rotational error in the data, use state-relative coordinate
systems, and therefore populate the entries under the transformed anti-symmetry and additivity
constraints:

� �hx;yi(a; b) = �Tba[�
hx;yi(b; a)] ;

� �hx;yi(a; c) = �hx;yi(a; b) + Tba[�
hx;yi(b; c)],

as de�ned in Section 3.3.2.

191

Shatkay & Kaelbling

It is possible that by the end of the tagging algorithm, some rows or columns of the relation
matrix are still unpopulated. This happens when there is too little data to learn from or when
the number of states provided to the algorithm is too large with respect to the actual model. In
such cases we can either \trim" the model, using the number of populated rows as the number
of states, or pick random odometric readings to populate the rest of the table, improving these
estimates later. Note that the �rst approach suggests a method for learning the number of states
in the model when this is not given, starting from a gross over-estimate of the number, and trun-
cating it to the number of populated rows in the odometric table after initialization is performed.

Once the state-transition sequence is obtained, the rest of the initialization algorithm is the same
as it is for k-means based initialization, deriving state-transition counts from the state-transition
sequence, assigning the observations to the states under the assumption that the state sequence
is correct, and obtaining state-transition and observation probabilities. The initialization phase
does not incur much computational overhead, and is equivalent time-wise to performing one
additional iteration of the em procedure.

6 Experiments and Results

The goal of the work described so far is to use odometry to improve the learning of topological
models, while using fewer iterations and less data. We tested our algorithm in a simple robot-
navigation world. Our experiments consist of running the algorithm both on data obtained
from a simulated model and on data gathered by our mobile robot, Ramona. The amount of
data gathered by Ramona is used here as a proof of concept but is not su�cient for statistical
analysis. For the latter, we use data obtained from the simulated model. We gathered data and
used the algorithms both with and without the perpendicularity assumption (see Section 3.3.2),
and results are provided from both settings.

6.1 Robot Domain

The robot used in our experiments, Ramona, is a modi�ed RWI B21 robot. It has a cylindrical
synchro-drive base, 24 ultrasonic sensors and 24 infrared sensors, situated evenly around its
circumference. The infrared sensors are used mostly for short-range obstacle avoidance. The
ultrasonic sensors are longer ranged, and are used for obtaining (noisy) observations of the
environment. In the experiments described here, the robot follows a prescribed path through
the corridors in the o�ce environment of our department. Thus, there is no decision-making
involved, and an hmm is a su�cient model, rather than a complete pomdp.

Low-level software6 provides a level of abstraction that allows the robot to move through hallways
from intersection to intersection and to turn ninety degrees to the left or right. The software
uses sonar data to distinguish doors, openings, and intersections along the path, and to stop
the robot's current action whenever such a landmark is detected. Each stop|either due to the
natural termination of an action or due to a landmark detection|is considered by the robot to
be a \state".

At each stop, ultrasonic data interpretation allows the robot to perceive, in each of the three
cardinal directions, (front, left and right), whether there is an open space, a door, a wall, or
something unknown.

Encoders on the robot's wheels allow it to estimate its pose (position and orientation) with re-
spect to its pose at the previous intersection. After recording both the sonar-based observations

6. The low-level software was written and maintained by James Kurien.

192

Learning Geometrically-Constrained HMMs

0

1

2

3 4 5 6 7 8

9

10

11

12

131415
16

0

123
4
5

6

8

91012

13

14 15 17 24

25

26 27 28
29

7 42
43

18

19

20
21
22

23

11

30 31 32
33

34

35
36
38

41

37

39

40

16

Figure 11: True model of the corridors Ra-

mona traversed. Arrows represent the pre-

scribed path direction.

Figure 12: True model of a prescribed path

through the simulated hallway environment.

and the odometric information, the robot goes on to execute the next prescribed action. The
action command is issued manually by a human operator. Of course, both the action perfor-
mance and the perception routines are subject to error. The path Ramona followed consists of
4 connected corridors in our building, which include 17 states, as shown in Figure 11.
In our simulation, we manually generated an hmm representing a prescribed path of the robot
through the complete o�ce environment of our department, consisting of 44 states, and the
associated transition, observation, and odometric distributions. The transition probabilities
reect an action failure rate of about 5�10%. That is, the probability of moving from the
current state to the correct next state in the environment, under the predetermined action is
between 0:85 and 0:95. The probability of self transition is typically between 0:05 and 0:15.
Some small probability (typically smaller than 0:02) is sometimes assigned to other transitions.
Our experience with the real robot proves that this is a reasonable transition model, since
typically the robot moves to the next state correctly, and the only error that occurs with some
signi�cant frequency is when it does not move at all, due to sonar interpretation indicating a
barrier when there is actually none. Once the action command is repeated the robot usually
performs the action correctly, moving to the expected next state. The observation distribution
typically assigns probabilities of 0:85�0:95 to the true observation that should be perceived
by the robot at each state, and probabilities of 0:05�0:15 to other observations that might be
perceived. For example, if a door should actually be perceived, a door is typically assigned a
probability of 0:85�0:9, a wall is assigned a probability of 0:09�0:1 and an open space is assigned
a probability of about 0:01 to be perceived. The standard deviation around odometric readings
is about 5% of the mean.

Figure 12 shows the hmm corresponding to the simulated hallway environment. Observations
and orientation are omitted from the �gure for clarity. Nodes correspond to states in the
environment, while directed edges correspond to the corridors; the arrows point at the direction
in which the corridors were traversed. Further interpretation of the �gures is provided in the
following section.

193

Shatkay & Kaelbling

6.2 Evaluation Method

There are a number of di�erent ways of evaluating the results of a model-learning algorithm.
None are completely satisfactory, but they all give some insight into the utility of the results.
In this domain, there are transitions and observations that usually take place, and are therefore
more likely than the others. Furthermore, the relational information gives us a rough estimate
of the metric locations of the states. To get a qualitative sense of the plausibility of a learnt
model, we can extract an essential map from the learnt model, consisting of the states, the
most likely transitions and the metric measures associated with them, and ask whether this map
corresponds to the essential map underlying the true world.

Figures 11 and 12 are such essential versions of the true models, while Figures 15 and 17, shown
later, are essential versions of representative learnt ones (obtained from sequences gathered
under the perpendicularity assumption). Black dots represent the physical locations of states,
and each state is assigned a unique number. Multiple state numbers associated with a single
location typically correspond to di�erent orientations of the robot at that location. The larger
black circle represents the initial state. Solid arrows represent the most likely non-self transitions
between the states. Dashed arrows represent the other transitions when their probability is 0:2
or higher. Typically, due to the predetermined path we have taken, the connectivity of the
modeled environment is low, and therefore the transitions represented by dashed arrows are
almost as likely as the most likely ones. Note that the length of the arrows, within each plot, is
signi�cant and represents the length of the corridors, drawn to scale.

It is important to note that the �gures do not provide a complete representation of the models.
First, they lack observation and orientation information. We stress the fact that the �gures
serve more as a visual aid than as a plot of the true model. We are looking for a good topological
model rather than a geometrical model. The �gures provide a geometrical embedding of the
topological model. However, even when the geometry, as described by the relation matrix, is
di�erent, the topology, as described by the transition and observation matrices, can still be valid.

Traditionally, in simulation experiments, the learnt model is quantitatively compared to the
actual model that generated the data. Each of the models induces a probability distribution
on strings of observations; the asymmetric Kullback-Leibler divergence (Kullback & Leibler,
1951) between the two distributions is a measure of how good the learnt model is with respect
to the true model. Given a true probability distribution P = fp1; :::; png and a learnt one
Q = fq1; :::; qng, the kl divergence of Q with respect to P is:

D(P jjQ) def
=

nX
i=1

pi log2
pi

qi
:

We report our results in terms of a sampled version of the kl divergence, as described by Juang
and Rabiner (1985). It is based on generating sequences of su�cient length (5 sequences of 1000
observations in our case) according to the distribution induced by the true model, and comparing
their log-likelihood according to the learnt model with the true model log-likelihood. The total
di�erence in log-likelihood is then divided by the total number of observations, accumulated
over all the sequences, giving a number that roughly measures the di�erence in log-likelihood
per observation. Formally stated, let M1 be the true model and M2 a learnt one. By generating
K sequences S1; : : : ; SK , each of length T , from the true model,M1, the sampled kl-divergence,
Ds is:

Ds(M1jjM2) =

KX
i=1

[log(Pr(SijM1))� log(Pr(SijM2))]

KT
:

194

Learning Geometrically-Constrained HMMs

200 400 600 800 1000

200

400

600

800

1000

1200

-1500 -1250 -1000 -750 -500 -250

-1500

-1000

-500

500

1000

Figure 13: Sequence gathered by Ramona,

perpendicularity assumed.

Figure 14: Sequence generated by our simula-

tor, perpendicularity assumed.

We ignore the odometric information when applying the kl measure, thus allowing comparison
between purely topological models that are learnt with and without odometry.

6.3 Results within a Global Framework

We let Ramona go around the path depicted in Figure 11 and collect a sequence of about
300 observations, while assuming perpendicularity of the environment, that is, at every turning
point the angle of turn is 90�. Thus at each turn Ramona realigns its odometric readings with
its initial X and Y axes. Figure 13 plots the sequence of metric coordinates, gathered in this
way, while accumulating consecutive odometric readings, projected on hx; yi. We applied the
learning algorithm to the data 30 times. 10 of these runs were started from a k-means-based
initial model, 10 started from a tag-based initial model, and 10 started from a random initial
model. In addition we also ran the standard Baum-Welch algorithm, ignoring the odometric
information, 10 times. (Note that there is non-determinism even when using biased initial
models, since the k-means clustering starts from random seeds, and low7 random noise is added
to the data in all algorithms to avoid numerical instabilities, thus multiple runs give multiple
results). We report here the results obtained using the tag-based method, which is the most
appropriate initialization method in the general case. These results are contrasted with those
obtained when odometric information is not used at all. For a comparison of all four settings
the reader is referred to the complete report of this work (Shatkay, 1999).

Figure 15 shows the essential representations of typical learnt models starting from a tag-based
initial model. The geometry of the learnt model strongly corresponds to that of the true en-
vironment, and most of the states' positions were learnt correctly. Although the �gure does
not show it, the learnt observation distributions at each state usually match well with the true
observations.

To demonstrate the e�ect of odometry on the quality of the learnt topological model, we contrast
the plotted models learnt using odometry with a representative topological model learnt without

7. A random number between -1cm and 1cm is added to recorded distances that are typically several meters
long.

195

Shatkay & Kaelbling

0
15

16

1

2

3 4 5 6 7 8

9

10

11

12

1314

3 5 6 7 84

9

10

11

12

131415
0

16

1

2

16

10

8

7

5
0

12

1

9

2

3

14

4
6

11

13

15

Figure 15: Learnt model of the corridors Ra-

mona traversed.

Figure 16: The topology of a model learnt

without the use of odometry.

the use of odometric information. Figure 16 shows the topology of a typical model learnt without
the use of odometric information. In this case, the arcs represent only topological relationships,
and their length is not meaningful. The initial state is shown as a bold circle. It is clear that
the topology learnt does not match the characteristic loop topology of the true environment.

For obtaining statistically su�cient information, we generated 5 data sequences, each of length
1000, using Monte Carlo sampling from the hidden Markov model whose projection is shown in
Figure 12. One of these sequences is depicted in Figure 14. The �gure demonstrates that the
noise model used in the simulation is indeed compatible with the noise pattern associated with
real robot data. We used four di�erent settings of the learning algorithm:

� starting from a biased, tag-based, initial model and using odometric information;

� starting from a biased, k-means-based, initial model and using odometric information;

� starting from an initial model picked uniformly at random, while using odometric infor-
mation;

� starting from a random initial model without using odometric information (standard Baum-
Welch).

For each sequence and each of the four algorithmic settings we ran the algorithm 10 times. To
keep the discussion focused, we concentrate here on the �rst and the last of these settings and
the reader is referred to a more extensive report (Shatkay, 1999) for a complete discussion.

In all the experiments, N was set to be 44, which is the \correct" number of states; for gener-
alization, it will be necessary to use cross-validation or regularization methods to select model
complexity. Section 5 also suggests one possible heuristic for obtaining an estimate of the number
of states.

Figure 17 shows an essential version of one learnt model, obtained from the sequence shown
in Figure 14, using tag-based initialization. We note that the learnt model is not completely

196

Learning Geometrically-Constrained HMMs

0

12

34

5

6

12

131415

16 27

18

29

34 35 36

37

38

39 40

41

424310

11

7 8
9

26

30

22

3132

23

33
24

25

28

21

17 19
20

Figure 17: Learnt model of the simulated hallway environment.

accurate with respect to the true model. However, there is an obvious correspondence between
groups of states in the learnt and true models, and most of the transitions (as well as the
observations, which are not shown) were learnt correctly. The quality of the geometry of the
learnt model in this simulated large environment varies, and the geometrical results are not as
uniformly good as was the case when learning the smaller environment from real robot data.
As the environment gets large, the global relations between remote states, which are reected
in the geometrical consistency constraints, become harder to learn. Still, the topology of the
learnt model as demonstrated by our statistical experiments is good.

Table 1 lists the kl divergence between the true and learnt model, as well as the number
of runs until convergence was reached, for each of the 5 sequences for both the setting that
uses odometric information under tag-based initialization and the learning algorithm that does
not use odometric information, averaged over 10 runs per sequence. We stress that each kl
divergence measure is calculated based on new data sequences that are generated from the true
model, as described in Section 6.2. The 5 sequences from which the models were learnt do not
participate in the testing process.

The kl divergence with respect to the true model for models learnt using odometry, is about 5-6
times smaller than for models learnt without odometric data. The standard deviation around
the means is about 0.2 for kl distances for models learnt with odometry and 1.5 for the no-
odometry setting. To check the signi�cance of our results we used the simple two-sample t-test.
The models learnt using odometric information have statistically signi�cantly (p� 0:0005) lower
average kl divergence than the others.

Seq. # 1 2 3 4 5

With kl 0.981 1.290 1.115 1.241 1.241

Odo Iter # 16.70 20.90 22.30 12.70 27.50

No kl 6.351 4.863 5.926 6.261 4.802

Odo Iter # 124.1 126.0 113.0 107.4 122.9

Table 1: Average results of two learning settings with �ve training sequences.

197

Shatkay & Kaelbling

In addition, the number of iterations required for convergence when learning using odometric
information is roughly 4-5 times smaller than that required when ignoring such information.
Again, the t-test veri�es the signi�cance of this result.

Under all three initialization settings, the models learnt are topologically somewhat inferior (and
this is with high statistical signi�cance), in terms of the kl divergence, to those learnt without
enforcing additivity, reported in earlier papers (Shatkay & Kaelbling, 1997, 1998). This is likely
to be a result of the very strong constraints enforced during the learning process, which prevent
the algorithm from searching better areas of the learning-space, and restrict it to reach poor local
maxima. The geometry looks superior in some cases, but it is not signi�cantly better. However,
there seems to be less variability in the quality of the geometrical models across multiple runs
when additivity is enforced.

While the details of an extensive comparison between the di�erent initialization methods are
beyond the scope of this paper, we point out that our studies of both small and large models
show that when large models and long data sequences are involved, random initialization often
results in lower KL-divergence than the tag-based initialization. This again has to do with the
strong bias of tag-based initialization, which can lead to very peaked models compared with the
less-peaked distributions associated with the true model. Random initialization leads to atter
models. As the KL-divergence strongly penalizes models that are much more peaked than the
true ones, randomly initialized models are often closer, in terms of this measure, to the true
models than the very peaked ones learnt from other initial models. When learning small models,
where su�cient training data is available, the tag-based initialization results in models that are
clearly superior to the random ones. Again, the reader is referred to the complete report of this
work (Shatkay, 1999) for a comparative study of all initialization methods under the various
settings.

6.4 Results within a Relative Framework

We applied the algorithm described in Section 4.3, extended to accommodate the state-relative
constraints (as listed in Section 3.3.2). The data used was gathered by the robot from the
same environment, and generated from the same simulated model as before (Figures 11, 12).
However, here the data is generated without assuming perpendicularity. This means that the x
and y coordinates are not realigned after each turn with the global x and y axes, but rather,
recorded \as-is." The evaluation methods stay as described above.

Figure 18 shows the projection of the odometric readings that Ramona recorded along the
x and y dimensions, while traversing this environment. For obtaining statistically su�cient
information, we generated 5 data sequences, each of length 800, using Monte Carlo sampling
from the hidden Markov model whose projection is shown in Figure 12. One of these sequences
is depicted in Figure 19.

Figure 20 shows a typical model obtained by applying the algorithm enforcing the complete
geometrical consistency, to the robot data shown in Figure 18, using tag-based initialization.
We note that the rectangular geometry of the environment is preserved, although state 0 does
not participate in the loop. This is explained by observing the corresponding area of the true
environment as depicted in Figure 11, consisting of the 4 states clustered at the bottom left
corner (0, 14, 15 and 16). Due to the relatively large number of states that are close together in
that area of the true environment, it was not recognized that we ever returned particularly to
state 0 during the loop. Therefore, there was only one transition recorded from state 0 to state

198

Learning Geometrically-Constrained HMMs

-2500 -2000 -1500 -1000 -500 500 1000

500

1000

1500

2000

2500

3000

-1500 -1000 -500 500

-1500

-1000

-500

500

1000

1500

Figure 18: Sequence gathered by Ramona, no

perpendicularity assumed.

Figure 19: Sequence generated by our simula-

tor, no perpendicularity assumed.

0

1

2

3

4
5

6

7

89

10

11

12

13

14
15

16

Figure 20: Learnt model of the corridors Ramona traversed. Initialization is tag-based.

1 according to the expected transition counts calculated by the algorithm. When projecting the
angles to maintain additivity, (as described in Section 4.3.2), the angle from state 0 to 1 was
therefore compromised, allowing geometrical consistency to maintain the rectangular geometry
among the more regularly visited states.

For the purpose of quantitatively evaluating the learning algorithm we list in Table 2 the kl
divergence between the true and learnt model, as well as the number of iterations until conver-
gence was reached, for each of the 5 simulation sequences with/without odometric information,
averaged over 10 runs per sequence. The table demonstrates that the kl divergence with re-
spect to the true model for models learnt using odometric data, is about 8 times smaller than
for models learnt without it. To check the signi�cance of our results we again use the simple
two-sample t-test. The models learnt using odometric information have highly statistically sig-
ni�cantly (p� 0:0005) lower average kl divergence than the others. In addition, the number of

199

Shatkay & Kaelbling

Seq. # 1 2 3 4 5

With kl 1.46 1.18 1.20 1.02 1.22

Odo Iter # 11.8 36.8 30.7 24.6 33.3

No kl 6.91 9.93 10.03 9.54 12.43

Odo Iter # 113.3 113.1 102.0 104.2 112.5

Table 2: Average results of 2 learning settings with 5 training sequences.

iterations required for convergence when learning using odometric information is smaller than
required when ignoring such information. Again, the t-test veri�es the signi�cance (p < 0:005)
of this result.

It is important to point out that the number of iterations, although much lower, does not auto-
matically imply that our algorithm runs in less time than the non-odometric Baum-Welch. The
major bottleneck is caused by the need to compute within the forward-backward calculations,
as described in Section 4.2.1, the values of the normal and the von-Mises densities. These re-
quire the calculation of exponent terms rather than simple multiplications, slowing down each
iteration, under the current na��ve implementation. However, we can solve this by augmenting
the program with look-up tables for obtaining the relevant values rather than calculating them.
In addition, we can take advantage of the symmetry in the relations table to cut down on the
amount of calculation required. It is also possible to use the fact that many odometric rela-
tions remain unchanged (particularly in the later iterations of the algorithm) from one iteration
to the next, and therefore values can be cached and shared between iterations rather than be
recalculated at each iteration.

6.5 Reducing the Amount of Data

Learning hmms obviously requires visiting states and transitioning between them multiple times,
to gather su�cient data for robust statistical estimation. Intuitively, exploiting odometric data
can help reduce the number of visits needed for obtaining a reliable model.

To examine the inuence of reduction in the length of data sequences on the quality of the learnt
models, we took one of the 5 sequences and used its pre�xes of length 100 to 800 (the complete
sequence), in increments of 100, as training sequences. We ran the two algorithmic settings over
each of the 8 pre�x sequences, 10 times repeatedly. We then used the kl-divergence as described
above to evaluate each of the resulting models with respect to the true model. For each pre�x
length we averaged the kl-divergence over the 10 runs.

The plot in Figure 21 depicts the average kl-divergence as a function of the sequence length for
each of the two settings. It demonstrates that, in terms of the kl divergence, our algorithm,
which uses odometric information, is robust in the face of data reduction, (down to 200 data
points). In contrast, learning without the use of odometry quickly deteriorates as the amount
of data is reduced.

We note that the data sequence is twice as \wide" when odometry is used than when it is
not; that is, there is more information in each element of the sequence when odometry data is
recorded. However, the e�ort of recording this additional odometric information is negligible,
and is well rewarded by the fact that fewer observations and less exploration are required for
obtaining a data sequence su�cient for adequate learning.

200

Learning Geometrically-Constrained HMMs

0 200 400 600 800
Seq. Length

10

20

30

40

50

KL

Odometry Used

No Odometry

Figure 21: Average kl divergence as a function of sequence length.

7 Conclusions

Odometric information, which is often readily available in the robotics domain, makes it possible
to learn hidden Markov models e�ciently and e�ectively, while using shorter training sequences.
More importantly, in contrast to the traditional perception of viewing the topological and the
geometric models as two distinct types of entities, we have shown that the odometric information
can be directly incorporated into the traditional topological hmm model, while maintaining
convergence of the reestimation algorithm to a local maximum of the likelihood function.

Our method uses the odometric information in two ways. We �rst choose an initial model,
based on the odometric information. An iterative procedure, which extends the Baum-Welch
algorithm, is then used to learn the topological model of the environment while learning an
additional set of constrained geometric parameters. The additional set of constrained parame-
ters constitutes an extension to the basic hmm/pomdp model of transitions and observations.
Even though we are primarily interested in the underlying topological model (transition and
observation probabilities), our experiments demonstrate that the use of odometric relations can
reduce the number of iterations and the amount of data required by the algorithm, and improve
the resulting model.

The initialization procedure and the enforcement of the additivity constraint over relatively
small models prove helpful both topologically and geometrically. An extensive study (Shatkay,
1999) shows that for long data sequences, generated from large models, enforcing only anti-
symmetry rather than additivity, leads to better topological models. This is because in these
cases, initialization is not always good, and additivity may over-constrain the learning to an
unfavorable area. Learning large models may bene�t from enforcing only anti-symmetry during
the �rst few iterations, and complete additivity in later iterations. Alternatively, we may use our
algorithm, enforcing additivity, to learn separate models for small portions of the environment,
combining them later into one complete model. A similar idea of combining small model-
fragments into a complete map of an environments was applied, in the context of geometrical
maps, in recent work by Leonard and Feder (2000).

201

Shatkay & Kaelbling

The work presented here demonstrates how domain-speci�c information and constraints can be
enforced as part of the statistical estimation process, resulting in better models, while requiring
shorter data sequences. We strongly believe that this idea can be applied in domains other than
robotics. In particular, the acquisition of hmms for use in molecular biology may greatly bene�t
from exploiting geometrical (and other) constraints on molecular structures. Similarly, temporal
constraints may be exploited in domains in which pomdps are appropriate for decision-support,
such as air-tra�c control and medicine.

Acknowledgments

We thank Sebastian Thrun for his insightful comments throughout this work, John Hughes and Luis Ortiz

for their helpful advice, Anthony Cassandra for his code for generating random distributions, Bill Smart

for sustaining Ramona and Jim Kurien for providing the low level code for driving her. The presentation

in this paper has bene�ted from the comments made by the anonymous referees to whom we are grateful.

This work was done while both authors were at the Computer Science department at Brown University,

and was supported by DARPA/Rome Labs Planning Initiative grant F30602-95-1-0020, by NSF grants

IRI-9453383 and IRI-9312395, and by the Brown University Graduate Research Fellowship.

202

Learning Geometrically-Constrained HMMs

Appendix A. An Overview of the Odometric Learning Algorithm

The algorithm takes as input an experience sequence E = hr; V i, consisting of the odometric
sequence r and the observation sequence V , as de�ned in the beginning of Section 4.2. The
number of states is also assumed to be given.

Learn Odometric HMM(E)
1 Initialize matrices A;B;R (See Section 5)
2 max change 1
3 while (max change > �)
4 do Calculate Forward probabilities, � (Equation 4)
5 Calculate Backward probabilities, � (Equation 5)
6 Calculate state-occupation probabilities, (Equation 6)
7 Calculate State-transition probabilities, �; (Equation 7)
8 Old A A; Old B B

9 A Reestimate (A) (Equation 8, left)
10 B Reestimate (B) (Equation 8, right)
11 R� Reestimate (R�) (Equations 12 and 13)
12 hRx; Ryi Reestimate(Rx; Ry) (Equations 10 and 11)
13 max change MAX(Get Max Change(A; Old A);

Get Max Change(B; Old B))

The equations referenced in Step 12 correspond to updates under the perpendicularity assump-
tion, where a global framework is used. See (Shatkay, 1999) for update formulae within a
state-relative framework.

If additivity is enforced, step 11 is followed by a projection of the reestimated R� onto an additive
a�ne space, as described in Section 4.3.2. In addition, step 12 is substituted by the procedure
described in Section 4.3.1. The reader is referred again to (Shatkay, 1999) for further detail.

Get Max Change is a function that takes two matrices and returns the maximal element-wise
absolute di�erence between them. � is a constant set to denote the margin of error on changes
in parameters. When the change in parameters is \small enough", the model is regarded as
\unchanged".

203

Shatkay & Kaelbling

References

Abe, N., & Warmuth, M. K. (1992). On the computational complexity of approximating distri-
butions by probabilistic automata. Machine Learning, 9 (2), 205{260.

Angluin, D. (1987). Learning regular sets from queries and counterexamples. Information and
Computation, 75, 87{106.

Asada, M. (1991). Map building for a mobile robot from sensory data. In Iyengar, S. S., &
Elfes, A. (Eds.), Autonomous Mobile Robots, pp. 312{322. IEEE Computer Society Press.

Bartels, R. (1984). Estimation in a bidirectional mixture of von Mises distributions. Biometrics,
40, 777{784.

Basye, K., Dean, T., & Kaelbling, L. P. (1995). Learning dynamics: System identi�cation for
perceptually challenged agents. Arti�cial Intelligence, 72 (1).

Baum, L. E., Petrie, T., Soules, G., & Weiss, N. (1970). A maximization technique occurring
in the statistical analysis of probabilistic functions of Markov chains. The Annals of
Mathematical Statistics, 41 (1), 164{171.

Cassandra, A. R., Kaelbling, L. P., & Kurien, J. A. (1996). Acting under uncertainty: Discrete
Bayesian models for mobile-robot navigation. In Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems.

DeGroot, M. H. (1986). Probability and Statistics (2nd edition). Addison-Wesley.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, 39 (1), 1{38.

Dissanayake, G., Newman, P., Clark, S., Durrant-Whyte, H. F., & Csorba, M. (2001). A solution
to the simultaneous localization and map building (SLAM) problem. IEEE Transactions
on Robotics and Automation, 17 (3).

Duda, R. O., & Hart, P. E. (1973). Unsupervised Learning and Clustering, chap. 6. John Wiley
and Sons.

Elfes, A. (1989). Using occupancy grids for mobile robot perception and navigation. Computer,
Special Issue on Autonomous Intelligent Machines, 22 (6), 46{57.

Engelson, S. P., & McDermott, D. V. (1992). Error correction in mobile robot map learning.
In Proceedings of the IEEE International Conference on Robotics and Automation, pp.
2555{2560, Nice, France.

Gold, E. M. (1978). Complexity of automaton identi�cation from given data. Information and
Control, 37, 302{320.

Gumbel, E. G., Greenwood, J. A., & Durand, D. (1953). The circular normal distribution:
Theory and tables. American Statistical Society Journal, 48, 131{152.

Hopcroft, J. E., & Ullman, J. D. (1979). Introduction to Automata Theory, Languages, and
Computation. Addison & Wesley.

204

Learning Geometrically-Constrained HMMs

Juang, B. H. (1985). Maximum likelihood estimation for mixture multivariate stochastic obser-
vations of Markov chains. AT&T Technical Journal, 64 (6).

Juang, B. H., & Rabiner, L. R. (1985). A probabilistic distance measure for hidden Markov
models. AT&T Technical Journal, 64 (2), 391{408.

Koenig, S., & Simmons, R. G. (1996a). Passive distance learning for robot navigation. In
Proceedings of the Thirteenth International Conference on Machine Learning, pp. 266{
274.

Koenig, S., & Simmons, R. G. (1996b). Unsupervised learning of probabilistic models for robot
navigation. In Proceedings of the IEEE International Conference on Robotics and Automa-
tion.

Kuipers, B., & Byun, Y.-T. (1991). A robot exploration and mapping strategy based on a se-
mantic hierarchy of spatial representations. Journal of Robotics and Autonomous Systems,
8, 47{63.

Kullback, S., & Leibler, R. A. (1951). On information and su�ciency. Annals of Mathematical
Statistics, 22 (1), 79{86.

Leonard, J., Durrant-Whyte, H. F., & Cox, I. J. (1991). Dynamic map building for an au-
tonomous mobile robot. In Iyengar, S. S., & Elfes, A. (Eds.), Autonomous Mobile Robots,
pp. 331{338. IEEE Computer Society Press.

Leonard, J. J., & Feder, H. J. S. (2000). A computationally e�cient method for large-scale con-
current mapping and localization. In Hollerbach, J., & Kodischek, D. (Eds.), Proceedings
of the Ninth International Symposium on Robotics Research.

Liporace, L. A. (1982). Maximum likelihood estimation for multivariate observations of Markov
sources. IEEE Transactions on Information Theory, 28 (5).

Mardia, K. V. (1972). Statistics of Directional Data. Academic Press.

Mataric, M. J. (1990). A distributed model for mobile robot environment-learning and naviga-
tion. Master's thesis, MIT, Arti�cial Intelligence Laboratory.

McLachlan, G. J., & Krishnan, T. (1997). The EM Algorithm and Extensions. John Wiley &
Sons.

Moravec, H. P. (1988). Sensor fusion in certainty grids for mobile robots. AI Magazine, 9 (2),
61{74.

Moravec, H. P., & Elfes, A. (1985). High resolution maps from wide angle sonar. In Proceedings
of the International Conference on Robotics and Automation, pp. 116{121.

Nourbakhsh, I., Powers, R., & Birch�eld, S. (1995). Dervish: An o�ce-navigating robot. AI
Magazine, 16 (1), 53{60.

Pierce, D., & Kuipers, B. (1997). Map learning with uninterpreted sensors and e�ectors. Arti-
�cial Intelligence, 92 (1-2), 169{227.

205

Shatkay & Kaelbling

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77 (2), 257{285.

Rivest, R. L., & Schapire, R. E. (1987). Diversity based inference of �nite automata. In
Proceedings of the IEEE Twenty Eighth Annual Symposium on Foundations of Computer
Science, pp. 78{87, Los Angeles, California.

Rivest, R. L., & Schapire, R. E. (1989). Inference of �nite automata using homing sequences. In
Proceedings of the Twenty First Annual Symposium on Theory of Computing, pp. 411{420,
Seattle, Washington.

Ron, D., Singer, Y., & Tishbi, N. (1994). Learning probabilistic automata with variable mem-
ory length. In Proceedings of the Seventh Annual Workshop on Computational Learning
Theory, pp. 35{46.

Ron, D., Singer, Y., & Tishbi, N. (1995). On the learnability and usage of acyclic probabilistic
�nite automata. In Proceedings of the Eighth Annual Workshop on Computational Learning
Theory, pp. 31{40.

Ron, D., Singer, Y., & Tishby, N. (1998). On the learnability and usage of acyclic probabilistic
�nite automata. Journal of Computer and Systems Science, 56 (2).

Shatkay, H. (1999). Learning Models for Robot Navigation. Ph.D. thesis, Department of Com-
puter Science, Brown University, Providence, RI.

Shatkay, H., & Kaelbling, L. P. (1997). Learning topological maps with weak local odometric
information. In Proceedings of the Fifteenth International Joint Conference on Arti�cial
Intelligence, Nagoya, Japan.

Shatkay, H., & Kaelbling, L. P. (1998). Heading in the right direction. In Proceedings of the
Fifteenth International Conference on Machine Learning, Madison, Wisconsin.

Simmons, R. G., & Koenig, S. (1995). Probabilistic navigation in partially observable environ-
ments. In Proceedings of the International Joint Conference on Arti�cial Intelligence.

Smith, R., Self, M., & Cheeseman, P. (1991). A stochastic map for uncertain spatial relation-
ships. In Iyengar, S. S., & Elfes, A. (Eds.), Autonomous Mobile Robots, pp. 323{330. IEEE
Computer Society Press.

Thrun, S. (1999). Learning metric-topological maps for indoor mobile robot navigation. AI
Journal, 1, 21{71.

Thrun, S., & B�ucken, A. (1996a). Integrating grid-based and topological maps for mobile robot
navigation. In Proceedings of the Thirteenth National Conference on Arti�cial Intelligence,
pp. 944{950.

Thrun, S., & B�ucken, A. (1996b). Learning maps for indoor mobile robot navigation. Tech. rep.
CMU-CS-96-121, School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA.

Thrun, S., Burgard, W., & Fox, D. (1998a). A probabilistic approach to concurrent map acqui-
sition and localization for mobile robots. Machine Learning, 31, 29{53.

206

Learning Geometrically-Constrained HMMs

Thrun, S., Gutmann, J.-S., Fox, D., Burgard, W., & Kuipers, B. J. (1998b). Integrating topolog-
ical and metric maps for mobile robot navigation: A statistical approach. In Proceedings
of the Fifteenth National Conference on Arti�cial Intelligence, pp. 989{995.

Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer.

207

