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ABSTRACT

Categorization of biomedical articles is a central task for supporting

various curation efforts. It can also form the basis for effective bio-

medical text mining. Automatic text classification in the biomedical

domain is thus an active research area. Contests organized by the

KDD Cup (2002) and the TREC Genomics track (since 2003) defined

several annotation tasks that involved document classification, and

provided training and test data sets. So far, these efforts focused on

analyzing only the text content of documents. However, as was noted

in the KDD’02 text mining contest—where figure-captions proved to

be an invaluable feature for identifying documents of interest—images

often provide curators with critical information. We examine the pos-

sibility of using information derived directly from image data, and of

integrating it with text-based classification, for biomedical document

categorization.Wepresentamethod forobtaining features from images

and for using them—both alone and in combination with text—to per-

form the triage task introduced in the TREC Genomics track 2004.

The task was to determine which documents are relevant to a given

annotation task performed by the Mouse Genome Database curators.

We show preliminary results, demonstrating that the method has a

strong potential to enhance and complement traditional text-based

categorization methods.

Contact: shatkay@cs.queensu.ca

1 INTRODUCTION

Categorization of biomedical text is pivotal both for supporting

curation tasks in biological databases and for providing researchers

with literature appropriate for their specific information needs. For

example, curators for the Mouse Genome Database (MGD) need

publications with specific contents to validate the expression of

genes under certain conditions. Other examples for curation-related

task include the identification of papers discussing subcellular local-

ization in support of the annotation of proteins with Gene Ontology

(GO) codes for subcellular component, or of papers discussing

function—to be used as evidence for functional annotation. On

the other side of the quest for information, scientists in individual

labs may want to easily identify papers that are likely to be related to

their own research, or may look for papers discussing a new area of

interest into which they are ready to venture. Underlying all these

examples is the need to identify a subset of documents, with some

common topical characteristic, within a large set of documents. The

latter set may include hundreds of documents returned by a broad

PubMed search, or possibly thousands of documents in a certain

journal, or even the millions of documents comprising the whole of

MEDLINE.

In the past few years several initiatives were established to

encourage and evaluate work on biomedical text categorization.

The KDD’02 cup (Yeh et al., 2003) had a task in which documents

were to be categorized as containing (or not containing) evidence

for gene expression within the Drosophila wild type, in support of

FlyBase curation. For the past two years the TREC Genomics track

(Hersh et al., 2005, 2006) featured a text categorization task, in

which documents were to be classified according to their evidence

contents in support of assigning GO annotation to mouse genes. Part

of Task 2 of the BioCreative challenge (Hirschman et al., 2005)
involved identifying papers that contain evidence for assigning GO

codes to human proteins, in support of Swiss-Prot curation.

In all these tasks the documents were categorized based only on

the text occurring in them. While participating in the KDD cup,

Regev et al. (2002) noted that the use of figure captions proved

particularly helpful for their high performance in identifying

documents discussing gene expression. Following this work, figure

captions were also used by participants in the TRECGenomics track

(Darwish and Madkour, 2005) as part of the text-features used for

categorization. The success of using figure captions is related to

the fact that figures contain important cues that are typically used by

database curators and annotators to quickly scan documents and

distinguish relevant from irrelevant ones. FlyBase curators have

indeed indicated that the experimental results shown in papers

and used in support of curation, are often presented in figures

and their captions (Yeh et al., 2003). Figures are often content

rich and concisely summarize the most important results or methods

used and described in an article.

Our present work is motivated by this idea, taking it one step

further; namely, we investigate the use of features derived directly

from the image data of the figures (as opposed to just from the text of

the figure captions) for biomedical document categorization. It is

intuitively clear that image and text data, especially in scientific

documents, tend to complement each other. Moreover, psychologi-

cal studies on the contribution of multimodal data (image, anima-

tion, text) to effective understanding in human readers, confirm the

efficacy of the combination of image and text for improving the

processing and understanding of information by humans, compared

with the unimodal form (i.e. either text or image data alone)

(Mayer and Moreno, 2002). We report here a first experiment,

introducing image features into the text categorization process,

and show preliminary results in applying it to a subset of the

TREC Genomics data.
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Notably, image-based categorization of documents is an

established research field (Chen and Blostein, 2006). It is applied

in diverse areas ranging from digital library construction and

document image retrieval to office automation. Document image

classifiers differ vastly in the problems they solve, in their use of

training data to construct class models, and in the choice of

document features and classification algorithms. There is no single

general, adaptable, high-performance image-based classifier, due to

the great variety of documents, the diverse criteria used to define

document classes, and the ambiguity in the class definition itself.

Thus, the specific task at hand needs to be considered when

choosing and applying image-based categorization methods in

the biomedical domain.

To the best of our knowledge, the use of figure images themselves

has not yet been considered for general biomedical document triage

and for automated support of biomedical annotation and curation.

Perhaps closest to ours is work by Murphy et al. (Huang and

Murphy, 2004; Murphy et al., 2004), which uses image cate-

gorization for identifying subcellular localization articles. They

provide an excellent in-depth investigation of a specific task: iden-

tifying and interpreting a specific type of image that is characteristic

of localization experiments. While their extensive work utilizes

information extraction from text to help improve image cate-

gorization and interpretation, it is not directed at the integration

of text and image features for the purpose of document cate-

gorization. Moreover, the research focuses on protein subcellular

localization and is not generalized to other biomedical cate-

gorization tasks.

In this paper, we explore the possibility of using figures for

the document triage task in support of biomedical database

curation. We describe a first attempt at using image features

for biomedical text categorization, as well as at the integration

of such features with the more traditional text-data. The next section

outlines the methods we apply, while Section 3 describes the data

set and demonstrates preliminary results of applying our integrated

categorization method. Section 4 concludes and outlines future

work.

2 USING FIGURES FOR DOCUMENT TRIAGE

Document triage can be viewed as a binary classification task.

The input is a set of full-text documents, and each document is

classified as either positive (relevant for annotation) or negative
(irrelevant for annotation). To automate the task, a classifier is

trained using a set of labeled training documents, and is then applied

to the test documents to predict their class. Our basic idea is to create

an image-based vector description for each document in both the

training and the test sets. Once a vector description is created,

traditional classification methods can be applied to the data. In

this paper we focus on the simple naı̈ve Bayes classifier, although

more advanced methods are likely to yield improvement. The

image-description approach is adapted from work by Duygulu

et al. (2002) on content-based image retrieval. Duygulu et al.
segment images into regions, cluster similar regions across the

different images into what they call ‘‘blobs’’, and thus create

and use a small vocabulary of characteristic segments for represent-

ing images. Through most of this section, (2.1, 2.2), we describe our

image feature extraction and the document representation in terms

of image features. The last part of the section (2.3) provides a brief

description of a first integrated framework for combining image

features and text data for biomedical document classification.

Our experiment and results using a subset of the TREC Genomics

2004 data are described in Section 3.

2.1 Document descriptors via image features

As with any supervised text categorization task, the training data

consists of documents that have been manually labeled by human

curators as positive or negative. Typically in text categorization, the
documents are then represented as weighted vectors of terms or of

words. (For reviews see: de Bruijn and Martin, 2002, Shatkay and

Feldman, 2003.) In the heart of our approach is the representation of

documents as vectors of image features rather than of text features1,
which we describe in detail below.

Before delving into the details, in a nutshell the method comprises

five main steps: First, figures are extracted from the full-text

documents. As single figures often display multiple pictures, they

are broken in a segmentation step into subfigures. These subfigures

are then classified into several high-level types of images that we

have defined. These three steps are shown in Figure 1. Within each

class, clustering is then applied to refine the grouping of images by

specific contents. Each subfigure is assigned an identifier coding its

class and its cluster. In the final step, each document is then

represented as a vector over the space of subfigure-identifiers as

features (similar to the vector space over terms or words typically

used in text). We discuss these steps in detail below.

a) Figure extraction. This step starts with full-text XML docu-

ments. Captions and links to the figures are extracted from the XML

format, figure images are downloaded from the publisher’s web site.

A sample document is shown in Figure 1(i). One of the extracted

figures is shown in Figure 1(ii). For the training and tests described

here we used a total of about 4,400 figure images, of which 1,900
came from the training and 2,500 from the test documents.

b) Figure segmentation. As evident from Figure 1(ii), each

image may consist of several subfigures. Each image is thus seg-

mented into its subfigures using an approach based on connected

components analysis (Gonzalez and Woods, 2002). Such analysis is

performed on thresholded black-and-white images, where con-

nected components are regions of neighboring foreground pixels.

The connectedness is defined based on eight-neighbors of each

pixel. Figure 1(iii) demonstrates the results of such segmentation.

We note that this is not a fool-proof procedure, and errors are

expected to occur. In the data described here, we identified a

total of about 26,500 subfigures (�11,000 in the training and

�15,500 in the test set).

c) Subfigure classification. The subfigures identified in step b
may illustrate various types of data and be organized in a variety of

layouts. As pointed out by Murphy et al. (2002), there are no uni-

form standards for figure organization in the scientific literature. As

shown in Figure 2, we have identified several prominent types of

figures in the scientific literature and use these types for categorizing

subfigures. Obviously this ‘‘ontology’’ of image types is neither

complete nor perfect, but has proven to be a useful first step for the

limited scope in which it is used here.

Subfigure classification forms the basis for creating labels that are

later used to represent image features in each figure. Currently, at

1We note that for combining text and figures we do use both text and image

features.
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the first level, images are classified into Graphical, Experimental
and Other classes. For the Experimental class, we currently define

only three subclasses: Fluorescence Microscopy, Gel Electro-
phoresis, andOther Microscopy. These three subclasses are visually
distinct and correspond to clearly different experimental settings.

Obviously, more classes should be defined to accommodate other

types of experimental imaging. Graphical images can also be

partitioned into subtypes. For instance: Line Chart, Bar Chart

and Other Diagrams. However, in the experiments described

here graphical images are not further partitioned.
In order to train a classifier to categorize subfigures under

this classification scheme, we manually labeled a few hundred

subfigures in each class (500 Graphical subfigures, 500 Fluores-
cence Microscopy, 300 Gel Electrophoresis, and 300 Other
Microscopy). We use two Support Vector Machine (SVM) classi-

fiers: one at the root level to classify the images into Graphical vs.

Fig. 1. (i) A sample input documentwith PubMed Identifier 12235125 (Widlund et al., 2002). (Figures reproducedwith permission of the Rockefeller Univsrsity

press.) The document has nine pages and six figures. (ii) Extract all the figures from the document and save as image formats, such as JPEG or GIF. One of the

extracted figures is shown enlarged. (Corresponds to step a below.) (iii) Figure segmentation based onConnected Components analysis. Subfigures are extracted

from each figure. Connected components whose bounding box areas are too small are discarded since they are most likely characters used to label figures. The

example document has a total of 39 subfigures. (Step b below.) (iv) Subfigure classification using a hierarchical scheme as defined in Figure 2. (Step c below.)

Fig. 2. The hierarchical image classification scheme for subfigures.A sample image is shown for each class. At the top level, images are classified intoGraphical

and Experimental images. Other types of images found in publications include photographs such as pictures of mice, author images, etc. In our current work, we

manually pre-filter the extracted subfigures to remove suchOther images. At the second level,Experimental images are classified intoFluorescenceMicroscopy,

Gel Electrophoresis, and Other Microscopy images. Graphical images are classified into Line Charts, Bar Charts, and Other Diagrams. In our experiments,

Graphical images are not further classified. We focus on classification of Experimental images into Gel Electrophoresis, Fluorescence Microscopy, and Other

Microscopy images.
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Experimental images, and the other at the second level of the

classification hierarchy to further classify Experimental images

into one of the three subclasses. Thus, every subfigure is assigned

one of four class labels: Graphical, Fluorescence Microscopy, Gel
Electrophoresis, or Other Microscopy. Examples of subfigure clas-

sification results are shown in Figure 1(iv). Using a stratified 10-fold

cross validation, the first level classifier for separating Graphical
from Experimental subfigures demonstrates about 95% accuracy,

while the second classifier that separates the three types of experi-

mental subfigures demonstrates a level of 93% accuracy. Note that

this is not the ultimate categorization task discussed in this paper;

rather, it is a preprocessing step used towards representing images

that appear in scientific papers.

To facilitate classification by SVM, subfigures must be repre-

sented as feature vectors. The following 46 features are used for

representing subfigures in this stage:

� Statistics based on gray-level histograms. The histograms

represent the distribution of pixels in the subfigures according

to their gray-level. Four statistics are derived from thehistogram:

the first three moments (mean, variance, and skewness) as well

as the entropy of the gray-scale distribution (Gonzalez and

Woods, 2002).

� Haralick’s texture-features (Haralick et al., 1973), based on the
co-occurrence of pixels within the subfigure. The co-occurrence

matrix provides information about co-occurring pixels of spe-

cific values, orientation and distance. Six features are derived

from the matrix including, among others, contrast (variation
in gray level), correlation (likelihood of co-occurrence for

specified pixel pairs), and homogeneity (formally described as

Inverse Difference Moment).

� Edge direction histogram (Jain and Vailaya, 1998), originally

used for shape-based retrieval. Edges are detected in the sub-

figure, using Canny’s edge detector (Canny, 1986). A histogram

which bins together edges sharing a similar direction is then

formed.Our implementationuses abingranularityof 10�, result-
ing in a histogram of 36 bins. The bin sizes (i.e. the number of

edges in each of the bins) are used as features.

The image feature vectors are normalized before classifying

them. Classification is done using Weka’s (Witten and Frank,

2005) implementation of Support Vector Machines, with the radial

basis function kernel.

d) Subfigure clustering into finer groups. In the previous step

subfigures were classified into one of four coarsely-defined classes.

In the relatively small training set (256 documents) described here

alone there were about 11,000 subfigures. As it was expected that

the four broad manually defined classes, while intuitively clear, are

unlikely to provide sufficient discrimination among thousands of

subfigures, we use unsupervised clustering to refine the grouping

of similar and related images into tight subsets. Since the number of

subfigures assigned to the Fluorescence Microscopy class is about

4 times larger than the number of subfigures assigned to each of

the other two classes, the Fluorescence Microscopy class is sub-

clustered into 20 clusters, while the other classes are sub-clustered

into 10 clusters each. Clearly, a different number of clusters may be

used, and may yield different results. We have chosen the current

numbers based on the total size of the image set used here, the total

number of sub-figures stemming from it, and based on several

experimental runs. We expect to test more methodically in future

studies how the number of clusters affects the classification perfor-

mance. While this is an interesting point whenever clustering is

concerned, it is not a central issue for the work presented here.

The clustering step groups together images with similar charac-

teristics. In this study, we use the simple k-means algorithm,

as implemented in Weka (Witten and Frank, 2005). The features

considered are the same ones used for the subfigure classification

described in step c above. As this is a first study on the use of images

for biomedical text categorization, we have not yet explored the

range of possibilities for representation, classification and cluster-

ing, and expect to do so in the future. A discussion of the variety of

methods for document image classification techniques is given in a

previous survey (Chen and Blostein, 2006).

To summarize this stage, subfigures within each of the four

classes that were formed in step c are clustered into finer groups.

The clustering results are used to assign a cluster label to each

subfigure, which together with the class label serve to characterize

each subfigure in every document.

e) Document representation as an image-based feature vector. In

steps c and d each subfigure has been assigned both a class name and a

cluster number. Combined, this information forms a label character-

izing each subfigure in terms of its class and cluster. For example, the

top left subfigure in Figure 1(iii) is assigned the label F17, where F
stands for Fluorescence Microscopy and 17 stands for cluster 17
among the 20 clusters of Fluorescence Microscopy subfigures. The

labels of all the subfigures in each document are taken as new kinds of

terms used to represent each document based only on its image fea-

tures. A feature vector is then constructed from the description, similar

to the way weighted term vectors are built from text. For example, the

description of the document shown in Figure 1(i) is shown in Figure 3

(before vectorization and termweighting is performed). In this descrip-

tion, G represents Gel Electrophoresis, F represents Fluorescence
Microscopy and E represents Other Microscopy, while ‘‘graphics’’

denotes subfigures that are non-experimental Graphical images.

This image description was created by concatenating the labels of

39 subfigures, comprising the six figures in the whole article.

The corresponding vector representation under a simple term-

frequency weighting scheme is shown in Figure 4. This is a

41-dimensional vector, as there are 10 Gel Electrophoresis
clusters, 20 Fluorescence Microscopy clusters, 10 Other Microscopy
clusters, and a single Graphical class that is not subclustered. In this
case each number in the vector represents the number of times the

respective feature occurred in the representation shown in Figure 3.

2.2 Image-based classification with naı̈ve Bayes

Given the image-based description created in step e above, each

document is further converted into an n-dimensional feature vector,

Fig. 3. The document shown in Figure 1(i), represented using only subfigure

identifier terms.
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where n is the total number of distinct image-based terms (where

a term is a descriptor such as ‘‘graphics’’ or ‘‘E7’’ above). For each
article, every such term is weighted according to its frequency in

the article, using MALLET’s (McCallum, 2002) default weighting

scheme.

Once the feature vectors are formed, we build a naı̈ve Bayes

Classifier using all the training documents, to distinguish positive
articles (relevant for curation) from negative ones (irrelevant for

curation). Naı̈ve Bayes is a simple and popular classification

method; given its simplicity and ease of implementation, it performs

well in practice (Mitchell, 1997). The naı̈ve Bayes classifier is

built by obtaining statistics from the set of labeled training data.

A document D, represented by its feature vector (d1, . . . , dn),
where in our case di is the weight of the ith subfigure-identifier

term, is assigned to the class C that maximizes the likelihood:

PrðD jCÞ ¼
Qn

i¼1 Prðdi jCÞ.
Expressing the conditional probability Pr(D jC) as a product of

simpler probabilities is based on the (naı̈ve) assumption of condi-

tional independence among the features, given the class. We use the

MALLET toolkit (McCallum, 2002) for feature vector creation and

for the naı̈ve Bayes classification of documents. We note that

although MALLET was originally built for text processing and

categorization, we use here image-derived features (as shown in

Figure 3) rather than text features as input to MALLET.

The representation and training steps given above, when applied

to the training data, result in clusters and classifiers for subfigures

(steps c, d above), which allow each document to be represented

based on its image contents (steps a-e above). More importantly

they yield a naı̈ve Bayes classifier for categorizing documents, using

their image-based representation. Given a new input document, we
classify it by executing the following procedure: First, the document

goes through steps a-c, namely, its figures are extracted, segmented

and its subfigures classified, in a way similar to the preprocessing

applied to the training data. Then each subfigure is assigned the

cluster label of its nearest neighbor in the training set, using the

results of training step d. An image-based description is created

containing a list of labels of all the subfigures in the document,

similar to training step e. Then a feature vector is computed and fed

into the naı̈ve Bayes classifier described above. This classifies the

input document as positive or negative based on its relevance to the
curation task at hand.

2.3 Integration with a simple text classifier

As a first attempt at integration of text data with image features, we

use the simplest and most widely used and readily available text for

biomedical documents, namely only the title and the abstract of

the articles as they appear in PubMed. The titles and abstracts of

all the articles contained in both the training and the test set were

tokenized to obtain a dictionary of terms consisting of single words

(unigrams) and pairs of consecutive words (bigrams), where words

were stemmed using the Porter stemmer (Porter, 1997) and standard

stop-words removed. Rare terms (appearing only in a single docu-

ment) as well as very frequent ones (occurring in more than 10%

of the documents) were also removed. The remaining terms, along

with their frequencies within each of the documents were used

to create, for each article, a representation similar to the one

shown in Figures 3 and 4, only in this case the features are the

actual text-terms. The abstracts of articles in the training set were

then used, as described in Section 2.2 to train a naı̈ve Bayes

classifier using the MALLET toolkit (McCallum, 2002). We note

that both the preprocessing and the classification schemes here are

basic ones, and will be extended in the very near future.

The integration scheme for combining the text and the image

classifiers consists of a simple OR combination, where a document

is considered as relevant for the triage task if either the text-based

classifier or the image-based classifier identified it as relevant. This

strategy is based on the observation that the triage task stressed the

importance of retrieving as many relevant documents as possible,

even at the cost of drawing in false-positives (more detail is given in

the next section).

3 EXPERIMENTS AND RESULTS

3.1 Experimental setting

We test our method on a subset of the data that was used for the

categorization task in the TRECGenomics Track 2004 (Hersh et al.,
2005), and specifically focus on the triage task. The triage task

aimed to classify documents as relevant or irrelevant for supporting
GO annotation by curators for the Mouse Genome Informatics

(MGI) resource at the Jackson labs. The original dataset consisted

of full-text articles from three journals: The Journal of Biological
Chemistry (JBC), The Journal of Cell Biology (JCB), and The
Proceedings of the National Academy of Science (PNAS), over
the period of two years, 2002 and 2003. The 2002 articles

(a total of 5,837) were designated as the training set for the task,

while those from 2003 (6,043 such articles) as the test set. The true

triage decisions were provided by MGI.

In the experiments described here, we use only documents from

the Journal of Cell Biology (JCB) as provided in TREC Genomics

2004. It is important to note that image data was not included in the
TREC data set. Given the non-trivial time and effort needed to

obtain the image data, download and process it, and given that

this is the first study to use biomedical image data for biomedical

literature categorization, we wanted to first validate the feasibility of

the task and establish a well-defined pipeline, before embarking on

the more ambitious task of utilizing the full amount of available

data. The distribution of training and test data used here is shown in

Table 1.

We train a classifier based on the images from the 256 training

documents, and test it on the 359 test documents. A simple text-

based classifier is trained on just the abstracts and titles of the same

set used for training the image-based classifier, and tested on the

Fig. 4. The vector representation for the document shown in Figure 1(i) and Figure 3, using term-frequency weighting. The feature labels are listed above their

weights. In the weight vector, ‘. . .’ indicates a sequence of consecutive 0’s.
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abstracts and the titles of the same test set as used in the image case.

Finally, an integrated classifier assigns a document as relevant for
curation if either of the two first classifiers tagged it as relevant.
To evaluate our results, we use the same metrics used to assess

the triage subtask in the TREC 2004 Genomics track. The primary

evaluation metric for the triage subtask, as defined by Hersh et al.
(2005), was the normalized Utility value, defined as:

Unorm ¼ ð20 · TPÞ � FP

20 ·Pos

In this formulation, TP is the number of true positives (documents

that were relevant for curation according to MGI, and identified

by the classifier as relevant), FP is the number of false positives

(documents identified by the classifier as relevant, but not consid-

ered as such by MGI), and Pos is the total number of articles that are

relevant according to MGI. The constant 20 was introduced by

Hersh et al., and serves to bias the evaluation to favor high recall

(that is, including as many positive examples as possible). It reflects

the notion that missing a relevant document that should be curated is

considered much more costly than including an irrelevant docu-

ment. Hersh et al. (2005) indicated that the ideal approach for

determining this constant would involve interviewing MGI curators

and formally determining utility, but they used a simplified approxi-

mation for the time being. Other measures include the standard

precision, recall, and F-score (combining recall and precision).

The formulae for these last three measures are as follows, where

we again use the abbreviations TP (True Positive), FP (False

Positive), FN (False Negative):

Precision:
TP

TPþ FP
Recall:

TP

TPþ FN

F-score:
2 · recall · precision

recallþ precision

3.2 Results

Table 2 summarizes our results from training and testing over the

JCB dataset (as shown in Table 1).

It is important to note that while our results are in the same utility

range as that obtained by TREC — and the combined utility of the

integrated system may look even higher than that achieved by the

average TREC run — our numbers (the top three rows) do not
compare directly with the TREC 2004 Triage results (the bottom

row), because we use only a subset of the TREC training and test

documents. The bottom row is provided not for comparing our clas-

sifiers with those of TREC, but rather to provide a ‘‘ballpark’’ range

for what one may expect to see in such results, and to demonstrate

that our results fall in this range. Meaningful comparative analysis

can only be made among the numbers presented in the top three rows.

All 59 of the TREC 2004 Triage runs were based on full-text

documents2, including figure captions, but not including any anal-

ysis of figure images. In contrast, our results for the image-based

classifier makes no use of text and uses only image data, while the
text-based classifier uses only the title and the abstracts of the

documents with no other information. The combined classifier

takes only the output of these two classifiers to make a categoriza-

tion decision. As shown in Table 2, our results are well within

the numerical range of the average results in TREC 2004 runs.

This is encouraging, indicating that even with very simple features

the image-based classifier can achieve a reasonable level of

performance.

Most importantly, we note that the integration of the image

classifier and our simple text classifier significantly improves

upon the utility obtained by each of the individual classifiers

alone. As explained in the previous section, this integration is per-

formed by assigning the tag relevant, to a document if any of the two

first classifiers categorized it as relevant. The fact that this strategy
improves recall, (and in-turn utility), indicates that the two original

classifiers are not strongly dependent, and use different criteria to

reach their conclusions. This is an important observation, given that

combining classifiers relies on the idea that an ensemble of classi-

fiers improves performance with respect to its individual compo-

nents if these components are mostly independent of each other

(Sebastiani, 2002, Tumer and Ghosh, 1996). These preliminary

results and the nature of both images and text in scientific docu-

ments indicate that the combination of figure and text analysis has

the potential to yield good results. We expect that image data, which

Table 1. The distribution of positive and negative documents in the training and test data sets

Positive documents Negative documents Total figures extracted Total subfigures extracted Total documents

Training JCB’02 26 230 1,881 10,920 256

Test JCB’03 34 325 2,549 15,549 359

Table 2. Classification results, using the evaluation metrics described by

Hersh et al. (2005). Average results from the TREC 2004 Triage runs, taken

from Table 6 of Hersh et al.’s report (2005), are shown for an informal

comparison. Due to the efforts involved in obtaining figure images, we

only used a fraction of the test and training documents used in the TREC

Triage task, as shown in Table 1. Our testing used 34 positive and 325 nega-

tive documents, whereas the TREC 2004 Triage testing used 420 positive and

5,623 negative documents

Utility Precision Recall F-score

Image-features system 0.307 0.279 0.353 0.312

Simple text classifier 0.315 0.647 0.323 0.431

Integrated 0.446 0.315 0.5 0.386

Avg. of 59 runs in

TREC‘04 triage task

0.330 0.138 0.519 0.195

2Notably, not all 59 runs took advantage of the full text; some participants

utilized only parts of it, such as abstract, title or MeSH terms.
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is a condensed form of information specific to certain types of

scientific discussions, will complement the information conveyed

in the natural-language text.

4 DISCUSSION AND FUTURE WORK

The research presented here is a first exploration of the possibility

of using image data in support of document categorization in the

biomedical domain. We note that the idea of using figures for the

end goal of text classification is novel and has not been applied yet

even in the general context of text categorization (i.e. outside the

biomedical domain). In our current work we used a rather small

data set, simple methods for segmentation, classification and clus-

tering of subfigures, as well as a very basic text classification and

integration strategy. The results of even this simple approach are

encouraging and suggest that image data has much to offer in sup-

port of biomedical text categorization. A refinement of all these

steps is expected to improve the end result. An important immediate

step is the application of both the current and the refined methods to

the full data set, and specifically to the TREC’05 categorization

tasks3. Experiments with the GO and Allele categorization tasks of

TREC’05 (Hersh et al., 2006) over the JCB subset, using appro-

priately adapted utility scaling measures, yield results similar to the

ones shown in Table 2. We are already running the system on the

complete data set, and are currently experimenting with categoriza-

tion, clustering and feature selection strategies that are appropriate

for this much larger and heterogeneous data set.

Experiments with other classifiers, aside from the naı̈ve Bayes,

as well as the application of more advanced text-categorization and

the use of text from captions and other parts of the document, are

natural and essential directions we are currently pursuing. Another

important next step is the study of the complementary role of text

and image data in biomedical text categorization. We are interested

in combining the analysis of text, ontology, and figures for

document triage and annotation tasks.

In our future research, we shall investigate how human curators

use figures in judging whether a document supports annotation, and

how figures are used during the annotation process. Observing how

humans handle the task will provide further ideas on how to auto-

mate (parts of) it. As noted in the introduction, Mayer and Moreno

(2002) examined the role of text and diagrams in understanding

scientific literature and assessed whether visual information

improves recall and problem-solving skills in human readers.

They observe that properly organized multimodal presentations

improve human performance in understanding the presented mate-

rial. Given the condensed and informative nature of scientific

images, and the rapidity in which humans perceive, process, and

reach decisions based on such visual cues, we expect images in

biomedical text to provide an invaluable support for categorization

and mining of such text. We view text- and image- based document

categorization as highly complementary, rather than competing

approaches.

Our current results, along with these observations and the already

accepted notion that database curators strongly rely on image data in

articles to support their decision, strengthen our hypothesis that

utilizing images can improve document categorization. Combining

image analysis with text analysis is thus expected to help resolve

ambiguity and improve the effectiveness of literature mining. The

preliminary results presented here, from categorizing biomedical

documents using both text and image data, further demonstrate and

support this idea.

There are several challenges when applying document image

analysis techniques for biomedical literature mining. In contrast

to the millions of abstracts in MEDLINE, the number of full-text

documents is still limited. Easy-to-use electronic versions (e.g. arti-

cles in XML format), with separately accessible figures and text are

available for some papers, but not for all. For other cases (e.g.

articles in PDF or image format), preprocessing has to be performed

to separate text and figures, and to associate figures with figure

captions. This preprocessing is difficult and error prone. Moreover,

training and test data based on curation decisions is not available for

individual images, but only for complete documents. We are

actively pursuing ways to obtain labeled images that have been

used by curators to determine the relevance/irrelevance of docu-

ments. We believe that having access to such data would form a

major step forward in training classifiers that utilize image data for

text categorization.
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